Load Balancing for Heterogeneous Web Servers

Adam Piérkowski®, Aleksander Kempny?, Adrian Hajduk!, and Jacek
Strzelczyk!

! Department of Geoinfomatics and Applied Computer Science,
AGH University of Science and Technology, Cracow, Poland
{adam.piorkowski, jacek.strzelczyk}@agh.edu.pl
http://www.agh.edu.pl
2 Adult Congenital and Valvular Heart Disease Center
University of Muenster, Muenster, Germany
aleksander.kempnyQukmuenster.de
http://www.ukmuenster.de

Abstract. A load balancing issue for heterogeneous web servers is de-
scribed in this article. The review of algorithms and solutions is shown.
The selected Internet service for on-line echocardiography training is
presented. The independence of simultaneous requests for this server is
proved. Results of experimental tests are presented®.

Key words: load balancing, scalability, web server, minimum response
time, throughput, on-line simulator

1 Introduction

Modern web servers can handle millions of queries, although the performance of a
single node is limited. Performance can be continuously increased, if the services
are designed so that they can be scaled. The concept of scalability is closely
related to load balancing. This technique has been used since the beginning
of the first distributed systems, including rich client architecture. Most of the
complex web systems use load balancing to improve performance, availability
and security [1-4].

2 Load Balancing in Cluster of web servers

Clustering of web servers is a method of constructing scalable Internet services.
The basic idea behind the construction of such a service is to set the relay server

3 This is the accepted version of:

Piorkowski, A., Kempny, A., Hajduk, A., Strzelczyk, J.: Load Balancing for

Heterogeneous Web Servers. In: Kwiecien, A., Gaj, P., Stera, P. (eds.) CN 2010.
CCIS, vol. 79, pp. 189-198. Springer, Heidelberg (2010)

The original publication is available on www.springerlink.com

2 Load Balancing for Heterogeneous Web Servers

in a transparent connection to the cluster servers (Fig. 1). This server is called
a dispatcher.

/ Cluster of Web Servers

Fig. 1. Cluster of web servers schema.

There are many implementations of load balancing. Some of them (like
OpenSSI for Linux or MS Windows Network Load Balancing) use additional
software that have to be installed on each cluster node. This software monitors
the load of these nodes, but is dedicated for selected operating systems or web
server software. It makes a construction of heterogeneous web servers clusters
impossible. This article focuses only on some implementations that allow to cre-
ate heterogeneous web server clusters. This means that it is desirable to create
services based on the nodes that use different operating systems and different
environments, but process the same requests. Technique which realizes load bal-
ancing fulfilling these assumptions is proxy load balancing.

2.1 The algorithms of load balancing

Efficient load balancing requires an appropriate algorithm. There are several
basic and common algorithms being discussed further in this paper:

— Round Robin [1],

— Weighted Round Robin,

— Least Loaded [1, 2],

— Least Connection [1],

— Weighted Least-Connection,
Locality-Based Least-Connection,
— Destination Hashing [13],

— Source Hashing [12,13],

Load Balancing for Heterogeneous Web Servers 3

— Fair [11],

— Never Queue,

— Shortest Queue First [14],

— Request Counting [9],

— Weighted Traffic Counting [9],
Pending Request Counting [9].

The Round-Robin algorithm is a well-known algorithm and it is easy to imple-
ment. Request Counting algorithm distributes the requests among the various
nodes to ensure that each node gets its configured share of the number of re-
quests [9]. Weighted Traffic Counting algorithm works in a similar way, but the
maximum number of requests per server is determined on the network traffic, in
bytes. Pending Request Counting algorithm’s idea is to keep track of how many
requests each worker is assigned at the time. New requests are assigned to the
server with the lowest number of active requests. The fair algorithm is based
on the standard round-robin algorithm and it tracks busy back end servers and
balances the load to non-busy servers [11]. There are many other algorithms,
some of them require special knowledge to predict the best scheduling [2].

2.2 Solutions

There are a few implementations of load balancing proxies that enable to create
a heterogeneous cluster of web servers. The most interesting from the perspective
of authors of scientific portals (non-commercial) are open software solutions. In
this article we discussed six of them:

— Apache Server with Mod Proxy Balancer [9] - this is a standard solution
used in the most popular web server, it implements three load balancing
algorithms : Request Counting, Weighted Traffic Counting and Pending Re-
quest Counting,

— Pound [10] - a simple solution with Round-Robin algorithm, distributed
under the GPL ,

— NGINX [11] - this software implements Round Robin and Fair load balancing
algorithms, NGiNX is licensed under 2-clause BSD-like license,

— Inlab Balance [12] - is an open source load balancer, under the GPL licensing
terms, that implements two algorithms - Round-Robin and Client Hashing,

— HAProxy [13] - this solution implements standard Round Robin algorithm
and others - Source Hashing and Destination Hashing,

— Lighttpd [14] - this is one of the famous and efficient web server, but also
proxy balancer, that implements four algorithms: Static (fail-over), Round
Robin, Cache Array Routing Protocol (similar to Source Hashing) and Short-
est Queue First.

3 Features of the web servers

Performance is one of the most important aspects of scalable web services. To
determine the performance the following factors should be considered:

4 Load Balancing for Heterogeneous Web Servers

— average response time (tq04),
— minimum response time (£,
— throughput (th).

The average response time is a factor which value varies and depends on
users load. Its value increases with the number of users.
The minimum response time is the minimum time in which a web request is
completed. Tt depends on the server performance (hardware, software) and the
request type. It can be constant for the same conditions. It should be measured
at minimal load of a server.
The throughput is a very authoritative factor that describes the performance of
a server. It tells how many requests can be processed at the unit of time at the
saturation. However, the system that reached the maximum throughput cannot
guarantee the acceptable response time.

3.1 The efficiency of request processing
The requests that are processed by a server can be of two types:

— independent request,
— related request.

The independent requests are requests, that do not affect one another. They
share resources (for example CPU), which are shared fairly between them. At
saturation of a web server with one processor the relationship of minimum re-
sponse time and throughput for this case can be given by the efficiency factor

(1):

The efficiency factor E; for series of identical independent request should have
the value close to 1.0. For multiprocessor servers the value of F; factor should
be close to the number of processors. In this case the efficiency factor is given
by formula (2), where N - number of processors.

E = tyin % th/N. (2)

Another type of queries are the related. Mechanisms of optimization like
caching or spooling can make processing shorter for a group of requests. This
is for example the case of queries with pool connections to databases [5,6]. In
this case the value of efficiency factor is above the number of processors. Some
queries can generate a large overhead (for example allocating and deallocating
big data tables, frequent context switching) - requests affect each other and the
efficiency factor is below the number of processors.

Load Balancing for Heterogeneous Web Servers 5

3.2 CT2TEE - an example of a web server

CT2TEE is a novel Internet-based simulator for transesophageal echocardio-
graphy (TEE) training [7]. It loads CT data into the memory and processes
projections [8] and USG simulations for each request individually. The process
of creating a projection is described on Fig. 2.

CLIENT CT2TEE Server

v
—a—

Loading CT data into memory ﬁ

Preprocessing

Picture request

-2

Calculating the projection(s)
Simulating USG artifacts

Compression JPG/GIF

Picture output

—— e ——————

-—-44

Fig. 2. Diagram for a request processing by CT2TEE server.

The output of CT2TEE application can be an image, that is a single frame
(of JPG or GIF format, JPG quality: 80%) or an animation (of GIF format).
The current version of CT2TEE generates the same projection with different
noise pattern, but there will be motion implemented in the future. The GIF
format generates bigger files than JPG. The one of the most interesting features
of CT2TEE application is a fact, that the efficiency factor (2) in this case on
the current Internet server of CT2TEE (2 processors) is very close to value 1
(0.99). Tt is caused by the character of requests - they are calculations that share
CPU only. Therefore the CT2TEE application is a good example to test load
balancing on a cluster of servers.

4 Tests

The tests have been carried out to assess performance.

4.1 Hardware and software environment

The following hardware has been used for the tests:

6 Load Balancing for Heterogeneous Web Servers

— for web servers/proxy server/test clients: IBM Blade HS 21, CPU: 2.0 GHz,
Intel Xeon (8 cores), RAM 16GB,
— network: Ethernet 1Gb, switch.

The following software was used:

operating systems: Linux Fedora Core 12, Windows Server 2008,

— component environments: Mono 2.4.2.3, NET 2.0,

web servers: Mono XSP 2.4.2, TIS 7.0,

— load balancers: Apache Mod Proxy 2.2, NGiNX 0.7.65, Pound 2.5-1, Inlab
Balance 3.52, HAProxy 1.4.1 and Lighttpd 1.4.26,

— load testers: JMeter, Apache Bench.

The results given by JMeter and Apache Bench were very similar, so we
decided to use JMeter in all cases. The tests were divided into two parts:

— determining individual parameters of servers,
— determining performance of load balancing.

4.2 The efficiency of servers

Initially the tests for the main parameters of cluster servers have been carried
out. The results (minimum times of requests ¢, [ms|, throughputs th [req/s]
and efficiency factors F) are presented in Table L.

Table 1. Minimum times of requests ¢min [ms], throughputs th [req/s] and efficiency
FE for cluster servers with CT2TEE application.

OS server GO G1 G4

tmin| th Eltmin| th Eltmin| th FE
Linux |[sl 193(33.1|0.799| 203|38.5[0.977| 760/10.0{0.950
XSP s2 188|34.1/0.801| 200(37.6/0.940| 762{10.4{0.991
s3 190(34.8|0.827| 201|36.8({0.925| 767|10.3|0.988
s4 191(33.4/0.797| 197|36.8({0.906| 776/10.1{0.980
WinSvr|sl 140|52.5/0.919| 137|47.4|0.812| 517(14.9/0.963
1IS s2 141]49.8|0.878| 137|48.2({0.825| 519|15.2|0.986
s3 138(53.2|0.918| 136(46.3(0.787| 519/14.9|0.967
s4 139|51.0/0.886| 137|50.3|0.861| 518|14.8]0.958

4.3 The performance of load balancing

Experiments for the six solutions (Apache Mod Proxy, NGiNX, Pound, Inlab,
HAProxy and Lighttpd) were done. In the case of Apache Mod Proxy we tested
all three algorithms: Request Counting (RC), Weighted Traffic Counting (WTC)
and Pending Request Counting (PRC). In the case of Inlab we tested only the

Load Balancing for Heterogeneous Web Servers 7

Round Robin algorithm. In the case of HAProxy we tested three algorithms:
Round Robin (RR), Source Hashing (SRC) and Destination Hashing (URI). In
the case of Lighttpd we tested four algorithms: Cache Array Routing Protocol
(CARP), Round Robin (RR), Static (failover balancing, STAT) and Shortest
Queue First (SQF). There were two kinds of heterogeneous environments:

— 3 servers running Linux+XSP and 1 server running Windows+IIS,
— 1 server running Linux+XSP and 3 servers running Windows-+IIS.

We selected output to be a JPG (GO, small files of average size 20 KB) and GIF
(G1, bigger files of average size 80 KB for 1 frame and 300 KB for 4 frames -
G4). The G4 output was processed much longer than others.

The results are presented in table IT and on the plots (Fig. 3, 4). To compare
these results with the maximum performance of a system an additional column
(MAX) is placed. It contains sums of all server throughputs for the tested cases.

Table 2. The performance of load balancing - throughputs [req/s].

Load Balancer |1 WinIIS + 3 LinXSP|3 WinlIIS + 1 LinXSP
GO G1 G4 GO G1 G4
Pound 131.50({138.40| 37.80{129.10{150.20| 41.60
NGiNX RR 136.30{150.40| 39.70|141.00{152.60| 39.20
NGINX FAIR [132.20{133.40| 38.60(131.50{144.30| 39.10
Inlab 155.40({155.40| 47.10{195.40({189.30| 50.80
Apache WTC 67.10| 79.80| 17.30|105.30| 91.30| 25.70
Apache RC 111.40{115.60| 30.90|139.60(|124.60| 38.80
Apache PRC 150.20({145.30| 45.70{194.30{151.40| 48.40
HAProxy RR |133.90|131.70| 38.70({130.00{122.90| 37.60
HAProxy SRC | 36.70| 39.90| 16.70| 36.90| 40.10| 10.40
HAProxy URI | 37.40| 40.10| 10.40| 57.40| 59.50| 15.30
Lighttpd CARP| 65.10| 74.00| 19.10| 88.50| 94.60| 24.90
Lighttpd RR 128.20(132.50| 36.80|156.90(|155.60| 40.30
Lighttpd STAT | 88.50| 91.00| 24.00{101.30{101.50| 26.60
Lighttpd SQF |158.70{167.10| 43.80({172.90{171.80| 48.80
MAX 165.30{168.50| 47.60|211.10{190.30| 56.40

5 Summary

The tests have proved that the use of proxy load balancers effectively increases
system throughput. Some of the servers provide several algorithms, the choice of
one of them is crucial for performance. For tested solutions using the CT2TEE
application server the best results are reached by Inlab, Lighttpd with Shortest
Queue First algorithm and Apache Mod Proxy with Pending Request Count-
ing algorithm. Slightly smaller througputs were achieved for the other solutions

8 Load Balancing for Heterogeneous Web Servers

I

[MAXIMUM]

l

Lighttpd SQF
Lighttpd STAT

|

l

Lighttpd RR

|

Lighttpd CARP

HAProxy URI

HAProxy SRC

|ﬂﬂ

HAProxy RR

l

3WinlIS + 1LinXSP

Apache PRC

I

Apache RC

|

Apache WTC

i

Inlab

|

Nginx FAIR

Nginx RR

Pound

[MAXIMUM]

|

I

Lighttpd SQF
Lighttpd STAT

|

l

Lighttpd RR

Lighttpd CARP

HAProxy URI

HAProxy SRC

|ﬂﬂﬂ

HAProxy RR

I

1WinlIS + 3LinXSP

Apache PRC

|

Apache RC

|

Apache WTC

l

Inlab

l

Nginx FAIR

l

Nginx RR

I

Pound

200
150
100 H
50 H
o 4

oGo
BG1

Throughput[req/s]

Fig. 3. The results of load balancing tests for GO (JPG) and G1 (GIF, 1 frame) output.

Load Balancing for Heterogeneous Web Servers 9

[MAXIMUM]

Lighttpd SQF

Lighttpd STAT

Lighttpd RR

Lighttpd CARP

HAProxy URI

HAProxy SRC

HAProxy RR

Apache PRC

3WinlIS + 1LinXSP

Apache RC
Apache WTC
Inlab

Nginx FAIR

Nginx RR

Pound

[MAXIMUM]

Lighttpd SQF
Lighttpd STAT

Lighttpd RR

Lighttpd CARP

HAProxy URI

HAProxy SRC

HAProxy RR

Apache PRC

1WinlIS + 3LinXSP

Apache RC

Apache WTC

Inlab

Nginx FAIR

Nginx RR

Pound

AL

0
0
0
10 -
0.

60
5
40
3
2

Throughput[req/s]

Fig. 4. The results of load balancing tests for G4 (an animated GIF, 4 frames) output.

10 Load Balancing for Heterogeneous Web Servers

that use Round Robin algorithm - NGiNX (Round Robin and Fair algorithms),
Pound, HAProxy (with Round Robin algorithm) and Lighttpd (with Round
Robin algorithm). The worst results were produced by proxy balancers with
Source Hashing and Destination Hashing algorithms. Apache Mod Proxy with
Weighted Traffic Counting algorithm is over two times slower than the best re-
sults, but this algorithm is better in case of variable size of outputs. As we proved
the choice of solution and algorithm is very important to reach the maximum
performance of web server clusters.

Acknowledgment. This work was financed by the AGH - University of Science
and Technology, Faculty of Geology, Geophysics and Environmental Protection
as a part of statutory project number 11.11.140.561.

References

1. Teo, Y.M. and Ayani, R., Comparison of load balancing strategies on cluster-based
web servers. Simulation. vol. 77 issue 6. p. 185-195 (2001).

2. Guo J., Bhuyan L. N.: Load Balancing in a Cluster-Based Web Server for Multimedia
Applications. IEEE Transactions On Parallel And Distributed Systems, vol. 17, no
11, (2006).

3. Ungureanu V., Melamed B. and Katehakis M.: Effective load balancing for cluster-
based servers employing job preemption. Performance Evaluation, vol. 65, issue 8§,
p. 606-622 (2008).

4. Wrzuszczak, J.: Auction mechanism in management of processing nodes in a com-
puter cluster. Contemporary Aspects of Computer Networks 2, 259-265 (2008).

5. Bogardi-Meszoly A., Szitas Z., Levendovszky T. , Charaf H.: Investigating Factors
Influencing the Response Time in ASP.NET Web Applications. Lecture Notes in
Computer Science (LNCS), Springer, vol. 3746., pp. 223-233 (2005).

6. Gabiga A., Pidrkowski A., Danek T.: Efficiency analysis of servlet technology in
selected database operations. Studia Informatica, nr 84, vol 30 issue 2B, (2009).

7. Kempny A., Piérkowski A.: CT2TEE - a Novel, Internet-Based Simulator of Tran-
soesophageal Echocardiography in Congenital Heart Disease. Kardiol Pol 2010; 68:
(2010).

8. Piorkowski A., Jajesnica L., Szostek K.: Creating 3D Web-Based Viewing Services
for DICOM Images. Computer Networks, 16th Conference, CN 2009, Wisla, Poland,
June 16-20, 2009, Communications in Computer and Information Science, Springer
Berlin (2009).

9. Mod Proxy Balancer - Apache HTTP Server,
http://httpd.apache.org/docs/2.1/mod/mod_proxy_balancer.html

10. Pound - Reverse-Proxy and Load-Balancer, http://www.apsis.ch/pound/

11. NGiNX - HTTP and reverse proxy server, http://nginx.org/en/

12. Inlab Balance, http://www.inlab.de/balance.pdf

13. HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer,
http://haproxy.lut.eu/

14. Lighttpd - fly light, http://www.lighttpd.net/

