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Abstract. This paper investigates a possibility of supplementing stan-
dard dimensionality reduction procedures, used in the process of knowl-
edge extraction from multidimensional datasets, with topology preser-
vation measures. This approach is based on an observation that not all
elements of an initial dataset are equally preserved in its low-dimensional
embedding space representation. The contribution first overviews exist-
ing topology preservation measures, then their inclusion in the classical
methods of exploratory data analysis is being discussed. Finally, some il-
lustrative examples of presented approach in the tasks of cluster analysis
and classification are being given.
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1 Introduction

Recently, the subject of intelligent data analysis are predominantly high di-
mensional datasets with huge sample lengths. It is a result of growing amount
of information stored in distributed data warehouses and fast development of
data-intensive software applications frameworks [3]. The knowledge extraction
and visualization of such datasets are difficult, mainly due to methodological
obstacles of high dimensional data analysis. They are caused mainly by inherent
properties of such datasets referred in bibliography as “curse of dimensionality”
[16].

To overcome those issues numerous dimensionality reduction procedures have
been proposed. Let X to denote n×m data matrix:

X =
[

x1 x2 ... xm

]

(1)

columns of which represent n dimensional sample elements for given real-valued
probabilistic variable. Each dimension of such variable will be referred later in
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this paper as a feature. The general aim of dimensionality reduction is a data
transformation to its new N×m sized form, where N is significantly smaller than
n. This can be achieved either by selecting most N significant features (feature
selection) or by construction of a new set of N features (feature extraction) based
on the initial ones. The second case is more general and will be under considera-
tion here. Among feature extraction procedures one can distinct: linear methods
where synthesis of resulting dataset Y is performed by linear transformation:

Y = AX (2)

with A being a transformation matrix of size N × n and nonlinear techniques
where data transformation can be described by a nonlinear function g : Rn →
RN (or if such functional relationship does not exist). Detailed study on perfor-
mance of routines belonging to both of above mentioned classes can be found in
[10].

The general goal of dimensionality reduction is removing dataset’s redundant
content, however at the same time its application can cause a loss of important
information carried within its entries. The latter can be quantitatively evalu-
ated using different preservation quality indices, measuring datasets structural
deformation. Some of those indicators can be considered on per-element basis
which directly allows to assess how well each element of the dataset was rela-
tively preserved by the dimensionality reduction transformation. Such approach
is investigated in this paper, along with a novel concept of using this index
(named below as a elements weight) to improve the performance of intelligent
data analysis procedures in the reduced feature space. The presented idea was
suggested first in our previous contribution devoted to the novel, metaheuristic-
based dimensionality reduction technique [8], as well as in [9], where it was
experimentally assessed for raw stress measure.

The paper is organized as follows. Various topology preservation indices al-
ready presented in the bibliography of the subject are given in the following
Section. The use of some of them, on per-element basis, for selected data analy-
sis procedures in the reduced feature space is discussed in Section 3, along with
experimental results given in Section 4. Finally, the last part of the contribu-
tion contains some concluding remarks on the introduced approach and planned
further research.

2 Topology Preservation Measures

Let us, in equivalence to (1), consequently denote the representation of given
dataset in the reduced feature space by N ×m data matrix:

Y =
[

y1 y2 ... ym
]

(3)

For the purpose of subsequent analysis we also define Euclidean distances be-
tween two datasets elements i and j (i, j ∈ {1, 2, ...,m}) in the initial and reduced
feature space (dij and δij accordingly) as follows:

dij = ‖xi − xj‖Rn (4)
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δij = ‖yi − yj‖RN (5)

Dimensionality reduction procedures are often classified into two, not always
clearly distinguished, groups, namely global and local techniques [14]. The former
are characterized by an attempt to preserve global geometrical properties of the
original data in its low-dimensional representation Y , while the latter are based
on trying to keep the local neighbourhood relations found initially in X .

To measure the quality of the global-based mapping one can use simple raw
stress used in many variants of Multidimensional Scaling [1]:

SR =

m−1
∑

i=1

m
∑

j=i+1

(dij − δij)
2

(6)

as well as its normalized form provided by Sammon [12]

SS =
1

∑m−1
i=1

∑m

j=i+1 dij

m−1
∑

i=1

m
∑

j=i+1

(dij − δij)
2

dij
(7)

which puts less emphasis on large distances.
Stress-based indices are the most commonly used, however in many practical

problems it is sufficient to evaluate the preservation of distances order rather
than their exact values. Spearman’s rho [13] can be employed in that case as it
estimates the correlation of rank order data. In the context of dimensionality re-
duction, this coefficient can indicate how well the corresponding low-dimensional
embedding preserves the order of pairwise distances between the original data
points converted to ranks. Spearman’s rho is calculated by using the following
equation:

ρSP = 1 −
6
∑M

p=1(rpd
− rpδ

)2

M3 −M
(8)

where M = m(m − 1)/2 is a total number of distances subjected to the com-
parison and rpd

, rpδ
are the ranks (with p = 1, 2, ...,M) of pairwise distances

sorted in ascending order for both, initial and reduced feature space. Spearman’s
rho value equal to 1 is equivalent to perfect preservation of distances’ order (in
general ρSP ∈ [−1, 1]).

Local mappings are usually evaluated using neighbourhood graph preserva-
tion. While, there exists numerous methods to analyze it e.g. Konig measure
[6], simple one-parameter Mean Relative Rank Error (MRRE) index [7] will be
presented here.

Let Nk(xi) to represent a group of k-nearest neighbors of xi, and Ri
jd

, Ri
jδ

be the ordered rank of distances dij and δij respectively, defined for a set of all
distances between element i and a rest of the dataset. MRRE is then defined as
follows:

MRRE =
1

C

m
∑

i=1

∑

xj∈Nk(xi)

|Ri
jd

−Ri
jδ
|

Ri
jd

(9)
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with the following normalizing factor C:

C = m

k
∑

p=1

|2p−m− 1|

p
(10)

which ensures that MRRE ∈ [0, 1]. This measure can be found similar to conti-
nuity, and it vanishes to zero if nearest neighbours of each data point appear in
the same order in both spaces [7]. In this initial study we consider MRRE with
k = 11.

For more detailed description and comparison of above mentioned measures
one could refer to [4]. The next Section of this contribution will be devoted to
the use of some of them in data analysis procedures performed in the reduced
feature space.

3 Proposed approach

Dimensionality reduction in general can significantly modify some data elements’
relative position. Consequently the performance of data mining procedures de-
fined in the reduced feature space can be seriously affected. Thus, it would be
useful to synthesize individual measure which could serve as a quantitative index
of how well each point of the dataset was relatively preserved by the dimension-
ality reduction transformation. This index element’s weight wi could be then
used for exploratory data analysis procedures in the reduced feature space. In-
vestigating if weights in such form are beneficial for data mining procedures
performed in the space with reduced dimensionality constitutes one of the goals
of this study.

To define the weight for each dataset element it is crucial first to directly eval-
uate a contribution w∗

i this elements embedding brings to the selected topology
preservation index (note that these auxiliary coefficients do not have to sum up
to the value of general index). Given the form of already introduced topology
preservation measures these per-element factors could be defined accordingly,
for raw stress:

w∗
i = SRi

=

m
∑

j=1

(dij − δij)
2

(11)

Sammon stress:

w∗
i = SSi

=
1

∑m−1
i=1

∑m

j=i+1 dij

m
∑

j=1

(dij − δij)
2

dij
(12)

Spearmans rho (this time with ripd
and rpi

δ
representing ranks of distances from

p to the element i):

w∗
i = 1 − ρSPi

=
6
∑m

p=1(ripd
− ripδ

)2

M3 −M
(13)
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and Mean Relative Rank Error:

w∗
i = MRREi =

1

C

∑

xj∈Nk(xi)

|Ri
jd

−Ri
jδ
|

Ri
jd

(14)

Consequently weights are to be calculated using w∗
i values obtained from (11-14)

and performing additional normalization:

wi =
m(w∗

i )−1

∑m

i=1(w∗
i )−1

(15)

for i = 1, ...,m to ensure that
m
∑

i=1

wi = m . (16)

Please note that if w∗
i = 0 one should replace it with minj=1,...,mwj 6= 0.

Introduction of weights allows to take into account deformations in a dataset
relative structure. Data elements with higher weight might then be treated as
more adequate. Besides using weights values directly one can use them also
to eliminate the influence of some badly deformed data elements. It can be
performed by neglecting in weight-based data analysis procedures by setting wi

to 0 those elements for which associated weights fulfil the following condition:
wi < W , where W ∈ R

+ can be referred to as elimination threshold. Then all
other weights should be either normalized to keep (16) or alternatively set to 1.
This second variant of proposed approach will be under investigation here. The
following two subsections of the paper will discuss how the general weight-based
scheme defined above can be utilized for two standard data mining algorithms:
clustering with K-means procedure and nearest neighbour classification.

3.1 Use Case 1: K-means Clustering Algorithm

The task of cluster analysis is equivalent to such division of available data el-
ements into subgroups (clusters) that elements belonging to each cluster are
similar to each other and on the other hand there exist a significant dissimilarity
between different clusters elements. The technique of data clustering considered
here is based on a modification of the classic K-means algorithm. K-means is
an iterative clustering algorithm which is aimed at minimizing sum-of-squares
error i.e. sum of distances of dataset elements to their nearest cluster center
Ci = [c1, c2, ..., cN ], with i ∈ 1, 2, ...K. The procedure, in its standard form, in-
cludes a step of cluster assignment followed by clusters centers update [2]. The
influence of topology preservation ratio in the reduced feature space can be in-
cluded in the second stage of clustering algorithm. Each cluster center is then
established using the following modified equation:

cij =
1

∑

yl∈Ci
wl

∑

yl∈Ci

wlylj , (17)

with i = 1, ...,K and j = 1, ..., N . Consequently, such modified algorithm can be
referred to as weighted K-means [5].
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3.2 Use Case 2: Nearest Neighbour Classifier

Now let us consider the task of classification, that is designating element x̃ ∈ R
n

to one of the fixed class with known set of representative patterns (training set),
similar to (1). Nearest neighbour classifier is a basic solution for this problem.
The algorithm itself assigns element x̃ to a class which nearest neighbour of
x̃ from the training set belongs to. Its modified variant, taking into account
topology preservation, makes a similar decision on a basis of weighted distances
i.e. divided additionally by weight wi. This approach can be easily generalized
for broader category of k-Nearest Neighbour Classifiers [11].

4 Experimental results

Proposed technique was preliminarily verified for data exploration procedures
performed for five multidimensional datasets taken from the UCI Machine Learn-
ing Repository [15] listed in Table 1.

Table 1: Used datasets description

Dataset m n N Classes Class Description Sample length

glass 214 9 4 6 building windows float processed 70
building windows non float processed 76

vehicle windows float processed 17
containers 13
tableware 9
headlamps 29

wine 178 13 5 3 producer 1 59
producer 2 72
producer 3 47

WBC 683 9 4 2 benign 444
malign 239

vehicle 846 18 10 4 Opel 212
Saab 217
bus 218
van 199

seeds 210 7 2 3 Kama 70
Rosa 70

Canadian 70
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Dimensionality reduction was performed using Principal Components Anal-
ysis. We used fixed values of embedding dimension N established in previous
experiments. The accuracy of K-means clustering was measured using Rand in-
dex value IC calculated versus class labels, whereas for nearest-neighbour clas-
sification average classifier accuracy IK during 5-fold cross validation was under
close scrutiny. All experiments involving aforementioned data mining procedures
where repeated 30 times, with mean and standard deviation being reported here
(in “mean ± standard deviation” notation).

The initial experiments were conducted to evaluate the distribution of weight
values calculated from (11-14). It was computationally verified by setting W =
0.1, 0.2, ..., 1.5 and observing the percentage (relative to the sample size m) of
dataset elements with weight values under W , labelled as mel. The results of
those studies are shown on Figure 1. It can be seen that the distribution of
weight values is not linear. However, for all considered datasets less than 50% of
sample elements are characterized by weights values below average i.e. wi < 1.
It was also observed that weighting scheme based on raw stress could tend to
be conservative, whereas using MRRE would offer neglecting large part of the
dataset even for a small value of W .

(a) (b)

Fig. 1: Weights values distribution for seeds (a) and glass (b) datasets

The next series of experiments was designed to investigate the performance
improvement for clustering, when using weighted variant of K-means algorithm
with varying values of threshold W . First, the standard K-means procedure
was tested for the reduced dataset, with Ic · 100% representing the Rand index
value obtained at that stage. Then the algorithm supported by aforementioned
weighting scheme was executed with multiple runs measuring the performance
variation ∆I = (Ic − IcW ) · 100% for different values of W . Figure 2 exhibits the
results obtained at that stage for two selected datasets and different weighting
schemes.
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For all datasets introducing the weights based on topology preservation index
improve clustering performance. For most cases it is also recommended to neglect
some dataset elements here. Increasing W beyond 1 however, leads to spectacular
decrease in clustering accuracy.

(a) (b)

Fig. 2: Comparison of Rand indices obtained using K-means in reduced feature
space with, and without topology preservation index weights for seeds (a) and
glass (b) datasets

The summary of our results, concerning both cluster analysis and classifi-
cation is given in Table 2. Along with standard data mining procedures their
modified variants, with the best combination of topology preservation indices
and W values, are being included in this comparison. Once again it is worth to
note that using proposed approach is in general beneficial for the performance of
data mining procedures performed in reduced feature space. It is particularly rec-
ommended to use elimination of deformed datasets elements for nearest-neighbor
classifier. It is a result of weak robustness of this classifier to noisy training sam-
ple members, which thanks to approach being introduced here, can be neglected.

5 Conclusion

This paper introduces novel scheme designed for high-dimensional tasks of in-
telligent data analysis performed in the reduced feature space. Our proposal is
based on an observation that dimensionality reduction affects the topological
structure of the datasets. It is consequently suggested here to use measures of
topology preservation to improve data analysis procedures performed thereafter.

Introductory studies on method’s performance conducted for selected datasets
show that it offers promising efficiency. Further research in this area will involve
studying the influence of dimensionality reduction procedure being employed in
the first step on the beneficial effect of the proposed weighting scheme. The ef-
fect of the technique under consideration on the performance of other intelligent
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Table 2: Clustering and classification in reduced feature space - comparison of
standard approach and our proposal (Ic · 100% for clustering and Ik for classifi-
cation were reported).

Procedure glass wine WBC vehicle seeds

PCA, K-means 69.41 71.37 92.51 64.21 87.28
±2.43 ±1.07 ±0.13 ±1.91 ±0.15

PCA, weighted K-means 71.46 71.40 93.21 64.21 87.93
±1.88 ±0.98 ±0.00 ±1.80 ±0.00

Best W W=0.6 W=0.2 W=0 W=0.1 W=0.6

TP weight type Raw stress Spearman rho Sammon stress Spearman rho Raw stress

PCA, NN classifier 59.99 74.51 96.78 55.78 88.34
±2.79 ±3.08 ±0.62 ±1.21 ±1.80

PCA, weighted NN 63.80 76.58 96.82 58,13 90.24
±2,69 ±2.57 ±0.63 ±1.40 ±1.88

Best W W=0.5 W=0 W=0.1 W=0 W=0.7

TP weight type MRRE Raw stress MRRE Sammon stress Raw stress

data analysis procedures, e.g. neural-network classifiers will be also investigated.
Furthermore the guidelines for choosing proper weighting function, as well as
setting a value of W for given dataset will be worked out. Additional experi-
ments, for larger datasets (representing for example documents’ content or gene
expression data), are likewise planned to be performed.
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