Badania TGA/DTA/MS w obojętnej i utleniającej atmosferze gazowej dla gamy nanoproszków azotku galu GaN

MARIUSZ DRYGAŚ,¹ JERZY F. JANIK,^{1*} SWIETŁANA STELMAKH,² **STANISŁAW GIERLOTKA**,²**ROBERT T. PAINE**³

¹Wydział Paliw i Energii, Akademia Górniczo-Hutnicza; Al. Mickiewicza 30, 30-059 Kraków ²Instytut Wysokich Ciśnień PAN; ul. Sokołowska 29/37, 01-0142 Warszawa ³Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA ^{*}Tel.: (012) 617 2577; E-mail: janikj@agh.edu.pl Webpage: http://galaxy.uci.agh.edu.pl/~zamawin/zesp jfj.html

WSTĘP - Przebieg i wynik procesu spiekania nanoproszków GaN oraz powstawania nanoceramiki GaN w warunkach HT-HP zależą m.in. od rozwinięcia powierzchni wewnętrznej i jej funkcyjności, w konsekwencji determinujących np. adsorpcję różnych gazów (reakcyjnych i poreakcyjnych) i realny charakter powierzchni proszków. Biorąc powyższe pod uwagę, przeprowadzono pomiary TGA/DTA/MS - badania termograwimetryczne skojarzone ze spektroskopią masową dla wydzielających się gazów w czasie ogrzewania różnych proszków GaN w atmosferze gazu obojętnego helu (próbki 1-6; He) oraz w atmosferze utleniającej syntetycznego powietrza (próbki 1-4; Air). Użycie helu powinno dodatkowo dostarczyć danych nt. odporności termicznej nano-GaN w tych warunkach, zaś powietrza - o podatności azotku na utlenianie.

WARUNKI POMIAROWE i OZNACZENIA PRÓBEK

Badania TGA/DTA przeprowadzono w aparacie STA-SDT 2960 f-my TA-Instruments z analizą jakościową gazowych produktów reakcji za pomocą kwadrupolowego spektrometru masowego firmy Balzers w następujących warunkach: jednorazowe tygielki z wysokogatunkowego Al₂O₃, hel o czystości UHP 5N, syntetyczne powietrze N_2/O_2 =80/20 o czystości składników UHP 5N, masa próbki - 50-80 mg, wstępne przepłukiwanie gazem zamkniętego układu pomiarowego w temperaturze 30 °C przez jedną godzinę, realny zakres pomiarowy - 40-1100 °C, szybkość grzania w tym zakresie z prędkością 10 °C/min, detekcja m/e w zakresie 12-80.

Próbka nr 1 - proszek z metody anaerobowej; piroliza: temp. 975 °C, czas 4 h, atm. NH₃

Odnośnie spiekania nano-GaN patrz poster pt. "Spiekanie proszków nanokrystalicznych bez rozrostu ziarna na przykładzie azotku galu", S. Gierlotka et al.

Synteza anaerobowa - J. F. Janik, R. L. Wells: "Gallium Imide, {Ga(NH)_{3/2}}, a New Polymeric Precursor for Gallium Nitride Powders", Chem. Mater., <u>8</u> (1996), 2708.

Synteza aerozolowa - a) G. L. Wood, E. A. Pruss, R. T. Paine: "Aerosol-Assisted Vapor Phase Synthesis of Gallium Nitride Powder", Chem. Mater., <u>13</u> (2001), 12; b) J. F. Janik, M. Drygaś, S. Stelmakh, E. Grzanka, B. Pałosz, R. T. Paine: "Tuning Aerosol-Assisted Vapor Phase" Processing Towards Low Oxygen GaN Powders", phys. stat. sol. (a) 203 (6) (2006), 1301.

wykryte

na etapie

 H_2O ,

C) NH₃

C) CO_2 , NH₃

 H_2O, CO_2

 H_2O, NH_2

500 °C)

CO₂ (200-

H₂O, NH₃ 500-520

poczatku wyrazneg

500-520 700-720

przyrosti

masy

[°C]

800-820

700-720

860-880

przyrost

[°C]

680-700

700-720

krzywej

[°C]

930

820

860

1050

DTA, Tox

[% wag.]

(teoretycznie 11.9 % wag.)

11.5

10.1

10.0

11.9

etapie

NO₂, NO

NO₂, NO,

 CO_2, H_2O

NO, H_2O

 H_2O

Próbka nr 2 - proszek z metody anaerobowej; piroliza: temp. 700 °C, czas 4 h, atm. NH₃ Próbka nr 3 - proszek z metody aerozolowej; piroliza: temp. 975 °C, czas 6 h, atm. NH₃ Próbka nr 4 - proszek z azotkującej konwersji Ga₂O₃; piroliza: temp. 975 °C, czas 12 h, atm. NH₃ Próbka nr 5 - proszek z metody aerozolowej, tj. próbka nr 3 dodatkowo płukana w roztworze HF, 20 h Próbka nr 6 - proszek z metody anaerobowej, tj. próbka nr 2 dodatkowo ewakuowana w 300 °C, 1 h Przeprowadzono również referencyjny pomiar w atmosferze helowej dla pustego tygielka. Pomiar ten powinien dostarczyć danych nt. zawartości resztkowych zanieczyszczeń gazowych w helu, czyli dotyczących parametrycznego tła wyników.

Tabela 1

	Ubytek masy	Gazy wykryte na	Przyrost masy	Gazy wykryte na etapie	Tabela 2		
Próbka	[% wag.] w temp. (< T ₁)	etapie ubytku masy	[% wag.] w zakresie temp. T ₂ -T _{maks}	przyrostu masy		Próbka	Ubyt mas
1-He <i>imidkowa</i>	0.1 (< 400 °C)	H ₂ O, CO ₂ , HN(CH ₃) ₂	0.3 (700 -1050 °C)	NO (400-800 °C), N ₂ (z rozpadu GaN)			w ten (< T
2-He imidkowa	0.7 (< 400 °C)	H ₂ O, CO ₂ , NH ₃ , HN(CH ₃) ₂	0.1 (600- 1020 °C)	NO (400-800 °C), CO ₂ , N ₂ (z rozpadu GaN)		1-air <i>imidkowa</i>	0.2 (< 450
3-He aerozolowa	1.1 (< 500 °C)	H ₂ O, CO ₂ , NH ₃ , NO	0.2 (500- 1020 °C)	NO (400-800 °C), N ₂ (z rozpadu GaN)		2-air <i>imidkowa</i>	1.1 (< 450
4-He <i>z Ga</i> ₂ <i>O</i> ₃	< 0.1 (< 400 °C)	H ₂ O, CO ₂ , NO (300-500 °C)	1.3 (500 -1000 °С)	N ₂ (z rozpadu GaN)		3-air <i>aerozolowa</i>	1.1 (< 500
5-He aerozolowa	3.2 (< 350 °C)	H ₂ O, CO ₂	0.2 (700- 1020 °C)	NO (500-800 °C), N ₂ (z rozpadu GaN), CO ₂		4-air <i>z Ga</i> 2O3	0.1 (< 300
6-He imidkowa	0.8 (< 300 °C)	H ₂ O, CO ₂ , NH ₃ , HN(CH ₃) ₂	Trend ubytku masy (rozpad: 850- 1020 °C)	NO (500-800 °C), CO ₂ , N ₂ (z rozpadu GaN)			

DYSKUSJA WYNIKÓW

Wszystkie materiały GaN wykazywały od początku cyklu ogrzewania w He spadek masy, od kilku dziesiętnych do ponad trzech procent wagowych, związany z ulatnianiem się produktów lotnych(Tabela 1, wykresy z lewej). W charakterystycznej temperaturze T_{maks} zachodził szybki, skokowy rozkład GaN (Ga + 1/2N₂). Oszacowane z wykresów temperatury T_{maks} próbek mieściły się w przedziale 1000-1050 °C.

Podobnie jak w przypadku atmosfery He, *zmiany masy w atmosferze* powietrza związane najpierw były z jej spadkiem w temperaturach <300-500 °C (wydzielanie się składników lotnych) z następującym potem w wyższych temperaturach zdarzeniem skokowego utlenienia/spalenia próbki do Ga₂O₃, co odbiło się na wyraźnym wtedy wzroście masy (Tabela 2, wykresy z prawej). Temperatury spalania GaN różnią się znacznie pomiędzy sobą, zawierając się w zakresie 820-1050 °C.

W Tabeli 1 powyżej ukazane są zmiany masy, charakterystyczne temperatury oraz zidentyfikowane składniki lotne, wydzielające się podczas ogrzewania próbek nanoproszkowego GaN w atmosferze przepływającego helu; T₁ - oszacowana temperatura, do której następuje wyraźny ubytek masy, T_2 - oszacowana temperatura, od której następuje wyraźny przyrost masy (dla 6-He jest to temperatura początku rozkładu GaN), T_{maks} - temperatura początku wyraźnego rozkładu GaN.

W Tabeli 2 powyżej zawarte są zmiany masy, charakterystyczne temperatury oraz zidentyfikowane składniki lotne, wydzielające się podczas ogrzewania próbek nanoproszkowego GaN w atmosferze przepływającego powietrza (syntetycznego); T₁ oszacowana temperatura, do której następuje wyraźny ubytek masy, T_{ox} - temperatura szybkiego utleniania/spalania, odpowiadająca maksimum piku na krzywej DTA.

TGA ---- DTA

Zmiany zawartości H₂O (m/e=18), He

Zmiany zawartości NH₃ (m/e=15 i

(m/e=38, C-N-C), He

m/e=17), He

WNIOSKI

W podsumowaniu dla atmosfery He - z reguły próbki proszkowego GaN zawierają szereg zaadsorbowanych składników gazowych - H₂O, CO_2 , NH_3 , O_2 , $HN(CH_3)_2$ (niektóre,) N_2 - jako pozostałości z syntezy bądź nabytych w czasie poprocesowej manipulacji w atmosferze powietrza. Niektóre wydzielane składniki gazowe mogą być efektem wtórnych reakcji zaadsorbowanych molekuł z azotkiem galu (amina, NO) lub ich rozkładu (np. NH_3 z deaminacji powierzchniowych grup - NH_2 i =NH), zachodzących w podwyższonych temperaturach. Pewne substancje ulegają chemisorpcji na powierzchni ziaren GaN, na przykład H₂O, i dopiero z trudem, zapewne na drodze termicznego krakingu, pirolizują z wydzieleniem ubocznych produktów lotnych, zmieniając przy tym chemiczny charakter powierzchni.

W podsumowaniu dla atmosfery syntetycznego powietrza ogrzewanie próbek w takiej atmosferze gazowej powoduje najpierw desorpcję gazów H₂O, CO₂ i NH₃ w zakresie niższych temperatur, tj. <300-500 °C. Wolne, zapewne powierzchniowe utlenianie ziaren zaczyna się w temp. 500-700 °C, zaś wyraźne utlenianie/spalanie w temp. 820-1050 °C - to drugie bardzo zależne od rodzaju/reaktywności proszku i związane z powstawaniem gazowego NO₂.

Zmiany zawartości H_2O (m/e=18), powietrze

Zmiany zawartości CO_2 (m/e=44), powietrze

Zmiany zawartości NO_2 (m/e=30), powietrze

Praca finansowana była z grantu badawczego MNiSW/KBN nr 3 T08D 043 26.