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3. Wave Packets and the Uncertainty

Principle
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3.1. A free electron in one dimension

3.2. Wave packets

3.3. Heisenberg uncertainty relation of position-

momentum

3.4.The physical meaning of the uncertainty 

relations

3.4.1 Heisenberg microscope

3.4.2. Two-slit experiment

3.5. Time-energy uncertainty relation
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Free particle (free electron) is a particle that is not
subject to any forces.

3.1. Free electron in one dimension

V(x)=0 in the Schrödinger equation

Such particles should exhibit all the 
classical properties: they carry 
momentum and energy and appear 
to be localized, i.e. when charged, 
they leave well-defined tracks in a 
hydrogen bubble chamber 

hamiltonian wave function wave function

the energy of electron
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How can solution of the Schrödinger wave equation

look like a particle?

3.1. Free electron in one dimension

Heisenberg uncertainty relations place limits on 
how well we can apply our classical intuitions about 
position and momentum to quantum phenomena

Heisenberg uncertainty relations place limits on 
how well we can apply our classical intuitions about 
position and momentum to quantum phenomena
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Schrödinger equation for a free electron:

Hamiltonian includes the kinetic energy E, only

SE takes the simple form:

We introduce the parameter
k, the wave number, defined
by:

3.1. Free electron in one dimension

Proposed solution:
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Solutions are:

3.1. Free electron in one dimension

Simple cos(kx) or sin(kx) are not the eigenfunctions of the 
momentum operator but their combination exp(±ikx) is its 
eigenfunction. Therefore, the momentum of electron will have a 
definite value of momentum. Can such a particle be localized in 
space?

)exp()( ikxxu

)exp()( ikxxu

electron is traveling in negative x direction

electron is traveling in positive x direction

From combined with
m

p
E

2

2

we get:

kp 
eigenvalues of 
momentum operator  dx

d
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Time-dependent and space-dependent solutions combined give:

3.1. Free electron in one dimension



Etpxi
Atx exp),(

Wave function of a free electron moving in one direction of x-
axis; electron has well-defined momentum p and energy E

plane wave

Note that for exp(ipx/ħ) there is a periodicity in space

xx

p

h

p

2

wavelength

de Broglie relation
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Consequences of solution in a form of plane wave:

3.1. Free electron in one dimension



Etpxi
Atx exp),(

1. This solution does not describe a localized particle. The
probability of finding a particle is the same at all points in space.

2. The proposed function cannot be normalized. The constant A
has to be infinitely small!

22

),( Atx

the integral is infinitely large

1),(
22

dxAdxtx



2011-03-21

5

Modern Physics, summer 2011 9

Wave

Our traditional understanding of a wave…

“de-localized” – spread out in space and time

Wave packet

How to construct a wave packet?

If several waves of different
wavelengths (frequencies) and
phases are superposed together, one
would get a localized wave packet

3.2. Wave packets
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This wave function is a superposition of plane waves with different 
momenta p and describes a free particle localized in the space

A wave packet is a group of waves with slightly different
wavelengths interfering with one another in a way that the
amplitude of the group (envelope) is non-zero only in the
neighbourhood of the particle

A wave packet is localized – a good representation for a particle!

3.2. Wave packets

momentum weight
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A(p) is localized about a central value po

is proportional to the probability that the momentum
will be found in a window of width dp around the value p

There are different types of momentum distribution. The type
important for us is when A(p) is centered about some particular
value po of momentum and falls off as we depart from po (e.g.
Gaussian distribution.)

3.2. Wave packets

dppA
2

)(

po

p

A(p)

Δp

C – constant

How localized the weights A(p) are, depends 

on a width Δp of momenta about po. There is 

little possibility of finding a momentum value 

larger than p+Δp/2 or smaller than p+Δp/2
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The plane wave can be thought of as a limiting case with a width

Δp that is infinitely small Δp =0. The particle that has a perfectly

definite momentum is highly unlocalized in space Δx ∞.
In order to avoid this, i.e. to have a localized particle with finite

Δx we need a nearly definite momentum Δp≠0 . The narrower the
width described by the weights A(p), the more precisely the
momentum is constrained.

3.2. Wave packets

The more precise the momentum, the more spread out the pulse
is in space. The inverse relationship between Δx and Δp is a
general feature of wave packets and is described quantitatively by
Heisenberg uncertainty relations
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It was discovered in the framework of
quantum mechanics by Werner
Heisenberg in 1927 and plays a
critical role in the interpretation of
quantum mechanics and in showing
that there could be no conflict between
quantum and classic physics in their
respective domains of applicability.

Position-momentum uncertainty relation

We can not simultaneously measure the position and the momentum of a 
particle with arbitrary precision.  

3.3. Heisenberg uncertainty relation

1901-1976
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We define the width in position Δx as the square root of the 
variance σ2(x) in the space distribution: 

Similarly, the width in momentum Δp is the square root of 
variance σ2(p) in the momentum distribution

Evaluation of width in position and momentum

2222 )()( xxxx

2222 )()( pppp
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Gaussian wave packet

For Gaussian wave packet we have the maximum simultaneous
localization in position and momentum, in a sense that the product
ΔxΔp is as small as it can be.

is one particular example for which the position-momentum 
Heisenberg relation is realized as an equality. 

2/px

3.3. Heisenberg uncertainty relation
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small a

The probability density for 
momentum |A(p)|2 as a function 
of momentum p

3.3. Uncertainty relation

The probability density 
|ψ(x)|2 as a function of x

large a

For the Gaussian wave packet

ap  ax
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The Heisenberg uncertainty relation is not restricted to 
quantum mechanics.

From de Broglie relation:

3.3. Uncertainty relation

kp 

Heisenberg relation becomes:

21xk

This relation applies equally to pulses of sound! 
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Example: Consider a grain of dust of mass 10-7 kg moving with the velocity
around 10 m/s. Suppose that measuring instruments available to us leave the
velocity uncertain within the range of 10-6 m/s (i.e. one part in 107). Given the
instrumental uncertainty in the velocity, find the intrinsic quantum mechanical
uncertainty of a position measurement of the dust of grain.

Solution: The instrumental uncertainty in the momentum is

smkgsmkgvmp /10/1010 1367

Hence, according to the uncertainty relation, the position could be at best be 
measured to within the window

3.4. The physical meaning of the 
uncertainty relations

m
smkg

sJ

p
x 21

13

34

10
/10

1005.1

This is an extremely small number, of about 1011 smaller than the size of one of 
the approximately 1019 atoms that make up the dust particle!
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This „thought experiment” was devised by Heinsenberg himself.
Imagine a microscope that is designed to measure an electron’s x –
position and the px – the component of the electron’s momentum
simultaneously.

Suppose an electron moves from the left to
the right with the well-defined initial
momentum px. The electron’s position is to
be observed by shining light on it.

3.4.1. Heisenberg microscope

The light comes in the form of a single photon
with a precisely known momentum (a
precisely known wavelength) coming from the
right. The timing of collision between the
electron and the photon is arranged so that it
takes place under the lens of a microscope.
The observation takes place if the photon
scatters off the electron and passes through
the lens onto a photographic plate.
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The classical optics gives  for the resolution of lens:

In contrast to Δx, smaller wavelength (larger frequency f) or larger angle θ raise Δpx

λ-photon wavelength after collision

Δx is simultaneously the ability to locate the electron in space and uncertainty in 
electron’s position; in order to reduce it we need smaller wavelength or larger angle θ

3.4.1. Heisenberg microscope

Uncertainty in the electron’s momentum (its x-component) Δpx after collision, when its 
position is measured,  is the same as the uncertainty in the photon’s momentum. 
Photon’s momentum after collision is uncertain, because we do not know the exact 
direction of the photon when it passed through the lens.
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The product of Δx and  Δpx is

3.4.1. Heisenberg microscope

This result is independent of any details of the system and takes the general form of 
Heisenberg’s relation

The complementary wavelike and particlelike properties of radiation 
can be reconciled only within the limits imposed by the uncertainty 
principle. 

Uncertainty principle always saves us from contradiction.
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y

x

Incident electron

Incident electron

Two possible 
paths

θ
a

Electrons passing thought a pair of slits 
produce an interference pattern even if 
they pass with such a low intensity that we 
have only one electron at a time. But it 
seems that just knowing which slit the 
electron went through destroys the 
interference pattern. The uncertainty 
principle ensures that this is exactly the 
case!!!

.

The condition for the constructive interference is

3.4.2. Two-slit experiment

d

The separation between adjacent maxima on the detection screen is

a

d
dd

nn
sinsin

1
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Any measurement of the position of electron (by scattering a photon at 
an electron) transfers the photon momentum to the electron and 
introduces an uncertainty Δpy in the electron’s y momentum. We can 
estimate the minimum size of the Δpy by means of the uncertainty 
principle  

.

A monitor (an eye) just behind the slits determines the position of
the electron to an accuracy sufficient to tell which slit the electron
came through. This is equivalent to a measurement of the y-
components of the electron’s position with the precision better than
the separation between the slits:

3.4.2. Two-slit experiment

2

a
y
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Finally, the angular uncertainty translates into an uncertainty in the 
arrival point on the detection screen. The transverse arrival position is 
uncertain by:

.

Having introduced an uncertain transverse component of momentum, we
have automatically introduced an uncertainty in the arrival spot on the
detection screen. If the electron came through carrying a longitudinal
momentum p, then the electron moves off the two slits at an angle

3.4.2. Two-slit experiment

aapp

p
y

2



Comparing this result with the separation between two adjacent maxima:

a

d
d

we see that our monitor has disturbed the electron 
enough to wipe out the interference pattern
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we have:

Time-energy uncertainty relation

There is another uncertainty relation that is quite useful – one involving 
time and energy. We  can find it by using the momentum – position 
Heisenberg’s relation

then

3.5.The time – energy uncertainty
relation

It asserts that a state of finite duration Δt cannot have a precisely 
defined energy, but we deal with the uncertainly in E. 

For E=p2/2m
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If an excited atomic state has a lifetime τ, the excited state does not 

have a precise energy E1; rather its energy is uncertain by an amount

This uncertainty manifests itself when the state decays to the ground 
state with energy E0; the frequency of the radiation emitted in the 
decay:

3.5.The time – energy uncertainty 
relation


1

E

h

EE
f o1

will be spread by an amount

2

1
1

h

E
f

Broadening of spectral lines is a quantum mechanical phenomenon
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Harmonic oscillator with classical energy

Classically, the minimum energy is zero, which occurs when the
kinetic energy is zero (p=0) and the particle is at rest at a position
corresponding to the bottom of the potential-energy well.

From the uncertainty principle: both momentum and position cannot
be known precisely.

If the uncentrainty in position is

Estimation of ground state energy

22

2

2

1

2
xm

m

p
E

ω is the angular frequency of harmonic oscillator

ax

then momentum’s uncertainty is

a
p

2
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Near the lowest possible energy, where classically p=0

x

E x

2

1

x

2x

minE
classicE

quantumE

The energy is

Estimation of ground state energy
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The uncertainty principle requires that a little residual motion remain in
any physical system

zero-point energy

The minimum value of energy can be calculated and the result is

2
min


E
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• Simultaneous uncertainty in both position and momentum
requires construction of wave packets. Then there is a
significant probability of finding the particle only in limited
regions of space – particle is localized

Conclusions

• A free electron in a 1D system, we can be described by 
the plane wave resulting from the Schrödinger equation, 
assuming the potential equal to zero. This solution 
represents an extreme manifestation of the uncertainty 
principle (Δp=0, Δx      ∞ ) 

• The magnitude of the position-momentum and energy-time
effects is proportional to Planck’s constant, and the restriction
would vanish entirely if that constant were equal to zero.
Thus Planck’s constant once again determines the magnitude
of quantum mechanical effects


