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Object detection with few training data:  

detection of subsiding troughs in SAR interferograms 

 

  



 

Tab. 1. Test images  

Image name Resolution Description 

Q 11 215 x 3 984 Original name of binary file: 

Phase_ifg_srd_IW2_VV_28Jan2016_04Mar2016.img 

Relatively good quality (distinctive troughs, areas of low-frequency and 

high-amplitude noise separated from areas of troughs) 

Qzoom1 2 102 x 1 187 Sub-image of Q with area of occurrence of troughs  

Qzoom2 1 324 x 623 Sub-image of Qzoom1 with particular density of troughs and without low-

frequency and high-amplitude noise 

P 2 501 x 2 001 Example of bad quality image: areas of troughs are mixed with high-

amplitude noise. Areas of noise are irregular and sometimes their shape is 

similar to the shape of troughs.   

Ellipses 845 x 557 Artificial image with ellipses, circles and rectangular shapes, used for 

preliminary tests of the method based on convolution of image with 

circular wavelets.  

 

1. Detection of troughs’ centres without learning samples 
The method is not based on automatic learning, therefore there is no need for a training set. We convolve 

the input image with a circular kernel derived from the Gabor impulse response. 2D Gabor kernel used 

for extraction of local frequency features along x axis (see Fig. 1a) is given by: 
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and its 1D intersection along x axis is:  
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where f is the central frequency of the filter and  is the standard deviation. Based on (2) we propose a 

circular kernel (see Fig. 1b): 
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where r is the distance from the centre (x0, y0) of the mask:  
2

0

2

0 )()( yyxxr  . (4) 

 

  
a   b 

Fig. 1 Real part of a Gabor impulse response (a) and the corresponding circular sine wave for default Spatial Frequency 

Bandwidth.  

The idea is that convolution of the kernel (3) with the input image should yield magnitude peaks in 

centres of circular shapes.  



 

   
a   b 

Fig. 2 Real part of a Gabor impulse response (a) and the corresponding circular sine wave for Spatial Frequency Bandwidth 

set to 0.5.  

Centres of troughs are detected at points where the module of filter output exceed the threshold.  

 

1.1 Tests on artificial image 
 

 

 
Fig. 3 Artificial test image.  
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Fig. 4 Magnitude of response for wavelengths: 15, 22.8, 34.2 and 51.2 pixels.  
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Fig. 5 Magnitude of response for wavelengths: 15, 22.8, 34.2 and 51.2 pixels for Spatial Frequency Bandwidth set to 0.5.  

  



 

1.2 Tests on real data: image Qzoom2 
 

 
Fig. 6 Image Qzoom2 
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Fig. 7 Examples of magnitude of response for wavelengths: 15, 22.8, 34.2 and 51.2 pixels for Spatial Frequency Bandwidth 

set to 0.5.  

In Fig. 8 we present the result of trough detection in image Qzoom2. Green points are spots where for 

any frequency the magnitude response is above the threshold. Wavelength vector was: 

T=[10.00  11.49  13.20 15.16 17.41   20.00  22.97  26.39  30.31  34.82  40.00  45.95  52.78 60.63]. 

Parameters of Gabor filter bank used to generation of convolution filter were: SpatialAspectRatio=1, 

SpatialFrequencyBandwidth=0.5. 

Threshold: [1 0.85 1 0.95 0.85 0.85 0.85 0.85 0.85 0.65 0.85 0.85 0.85 0.85]; 

 

 



 
Fig. 8 The result of detection.  

 

 

 
Fig. 9. The result when threshold was set to 0.85* maximum magnitude of response for all wavelengths.  

 

1.2.1 Tuning Spatial Frequency Bandwidth 

The default value of Spatial Frequency Bandwidth equal 1 is definitely not appropriate for this method. 

Below we present results for Spatial Frequency Bandwidth = 0.3. Size of our circular kernel varies from 

127x127 for wavelength T=10 to 767x767 for T=60.63. Real part of a circular sine wave is presented in 

Fig. 10. 

 

 
Fig. 10. Real part of a circular sine wave for Spatial Frequency Bandwidth = 0.3 

 



  
a       b 

Fig. 11. a) The result when threshold was set to 0.85* maximum magnitude of response for all wavelengths for  

SpatialFrequencyBandwidth=0.3 b) we were able to decrease the common threshold to 0.8 without new false detections  

1.3 Test on image Qzoom1 
 

 
Fig. 12 The result when threshold was set to 0.85* maximum magnitude of response for all wavelengths for  

SpatialFrequencyBandwidth=0.3 

 

In order to get rid of false detections in the top left corner we excluded all wavelengths except 40 and 

45.95. With such parameters we received only one false detection, caused by a nearby trough. However, 

using only two frequencies does not allow detection of most troughs (Fig. 13). For this image there is 

no set of parameters that could ensure correct detection without false alarms.  

 

 



 
Fig. 13 Thresholds for wavelengths: 40 and 45.95 are equal 0.85, all other are set to 1.  

 

1.4 Difficult case: image P 
In this chapter we test the method on an image with a large amount of noise with diversified spectral 

features, where some troughs are difficult to distinguish from the background.  
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Fig. 14 Magnitude of response for wavelengths: 15, 22.8, 34.2 and 51.2 pixels for Spatial Frequency Bandwidth set to 0.5.  

 

In Fig. 15 we present the results of detection for wavelength vector: 

T=[10.00  11.49  13.20 15.16 17.41   20.00  22.97  26.39  30.31  34.82  40.00  45.95  52.78 60.63] 

threshold 0.8 for all wavelengths and Spatial Frequency Bandwidth set to 0.3.  

 

 

 
Fig. 15 The result of detection  threshold 0.8 for all wavelengths and Spatial Frequency Bandwidth set to 0.3 



Only a part of troughs were found and there are many false alarm. We conclude that applicability of 

this method depends on the quality of the input image.  

 

 

2. Gabor features calculated directly from the image in Cartesian 

coordinates  
 

2.1 Parameters of the Gabor filter bank 
We used Gabor filter bank with wavelengths: Ti = T0 k

i, where T0 is the shortest wavelength and k=1.5.  

In input images the distance between consecutive extrema of troughs varies between 4 and 45 pixels, so 

we set the shortest wavelength 3 pixels (to ensure a certain margin) and the vector of wavelengths is:  

T = [3 4.5 6.8 10 15 22.8 34.2 51.2]. 

We used four orientations:  

FI = [0 45 90 135], 

so there are 32 filters in the bank.  

 

After calculating of Gabor outputs, each pixel of the input image is described with a set of 32 features, 

each of them is the magnitude of output of the corresponding Gabor filter. The we used Support Vector 

Machines (SVM) to classify pixels into two categories: areas of troughs and other areas.  

 

2.2 Tests on image Q 
 

The image used in the first series of tests is presented in Fig. 16. 

 

 
Fig. 16. Original image Qzoom1 used in this test. 

 



For training of SVM we indicated manually areas of troughs – see mask in Fig. 17a. The black area was 

used as a positive example. In Fig. 17b we show mask for areas that were excluded from training and 

they were neither used as positive nor negative examples. The rest of image was used as negative 

examples.  

 

 
a     b 

Fig. 17. Mask for positive examples (a) and for part of the image excluded from training (b). Part of the image not covered 

by any of these two masks was used for training as negative examples. 

In Fig. 18 we present the results of troughs identification.  

 

 

 
Fig. 18. Results of linear SVM classifier, learned on grid 3x3 for positive and 20x20 for negative samples (5230 positive and 

5726 negative samples).  

 



 
Fig. 19. Results of linear SVM classifier, learned on grid 2x2 for positive and 10x10 for negative samples (11 760 positive 

and 22 606 negative samples).  

 

 

  



 

2.3 Difficult case: image P 
 

2.3.1 Test of the classifier learned from Q 

 

 
 

Fig. 20. Results for image P, while the classifier was trained on image Qzoom1. Linear SVM classifier was used, learned on 

grid 2x2 for positive samples and on grid 10x10 for negative samples (total 11 760 positive and 22 606 negative samples).  

 

 

 

 

 



2.3.2 Tests of the classifier learned from P 

 
Fig. 21. Positive samples marked for learning the SVM classifier.   

 



 
Fig. 22. Results for image P, while the classifier was also trained on image P. Linear SVM classifier was used, learned on 

grid 3x3 for positive samples and on grid 20x20 for negative samples (total 8 099 positive and 12 535 negative samples).  

 

For wavelet vector: T = [6.8 10 15 22.8 34.2 51.2] the result was practically identical as presented in 

Fig. 22, so the highest frequencies in our filter bank that correspond to wavelengths 3 and 4.5 do not 

influence the discriminative hyperplane parameters.  

 



 
Fig. 23. Results for image P, while the classifier was also trained on image P. Linear SVM classifier was used, learned on 

grid 2x2 for positive samples and on grid 15x15 for negative samples (total 18 243 positive and 22 056 negative samples).  

 

 



 
Fig. 24. Results for image P, while the classifier was also trained on image P. SVM classifier with RBF kernel was used, 

learned on grid 3x3 for positive samples and on grid 20x20 for negative samples (total 8 099 positive and 12 535 negative 

samples).  

  

a      b 

Fig. 25. Results for image P, when the classifier was trained on a part of image P in the black frame. SVM classifier with 

RBF kernel was used, learned on grid 3x3 for positive samples and on grid 20x20 for negative samples 

 

 

 

 



Fig. 26 presents the results of classification with SVM with RBF kernel after modification of kernel 

scale parameter from 1 to 100. This should enlarge a part of the decision space classified as trough areas 

and it could improve classification if the reason for errors was to high rejection rate. However, the result 

presented in the image confirms that in case of this noisy data, the classifier is unable to discriminate 

troughs based on the set of features that we used. The classifier was trained on a part of image P in the 

black frame. 

 

 
Fig. 26. Classification with RBF after changing KernelScale parameter from 1 to 100. The classifier was trained on a part of 

image P in the black frame 

 

2.3.3 Learning from P and tests on Q 

 

 

 
Fig. 27. Tests on image Q of SVM classifier learned on image P (8099 positive samples and 12535 negative samples, linear 

SVM classifier).  

 



The result is obviously worse than when learning data were taken from Q (Fig. 18, Fig. 19) but it can be 

regarded as almost satisfactory and after some processing it could be used in next stages. We can 

conclude that the main reason for incorrect classification of image P is that in some areas the background 

has similar spectral properties to trough areas. 

 

2.3.4 Dependence of Gabor filter parameters 

We checked if increasing the number of frequencies in the Gabor filter bank can improve its 

discriminative properties. We increased the number of frequencies to 5 per octave, like recommended 

for SIFT method. The smallest and the biggest wavelengths were set to 4 and 50 pixels, based on 

measurements of troughs’ geometry from images. Wavelengths are therefore calculated as: Ti = T0 k
i, 

where k = exp (ln 2 / S), where S=5 is the number of scales per octave: 

 

T = [4.  4.59  5.28  6.06  6.96  8.00  9.19 10.56 12.13 13.93 16.00 18.38 21.11 24.25 27.86   32.00  36.76  42.2200  48.50] 

 

The number of orientations remains 4, so there are 76 filters in the bank. Other parameters of learning 

and classification were identical like in experiment presented in Fig. 22. The result is presented in Fig. 

28. 

 

 
Fig. 28. For 19 frequencies of Gabor filters (76 features) 

The result is very similar to what we got from filter bank with 8 frequencies (and 32 features) so we can 

conclude that increasing the number of frequencies is not relevant for discriminative properties of the 

feature set. 



2.3.5 Feature extraction from gradient image 

 

 
Fig. 29 Gradient of image P blurred with Gauss (30,5). 



 
Fig. 30 The result of classification of gradient image of P (gradient image was also used as a training set).  

2.4 Time of learning and classification 
 

Time of Gabor filter bank calculating for image resolution 1187x2102 pixels, for 32 filters (8 

frequencies, 4 orientations) was 27 seconds. Time of SVM learning and classification is shown in Tab. 

2 and Tab. 3.  

 

Tab. 2. Time of learning  

Image 

resolution 

Positive 

grid 

Negative 

grid 

Positive 

samples 

Negative 

samples 

Total 

samples 

SVM 

type 

Time of 

learning 

Q: 1187x2102 3 20 5230 5726 10 956 linear 25.2 s  

Q: 1187x2102 2 10 11 760 22 606 34 366 linear 294.6 s 

P: 2001x2501 2 15 18 243 22 056 40 299 linear 721.8 s 

P: 2001x2501 3 20 8 099 12 535 20 634 linear 222.1 s 

P: 2001x2501 3 20 8 099 12 535 20 634 rbf 61.8 s  

 

  



 

Tab. 3. Time of SVM classification (linear) 

Image 

resolution 

Grid Total samples Time of data 

preparation [s] 

Time of 

classification 

Time of plot 

generation 

1187x2102 20x20 6360 0.07 0.1 s 0 

1187x2102 10x10 25 109 0.44 0.4 s 0 

1187x2102 5x5 100 198 2.9 1.75 s 0.007 

1187x2102 2x2 624 294 25.8 11.5 0.02 

1187x2102 1x1 2 495 074 16.9 45.6 0.08 

 

 

3. Verification of troughs’ centres using local conversion to polar 

coordinates and wavelets  

3.1 General concept 
This method is designed to verify whether a specified point (xc, yc) lays in the centre of a trough. In the 

first step, image 200x200 pixels centred at (xc, yc) is retrieved from the input image. Then this sub-image 

is converted to polar coordinates (r, ) – see Fig. 31. The idea is to compare frequency spectrum in 

horizontal and in vertical directions in the converted image. Classification is made based on the average 

magnitude of frequency response in vertical direction divided by the average magnitude of frequency 

response in horizontal direction, at several (between 3 and 5) selected frequencies.  

 

 

 

 

 



 
Fig. 31. 120x120 images centred at points marked manually and corresponding image in polar coordinates. In left images  

angle increases clockwise, starting from pointing down.  



Because of image quantization and inhomogeneous distribution of pixels during transformation from 

Cartesian to polar coordinate system, the output image has always more distinctive spectrum in vertical 

direction than in horizontal, see Fig. 32. Therefore ratio of vertical to horizontal magnitude above 1 is 

typical and it does not necessarily mean that a trough is likely to occur in the input image. It is necessary 

to produce some positive and negative examples and train our classifier. 

 

 
Fig. 32. Example of 100x100 image that does not contain ellipse. Due to Cartesian to polar conversion, horizontal 

frequencies are stronger than vertical. Gabor ratios for wavelengths [2 4 8 16] are: [6.76, 4.17, 2.5, 1.36]. 

 

3.2 Training set  
 

For tests we used 12 positive samples extracted from image Qzoom1, see Fig. 33. Each image is centred 

at the centre of the trough. The set of 1521 negative samples was collected from image Q and samples 

were taken every 50 pixels. Twelve examples of negative samples are presented in Fig. 34.  

 

 

 
Fig. 33 Positive samples extracted from image Qzoom1. 



 
Fig. 34. Examples of  negative samples extracted from image Qzoom1. Total number of negative samples was 1521. 

 

3.3 Results 
In Tab. 4 we present the set of features for positive and 12 negative samples of the training set. Features 

are means of the magnitude of Gabor filter response in vertical direction divided by the mean of 

magnitude of the response in horizontal direction for a specified wavelength. For averaging we took 

radius r from 2 to 35, because this range in the most meaningful and for all troughs it corresponds to 

area within the trough. The distribution of features is graphically presented in Fig. 35 and we can see 

that in this case positive and negative samples form two linearly separable clusters.  

 

Tab. 4 Values of features for positive samples and 12 selected negative samples. T is a wavelength of Gabor wavelet. 

Sample T=3 T=6 T=12 

pos1 5.4680 4.3786 2.9994 

pos2 6.7159 4.5722 2.4028 

pos3 9.4640 7.0741 4.7459 

pos4 5.8296 5.2174 6.0120 

pos5 4.9588 3.8830 5.1056 

pos6 3.4251 4.5189 5.9332 

pos7 8.4044 7.3313 4.7165 

pos8 8.2522 7.2082 2.4152 

pos9 7.6227 6.6028 3.3909 

pos10 6.4191 4.6322 2.6291 

pos11 6.7129 6.0481 3.0151 

pos12 7.7110 7.3675 2.5192 

neg1 2.1525 1.5158 1.4146 

neg2 6.1506 3.6626 4.5064 

neg3 3.2660 2.7580 2.2709 

neg4 5.2012 2.6156 1.4172 

neg5 5.3131 3.1813 1.8501 

neg6 1.5640 2.4201 1.4809 

neg7 3.0539 2.5002 1.9123 

neg8 4.5064 2.6790 1.0734 

neg9 1.5826 1.5434 1.4621 

neg10 3.5592 3.3148 2.0284 

neg11 4.4119 2.6043 2.2896 

neg12 3.2549 2.4387 1.9127 

 



 
Fig. 35. Positive (x) and 12 negative (o) samples in the space of Gabor descriptors 

 

In Fig. 36 we present positive samples and the whole set of 1521 negative samples in feature space. 

When rotating this image, we observed that some positive samples are located within the area of negative 

samples. This means that there is no classifier that separates perfectly these two areas.  

 

 
Fig. 36. Positive (x) and all 1521 negative (o) samples in the space of Gabor descriptors 

 

Conclusions: This method could be useful, although some false alarms should be expected. Increasing 

the set of features (more filters, different ranges of r) may improve the performance and it could be used 

for verification in the future.  

 

 



3.4 Local polar coordinates for gradient image 
We have checked how the proposed method works on gradient image. Original image, presented in Fig. 

37 is blurred using a Gaussian filter (Fig. 38)  to make it less susceptible to noise and then magnitude of 

its gradient is calculated (Fig. 39). 

 

 
Fig. 37. Original image 

 

 
Fig. 38. Image after filtration (Gaussian 15, 2.5) 

 



 
Fig. 39. Image of gradient magnitude 

In Fig. 40 we present positive samples and corresponding images in polar coordinates. After some 

experiments with feature extraction for different sets of parameters we found out that there is no 

improvement so we resigned from further tests.  

 

 



 

Fig. 40. 120x120 images centred at points marked manually and corresponding image of gradient magnitude in polar 

coordinates for r=3(top) to r=60 (bottom) and angle from 0 (left) to 360 (right). Angle increases clockwise, starting from 

pointing down.  

 


