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Abstrat

It is supposed that there are only two main fators in the proess of geneti searh:

population diversity and seletive pressure. Many parameters that are used in order to ontrol

the proess of geneti searh indiretly inuene population diversity and seletive pressure.

But suh a ontrol of the evolution proess seems to be very unrealisti from the biologial

point of view. With the Evolutionary Multi Agent Systems (EMAS) it is possible to model

biologial mehanisms of speies formation, rivalry and ompetition among speies, soial

behavior and so on. In this paper we introdue the supervising mehanism based on two non-

lassial evolution operators: aggregation and esape. The appliation of these new evolution

operators made it possible to onstrut the evolution enters. In the evolution enters it

is possible to ontrol values of various parameters of the environment in order to inuene

the ourse of the evolution proess, to supervise this proess and thereby to ontrol the

evolution proess. Also, the appliation of this supervising mehanism to the onstrution of

evolutionary multi-agent predition system is presented. We disuss the results of simulation

experiments arried out with the SWARM-based evolutionary predition system, whih show

how the use of suh supervising mehanism a�ets the modeled evolution proess.

1 Introdution

Perhaps the most important and hallenging part of researh in the �eld of evolution programs is

how to ontrol the modeled evolution proess. It is supposed that there are only two main fators

in the proess of geneti searh: population diversity and seletive pressure. Many parameters that

are used in order to ontrol the proess of geneti searh indiretly inuene population diversity

and seletive pressure [8℄. But suh a ontrol of the evolution proess seems to be very unrealisti

from the biologial point of view. It is questionable if we should interfere in the natural proess

using arti�ial and unrealisti mehanisms. In order to supervise the modeled evolution proess

we should rather try to utilize possibilities provided by the biologial evolution itself.

The tehnology of Evolutionary Multi Agent Systems (EMAS) [3℄, that arises as a result of

realization of the evolution proess in multi-agent world, an be treated as a new approah to the

onstrution of evolution programs and a new way of developing multi-agent systems.

With the Evolutionary Multi Agent Systems it is possible to model biologial mehanisms of

speies formation, rivalry and ompetition among speies, soial behavior and so on. It was not

possible to model all these mehanisms in the ase of lassial evolution programs [6, 8℄.

With the use of these biologial mehanisms we an supply the modeled evolution proess with

new impulses and try to diret it towards new and desirable (from our point of view) possibilities.

In this paper we introdue the supervising mehanism based on two non-lassial evolution op-

erators: aggregation and esape. The aggregation operator enables emergene of soial relations

among agents. With the use of the esape operator agents an migrate towards di�erent environ-

ments. Thus this operator enables modeling of the speies formation proess. The appliation of
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these new evolution operators made it possible to onstrut the evolution enters. In evolution

enters it is possible to ontrol values of various environment parameters in order to inuene

the ourse of the evolution proess, to supervise this proess and thereby to ontrol the evolution

proess.

2 Elements of theory

2.1 Model of evolving multi-pro�le agent

In evolutionary system, predition agent is de�ned as a multi-pro�le agent a whih ontains two

basi pro�les. First pro�le (a

1

) is in harge of realization of rossover and mutation algorithms.

Seond pro�le (a

2

) realizes aggregation and esape operations.

In the presented model of agent, within the framework of a

1

pro�le, a set of agents is onstruted

as an image of observed world. These agents are potential andidates for the realization of rossover

operation with partiular agent. Preliminary seletion of andidates and �nal hoie is made on the

basis of potential andidate's harateristi features. Agent's pro�le a

2

is in harge of realization

of aggregation operation. Similarly to the pro�le a

1

, also in this ase a set of potential andidates

to the realization of aggregation operation with partiular agent is onstruted on the basis of

observation of the environment. The hoie of andidate, similarly to the pro�le a

1

, is made on

the basis of set of andidate's features. The riterions of hoie and set of features are di�erent

from those that are used in the pro�le a

1

.

Agent's evaluation is made on the basis of two basi features: intelletual level and energeti

states (the quantity of life energy).

The intelletual level determines the quality of predition that is made by agent. It is de�ned

as a perentage of orret preditions made in a �xed period of time. \Intelletual" state of an

agent a�ets its attrativeness for other agents in deision making proess onerning the hoie

of partners for evolution operations.

Every agent possesses a \life" energy reserve. All operations made by an agent, inluding

evolutionary operations, require the use of some amount of agent's energy. In the proess of

realization of these operations, agent's energeti state p is redued by some (�xed for partiular

operation) amount.

On the ontrary, positive results of some ations supply agent with energy. Ating in the

environment, agent exeutes operations and aording to the results of these operations it an

obtain or lose some �xed amounts of energy, inreasing or dereasing the amount of its energy.

The �nal deision onerning the hoie of one of possible ations is made by an agent with

the use of deision funtion whih takes into aount the atual level of energy and intelletual

level of partiular agent and of an agent that partiular agent is going to ooperate with. In this

ase, intelletual level and energeti level (with di�erent weights) determine attrativeness of an

agent | andidate to ooperation.

2.2 Aggregation and esape operations

The agent-environment relation is the basi reason that fores agents to partiipate in evolution

proess. If state of this relation is not satis�ed for partiular agent, it an hoose one of the

following ations:

� agent may hange itself | adapting itself to the onditions of the environment with the use

of mutation and rossover operations,

� agent may hange the environment with, among others, the use of aggregation and esape

operations.

The evolution proess in whih autonomous agent take part, may be realized with the use of

following operators that a�et single agent or �xed group of agents.
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Figure 1: The priniple of funtioning of the aggregation operator

Mutation, rossover and reprodution operators in the agent environment have the same form

as presented in [5, 6, 8℄ with suh an exeption that the evolution proess of eah agent has its

own (individual for eah agent) harateristis, it depends on agent's deisions, and it takes plae

aording to its own independent yle.

The idea of aggregation operation may be onsidered as a reation (by agents) of new envi-

ronment in whih agents at. A group of agents (suh that onditions of atual environment do

not suit them) make an agreement, whih goal is to take over the ontrol of the part of existing

environment. Thus agents hange the parameters of ontrolled environment, whih we mentioned

above, to make it better adapted to their requirements. After the reation of new environment,

a group of agents, mentioned above, owing to speialization and ooperation, maintain desirable

parameters in the environment reated by them. This group (when it is seen from outside) at

like a new agent with new harateristi features that arose owing to the aggregation operation.

To sum up, the aggregation operator makes it possible to hange the agents-environment relation

with the hange of environment's parameters.

The seond operator that makes it possible to hange the agents-environment relation with

the hange of environment's parameters is the esape operator. Let us make an assumption that

the evolution proess takes plae in several environments, and that agents an migrate among

these environments. The evolution proesses that take plae in eah of these environments di�er

in some range of their parameters from eah other. If in one of the mentioned environments the

agent is reated as a result of mutation, rossover or aggregation operation that is not well adapted

to this environment, it may migrate towards di�erent environment (with di�erent harateristi

parameters), where it an at better than in the previous environment. Then it may start there a

new population of agents with valuable harateristi features.

2.3 Evolution enters as a method of evolution proess ontrol

The appliation of aggregation and esape operators makes it possible to ontrol the evolution

proess, among others, through the mediation of organizing of, so alled, evolution enters.

Let us onsider the proess of realization of aggregation operator (Fig. 1), whih onsists of

the following stages:

1. Let two parameters haraterize the partiular environment: A and B (values of A and B

belong to f0; 1g). There are agents AgA and AgB in this environment. Agent AgA (agent

AgB) has the ability to inuene its environment in suh a way that it an maintain the

value of parameter A (B) equal to one in its neighborhood. Agents A and B require (prefer)

the values of both parameters (A and B) equal to one in their neighborhood.

2. Owing to the ability to move within the environment, agent AgA may stay near the agent

AgB (and similarly agent AgB may stay near the agent AgA).
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Figure 2: The priniple of funtioning of the evolution enter

3. Agents AgA and AgB make an agreement and deide to aggregate together and reate a

new environment (with values of parameters satisfying requirements of both agents | A = 1

and B = 1) by taking over the ontrol of the part of existing environment.

4. As a result of aggregation, the new agent Ag0 is reated. This agent maintains the informa-

tion about the on�guration of agents A and B. The group of agents AgA, AgB, Ag0, and

the part of environment that they ontrol (with values of parameters A and B equal to one)

onstitute the new agent. Agent Ag0 keeps (for example enoded in its genes) information

that is required to the reprodution of this aggregated agent.

With the use of aggregation and esape operators we an onsider the organization of \evolution

enter", in whih it is possible to ontrol the values of environment parameters, what implies that

we an supervise the ourse of the evolution proess. Let us onsider the example presented above,

in whih the realization of aggregation operator is ompleted with the appliation of remaining

evolution operators and the ontrol of environment parameters. Let us make an assumption that

there exist suh agents of type X in the environment that they an not set the environment

parameters A and B in their neighborhood (i.e. set values A = 1 and B = 1). At the same time,

agents of type X prefer the environment whih parameters A and B are set (A = 1 and B = 1).

Agent of type X may obtain (as a result of mutation and rossover operations) the ability to set

the parameter A (A = 1) or B (B = 1) in its neighborhood (but not the ability to set both of

them). Then it beomes the agent of type A or B. Let us make an assumption that the part

of environment | the evolution enter | is seleted. We an ontrol this evolution enter from

outside and hange the values of parameters A and B (setting their values to 0 or 1). The example

of supervising the evolution enter may be onsidered as following steps:

� Parameters A and B are set (A = 1 and B = 1) in seleted areas of evolution enter. Agents

of type X gather in this area (Fig. 2a).

� Parameter A is turned o� periodially. This auses that some agents of type X obtain (as a
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result of mutation and rossover operations) the ability to set the parameter A (A = 1) in

their neighborhood. Thus they beame type A agents (Fig. 2b).

� After some time, the parameter A is turned on (A = 1), and parameter B is turned o�

(B = 0) periodially. This auses that some agents of type X obtain (as a result of mutation

and rossover operations) the ability to set the parameter B (B = 1) in their neighborhood.

Thus they beame type B agents (Fig. 2).

� After some time, both parameters are turned o� (A = 0 and B = 0). Owing to the fat

that agents of type A and agents of type B remain within the same area and they neighbor

eah other, they an form the aggregates AB (as a result of aggregation operation). These

aggregates do not depend on the fat that parameters A and B are turned on or o�, what

implies that they an live in any environment (Fig. 2d).

Owing to the appliation of the idea of evolution enters (and the appliation of aggregation and

esape operators) we may obtain the possibility of supervising the evolution proess by hanging

the values of environment parameters, or rather, to say it more preise, by seleting the loal sets

of parameters.

3 The methodology of modeling

It is typial in the researh work made with the use of omputer simulation that we try to observe

and investigate properties of phenomena, whih adequate mathematial model annot be formu-

lated. We an only formulate models of subsystems (i.e. omponents of a system of interest) and

de�ne some basi interations among them. But the relations that we are really interested in are

nowhere expliitly enoded. They rather emerge and beome aessible for observation as a result

of interations among the subsystems that we simulate.

The general researh program of investigating omplex dynamial phenomena using simulation

an be expressed in two main steps [9℄:

1. It is neessary to formulate lower-level models of the important underlying subsystems (those

that de�ne the elemental subsystems and the element-element or objet-objet interations).

2. We must reate the framework in whih the simulation of the subsystems in interation is

omposed, and embody the system representation in that framework so that the phenomena

of interest an be generated and analyzed.

In the �rst part of researh program we will use the model based on the onept of M-Agent

arhiteture [1, 2, 4℄. This model enables us to formalize the properties of the multi-agent system

(environment, agents, agent-agent and agent-environment relations).

The seond part of researh made with the use of omputer simulation requires appropriate

programming tools. These tools should enable us to obtain reliable and repeatable results of our

simulations. In our paper we propose the SWARM simulation system for this part of researh. This

system has all the features, whih are indispensable in the EMAS and arti�ial life simulations.

3.1 The simulation tool: SWARM system

The SWARM simulation system has been reated at the Santa Fe Institute [10, 11℄. This system

an be very useful for the researhers working in the �eld of omputer simulations, espeially in

the area of multi-agent systems and arti�ial life. The main goal of its authors was to reate suh

a simulation tool that the results obtained with the use of it would be reliable and repeatable. In

order to ahieve this goal SWARM has the following features:

1. Simulation writing is brought up to a higher level of expression. Appliations are written

with referene to a standard set of simulation tools.
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2. The task of managing onurreny is made manageable. SWARM insulates the author of a

simulation from all the omputer siene knowledge that is usually required to implement

distributed and onurrent systems reliable. In addition SWARM fores experimenters to

make their onurreny assumptions expliit.

SWARM is implemented in the Objet-Oriented Programming language Objetive C [7℄. Com-

putation in a SWARM appliation is made via objets sending messages to eah other.

SWARM appliations are strutured around the onept of the \Swarm". Swarms are the basi

building bloks of the SWARM simulation. A Swarm is ombination of a olletion of objets and

a shedule of ativity over those objets. The olletions are like the matter of the Swarm and the

shedule is like the arrow of time.

The ore of every appliation is the \model swarm". It enapsulates the simulated model, i.e.

agents, physial properties and struture of the spae et. In addition to the objet olletion, the

model swarm also ontains a shedule of ativity over these objets. Model swarm onsists of a

set of inputs and outputs. The inputs are the model parameters and the outputs are the data,

whih are the result of the agents' ativity.

Seond very important part of the system is \observer swarm". The most important objet

in an observer swarm is the model swarm that is being studied. In addition observer swarm has

a olletion of objets (instrumentation), a shedule of ativity and a set of inputs and outputs.

With the use of this instrumentation we an observe our arti�ial world, ollet data for future

analysis et. The inputs to the observer swarm are on�gurations of the observer tools. The

outputs are the observations. The observer swarm an run in graphis mode or in bath mode.

In bath mode we annot interat with the simulation. The bath swarm reads the data from

on�guration �le and writes the data to the other �les for future analysis.

The SWARM system has large number of lass libraries, whih provides users tools that are

indispensable in the proess of reation of the simulation. Detailed desription of all these libraries

an be found in [11℄.

4 Evolutionary multi-agent predition system with evolu-

tion enters

In this setion we will desribe sample appliation of the Evolutionary Multi-Agent Systems

(EMAS) tehnology to the 0/1 time sequene predition system [2, 3℄.

In suh a system the main goal of the population of agents is to predit the hanges of the

environment. In the environment a parameter � 2 f0; 1g is de�ned. Variations of the parameter

� in disrete moments of time may be represented by the binary sequene x(t), where x(t) is the

value of � in the time t. Value of the parameter � is available for all the agents ating in the

environment. Eah agent tries to predit the value that the � will take in the time t + 1. So the

agent a

i

generates the binary sequene y

i

, suh that y

i

(t) = ~x(t + 1), where ~x(t+ 1) is predited

value of parameter � in the time t+ 1.

4.1 Struture of the environment

The spae in whih agents remain E = (R; T ), where R is a on�guration of resoures, and T is a

topology of spae [2℄.

Resoures available for all the agents are parameter � = x(�), where � = 0; : : : ; t and energy

of the environment P

e

. So, in the ase of our system, R = f�; P

e

g. The topology T of the

environment is graph. Every node of this graph has onnetions with its eight neighbors.

4.2 Internal struture of the agent

In the onsidered system the agent onsists of one or more ells. The ell onsists of the �nite

automaton, information about its age and statistis. Eah ell makes its preditions with the use
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Figure 3: Internal struture of the agent (with one ell)

of �nite automaton, whih input/output language onsists of symbols 0 and 1. The onept of

prediting hanges of the environment by evolving population of �nite automatons is known as

\evolutionary programming" [5, 6, 8℄. The idea of the appliation of �nite automaton as agent's

hromosome is presented in [3℄. Partiular realization of this oneption in system desribed in

this paper is shown in the Figure 3.

There are four hromosomes that ode the �nite automaton:

� transitions between states when the input symbol is 0,

� transitions between states when the input symbol is 1,

� output symbols when the input symbol is 0,

� output symbols when the input symbol is 1.

Number of genes in eah hromosome orresponds with the maximal number of states of the �nite

automaton (n

s

max

).

There are two parameters that show the quality of predition made by partiular ell:

1. 	

S

j

(0)

ik

| probability of orret predition onneted with the transition through 0 from the

state S

j

of the k-th ell of agent a

i

;

2. 	

S

j

(1)

ik

| probability of orret predition onneted with the transition through 1 from the

state S

j

of the k-th ell of agent a

i

.

Two other parameters show the quality of predition made by partiular agent:

1. 	

i

(t) | probability of orret predition made by agent a

i

;

2. 	

i

max

(t) | maximal probability of orret predition made by agent a

i

during its lifetime.

4.3 Intelletual pro�le

An agent an be desribed from two points of view that orrespond with two pro�les: intelletual

and energeti [2℄.

The model of the environment of agent a

i

in the time t is

m

i

(t) = h(Y

i

(t);


i

(t)); (Y

i

(t+ 1);


i

(t+ 1)); : : : i; (1)
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where

Y

i

(u) = fy

i1

(u); : : : ; y

in

(u) : n is the number of ellsg; (2)




i

(u) =

n

	

S

u

1

(x

1

(u))

i1

; : : : ;	

S

u

n

(x

n

(u))

in

: n is the number of ells

o

; (3)

for u = t; t+ 1; : : :

y

ik

(u) = t

S

u

k

ik

(x

k

(u)) (4)

is the output onneted with the transition of the k-th �nite automaton through x

k

(u), S

u

k

is the

state of the k-th �nite automaton in the time u,

x

k

(u) =

(

x(u) for u = t

y

ik

(u� 1) for u = t+ 1; t+ 2; : : :

(5)

for k = 1; : : : ; n, n is the number of ells of agent a

i

.

After applying the strategy realization operator X [2℄ the agent's model of the environment is

m

0

i

(t) = h(y

i

(t); !

i

(t)); (y

i

(t+ 1); !

i

(t+ 1); : : : )i; (6)

where y

i

(u) = y

ik

(u) for u = t; t+ 1; : : : , k is suh that

!

i

(u) = 	

S

u

k

(z(u))

ik

= max

n

	

S

u

1

(z(u))

i1

; : : : ;	

S

u

n

(z(u))

in

: n is the number of ells

o

(7)

for u = t; t+ 1; : : : ,

z(u) =

(

x(u) for u = t

y

i

(u� 1) for u = t+ 1; t+ 2; : : :

(8)

The goal of the intelletual pro�le [2℄ is to make orret preditions:

q(m

i

(t);m

0

i

(t)) =

(

1 when y

i

(t) = x(t+ 1)

0 when y

i

(t) 6= x(t+ 1)

(9)

Now the time is inremented and the observation operator I [2℄ generates the model

m

00

i

(t) = h(Y

i

(t);


i

(t)); (Y

i

(t+ 1);


i

(t+ 1)); : : : i; (10)

by getting the value of x(t) from the environment. This model is the initial model for next

iteration. The adaptation operator L = fL

m

g [2℄ is onsisted of all the evolution operators.

4.4 Energeti pro�le

Energeti pro�le of agent a

i

[2℄ is represented by the parameter P

i

(t) 2 R, P

i

(t) 2 [0; P

max

℄, P

max

is the maximal level of agent's energy. The main goal of the agent in this pro�le is to maximize

the value of P

i

(t). In order to realize this goal the energeti strategy s

p

[2℄ is realized by applying

one of the evolution operators. Every ation (suh as move or reprodution) osts some energy.

Energy may be obtained only through orret predition. All deisions of the agent (onerning

reprodution, aggregation, and diretion of the move) depend on atual level of its energy. The

agent's energy also serves as a mehanism of elimination of the agents with low level of �tness

to the environment onditions (i.e. making inorret preditions) from the system. Agent a

i

dies

when P

i

(t) = 0.

The evaluation of the energy of agent a

i

during its lifetime may be expressed as follows:

P

i

(t) = P

i

(t

0

i

) +

t

X

k=t

0

i

+1

(Æ

p

i

(k) + Æ

a

i

(k)); (11)
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where t

0

i

is the time when agent a

i

was born, P

i

(t

i

0

) is the initial energy of agent a

i

(the energy

whih agent gets from its parents),

Æ

p

i

(k) =

(

Æ > 0 when y

i

(k � 1) = x(k)

Æ < 0 otherwise;

(12)

Æ

a

i

(k) =

(

Æ > 0 when agent a

i

formed an aggregate with other agent

0 otherwise:

(13)

The total energy of the system in time t:

P (t) = P

e

(t) +

m(t)

X

i=1

P

i

(t); (14)

where P

e

(t) is the energy of environment, P

i

(t) is the energy of agent a

i

, m(t) is the number of

agents that remain within the system in time t. The parameter P (t) prevents exessive growth of

the population of agents.

4.5 The evolution operators

4.5.1 The reprodution, mutation, and rossover operators

The reprodution of agent a

i

in time t ours with the probability p

r

when

P

r

i

(t) � P

i

(t) (15)

where P

r

i

(t) 2 [P

r

min

; P

max

℄ is pseudo-random number, P

r

min

is the minimal level of energy required

for reprodution operation. If agent a

i

has more than one ell in time t then for reprodution will

be hosen k-th ell, suh that

	

S

t

k

(x(t))

ik

= max

n

	

S

t

1

(x(t))

i1

; : : : ;	

S

t

n

(x(t))

in

: n is the number of ells

o

(16)

Mutation operator may alter output symbol and transition between partiular states. The

mutation ours with the probability p

m

.

The rossover operation that mixes homologous hromosomes of two agents a

i

and a

j

ours

with the probability p



when agent a

i

(whih initializes the proess of reprodution) satis�es the

equation (15) and

9 a

j

, suh that d(a

i

; a

j

) � d



max

^ P



j

(t) � P

j

(t) (17)

where d(a

i

; a

j

) is the length of the shortest path between agents a

i

and a

j

in graph-like environ-

ment, d



max

is the maximal length of the shortest path, P



j

(t) 2 [P



min

; P

max

℄ is pseudo-random

number, P



min

is the minimal level of energy required for rossover operation.

4.5.2 The aggregation operator

The aggregation operator serves as a mehanism of emergene of soial relations among agents.

The idea of this operator is presented in [3℄. In this setion we present the realization of this idea

in predition system with evolution enters.

The agent onsists of one or more ells:

a

i

= f

1

; : : : ; 

n

: 1 � n � n



max

g ; (18)

where 

i

is a ell, n



max

is the maximal number of ells ontained in the aggregate. Eah ell an

live from T

min

to T

max

units of time.
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Two agents a

i

and a

j

form the aggregate in the time t with probability p

a

if the following

onditions are satis�ed

d(a

i

; a

j

) � d

a

max

^ n



i

+ n



j

� n



max

^	

i

(t) � 	

j

(t) ^	

i

max

(t) � 	

j

max

(t) (19)

where d

a

max

is the maximal length of the shortest path, n



i

and n



j

are the numbers of ells of agent

a

i

and a

j

, respetively.

The formed aggregate onsists of ells of both agents, and the aggregate's energy (when agent

a

i

absorbs ells of agent a

j

) is

P

i

(t+ 1) =

(

P

i

(t) + P

j

(t) if P

i

(t) + P

j

(t) < P

max

P

max

otherwise:

(20)

4.5.3 The esape operator

The esape operator enables agents to migrate towards di�erent environments (i.e. where agents

must predit values of the parameter � taken from di�erent pseudo-random sequenes). The

existene of several environments auses that groups of agents are geographially separated, thus

the proess of speies formation an take plae in the population of agents.

If agent a

i

remains within the environment E

j

, whih is ontrolled by agent a

e

j

, then the

distane between them will hange in the following way:

d

ij

(t) =

(

d

ij

< d

ij

(t� 1) if y

i

(t� 1) = x

j

(t)

d

ij

> d

ij

(t� 1) if y

i

(t� 1) 6= x

j

(t):

(21)

If agent a

i

moves outside the environment E

j

(i.e. if d

ij

(t) > r

j

, r

j

de�nes the size of environ-

ment E

j

) then it will move randomly until its energy value P

i

will be redued to the level P

m

min

.

In suh a situation agent will move towards the nearest agent a

e

k

(k 6= j).

If more than one environment exist, agent a

i

, whih lives in the environment E

k

, where k > 1,

is fored to move towards the main environment E

1

(in whih there are hardest living onditions)

in time t when

	

i

(t) > S

mig

min

^ P

i

(t) > P

mig

min

^ T

mig

(t) � t

i

(22)

where S

mig

min

is the minimal statistis required to migrate towards the environment E

1

, P

mig

min

is the

minimal energy, t

i

is the age of agent a

i

(t

i

= t � t

0

i

), T

mig

(t) 2 [T

min

; T

max

℄ is pseudo-random

number, T

min

and T

max

are, respetively, minimal and maximal possible age of ell.

Eah move operation osts some energy P

mv

(t), where P

mv

(t) 2 [P

mv

min

; P

mv

max

℄ is pseudo-random

number, P

mv

min

is minimal move energy, and P

mv

max

is maximal move energy.

The esape operator made it possible to onstrut the evolution enters.

4.5.4 The evolution enter

In our system the evolution enters are represented by agents a

e

k

; k = 1; : : : ; n

e

, where n

e

is

the number of evolution enters in partiular simulation. Agents a

e

k

are plaed in some nodes of

graph-like spae. These agents are plaed permanently and annot move during the simulation.

Agent a

e

j

is responsible for generating values of parameter �

j

in the environment E

j

(i.e. for

generating sequene x

j

(t)), and for setting the onditions of evolution taking plae in environment

E

j

.

Parameters of evolution enter, represented by agent a

e

j

are:

x

j

(t) | binary pseudo-random sequene, whih length is l

j

,

r

j

| de�nes the size of evolution enter,

Æ | amount of energy transferred to predition agent as a prize for orret predition,
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p

r

, p

m

, p



, p

a

| probability of reprodution, mutation, rossover, and aggregation operations,

P

r

min

, P



min

| minimal level of energy required for reprodution and rossover operations,

d



max

, d

a

max

| maximal length of the shortest path between two agents when rossover and ag-

gregation operations are allowed,

n



max

| maximal number of ells ontained in an aggregate,

T

min

, T

max

| minimal and maximal possible age of ell,

S

mig

min

| minimal statistis required to migrate towards environment E

1

,

P

mig

min

| minimal energy required to migrate towards environment E

1

,

P

mv

min

, P

mv

max

| minimal and maximal energy required for eah move.

5 Simulation experiments

The main goal of the simulation experiments was to investigate whether the appliation of the

evolution enters an improve the quality of predition made by agents and how the use of suh

supervising mehanism a�ets the modeled evolution proess. The intensity of mutation and

rossover were not taken into onsideration in this researh.

In eah experiment the maximal number of states of the �nite automaton n

s

max

= 5, and

maximal energy of agent P

max

= 100.

5.1 The on�guration of evolution enters

5.1.1 The on�guration of evolution enter E

1

In the main evolution enter (E

1

) the sequene x

1

(t) onsisted of sequenes x

2

(t) and x

3

(t), eah of

them repeated 5 times alternately. The values of parameters were: Æ = 2:5, p

r

= 0:95, p

m

= 0:05,

p



= 0:9, p

a

= 0:9, P

r

min

= 75, P



min

= 60, d



max

= 3, d

a

max

= 3, n



max

= 2, T

min

= 300,

T

max

= 2000, S

mig

min

= 1, P

mig

min

= 100, P

mv

min

= 0:5, P

mv

max

= 1:5.

5.1.2 The on�guration of evolution enter E

2

In evolution enter E

2

the length of sequene x

2

(t) was l

2

= 10. This sequene was repeated

periodially giving as a result in�nite sequene. The values of parameters were p

a

= 0:0 (i.e. the

aggregation was not allowed), S

mig

min

= 0:8, P

mig

min

= 50. The values of other parameters were suh

as in the evolution enter E

1

.

5.1.3 The on�guration of evolution enter E

3

In evolution enter E

3

the length of sequene x

2

(t) was l

2

= 15. This sequene was repeated

periodially giving as a result in�nite sequene. The values of other parameters were Æ = 2:7 (this

value is greater than in the E

2

beause the sequene is longer what implies that living onditions

are harder), p

a

= 0:0, S

mig

min

= 0:8, P

mig

min

= 50. The values of other parameters were suh as in the

evolution enter E

1

.

5.2 Types of experiments

5.2.1 Experiment with one evolution enter

In this kind of experiment the population of agents lived in one evolution enter (E

1

) (Fig. 4).

Two other evolution enters were out of ation (r

2

= 0 and r

3

= 0). Agents ould form aggregates

onsisted of two ells.
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Figure 4: Experiment with one evolution en-

ter

Figure 5: Experiment with three evolution

enters

Figure 6: Experiment with two evolution en-

ters

Figure 7: Population is migrating towards

evolution enter E

1
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Figure 8: Number of agents in population

5.2.2 Experiment with two evolution enters

This experiment onsisted of two parts. The �rst half of the simulation (2000 steps) was the

proess of speies formation. Agents lived in E

2

and E

3

evolution enters (Fig. 6). In these

evolution enters the aggregation was not allowed. Evolution enter E

1

was out of ation (r

1

= 0).

Then, they were fored to move towards evolution enter E

1

by setting parameters r

2

= 0, r

3

= 0,

and r

1

= 20 (Fig. 7). In evolution enter E

1

agents ould form aggregates onsisted of two ells.

5.2.3 Experiment with three evolution enters

There were three ative evolution enters during the whole simulation (Fig. 5). In E

2

and E

3

evolution enters the aggregation was not allowed. These two evolution enters served as areas

where the proess of speies formation took plae. In the evolution enter E

1

agents ould form

aggregates onsisted of two ells. Agents ould freely move from one evolution enter to another.

5.3 Disussion of the results

Beause of the stohasti nature of the experiments all the results presented in this setion are

average values of three simulations arried out with the use of 0/1 random sequenes x

2

(t) and

x

3

(t). The length of all the simulations was 4000 steps. Everywhere in the �gures shown below: 1

means results of the experiment arried out with the use of one evolution enter (Setion 5.2.1), 2

| with the use of two evolution enters (Setion 5.2.2), and 3 | with the use of three evolution

enters (Setion 5.2.3).

Figure 8 shows the hanges of the number of agents (aggregates) in the population during the

simulations. The initial number of agents is 300. In eah ase we an observe the deline of the

number of agents just at the beginning of simulation. But after a short period of time the number

of agents rapidly grows and after several slight falls reahes a balane state. Only in the ase of

simulation with two environments we an again observe a deline in 2000-th step of simulation.

This fat is aused by the proess of migration of agents from evolution enters E

2

and E

3

to

evolution enter E

1

.

In the seond half of the simulation experiment with two evolution enters the number of agents

is smaller than in the �rst half beause in the seond half of the simulation agents remain within

13



Figure 9: Number of ells in population

Figure 10: Average number of ells in aggregate
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Figure 11: Best perent of orret preditions in population

the area of evolution enter E

1

, where the aggregation operator is ative. In the Figure 8 we an

see that in the seond half of this experiment the number of agents is almost idential as it is in

the ase of simulation with one evolution enter (similar onditions of the experiment). But there

are less ells in the experiment with two evolution enters (see Figures 9 and 10).

In the ase of experiment with three evolution enters one part of the population of agents

remains within evolution enters E

2

and E

3

(in whih aggregation is not allowed). We an therefore

observe the biggest number of agents (Fig. 8) and the smallest number of ells in this experiment

(Fig. 9 and 10).

In the Figure 11 we an see the omparison of best perent of orret preditions in sub-

population that predits values of the � parameter in evolution enter E

1

(see Setion 5.1.1). In

the ase of results obtained with the use of two evolution enters the rapid growth near the 2000-th

step of simulation is the result of migration of the population from evolution enters E

2

and E

3

to evolution enter E

1

(there were no agents in E

1

beause r

1

= 0 until this moment). In all the

ases the best perent of orret preditions in population is between 85 and 90%, although we

an see slightly better results obtained with the use of two and three evolution enters by the end

of simulation.

Figure 12 shows average perent of orret preditions in sub-population that predits values

of the � parameter in the evolution enter E

1

. When two and three evolution enters are used,

average perent of orret preditions exeeds the level of 75%, whih is not possible when only

one evolution enter is used.

Figures 13, 14, and 15 show hanges of perent of orret preditions' distribution in population

during the simulations with one, two, and three evolution enters. In the �rst step of simulation all

the agents have 50% of orret preditions (this is the initial value). The next generations of agents

are desendants of the agents with best �tness to the environment onditions. We an therefore

observe systemati growth of the number of agents with higher levels of orret preditions.

In the ase of simulation experiment with one evolution enter the new maximum (about 41%

of population) is rising in the group of agents with 75-80% of orret preditions (Fig. 13). In the

last step of simulation there are about 13% of agents with 80-85% of orret preditions and 2%

of agents with 85-90% of orret preditions in the population (Fig. 13 and 16).

In the Figure 14 we an observe the shift of maximum from the group of agents with 85-90%

of orret preditions (about 65% of population) to the group with 80-85% of orret preditions
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Figure 12: Average perent of orret preditions in population

Figure 13: Changes of perent of orret pre-

ditions' distribution in population (one evo-

lution enter)

Figure 14: Changes of perent of orret pre-

ditions' distribution in population (two evo-

lution enters)

Figure 15: Changes of perent of orret pre-

ditions' distribution in population (three evo-

lution enters)

Figure 16: Perent of orret preditions' dis-

tribution in population in the last step of sim-

ulation
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(about 39% of population in the last step of simulation) after 2000-th step of simulation. This

fat is aused by the migration of population from evolution enters E

2

and E

3

to evolution

enter E

1

(the whole population has to predit the values of parameter � taken from the longest

sequene). But there still exists the group of agents (about 10% of population) with 85-90% of

orret preditions and the group of agents (about 16% of population) with 75-80% of orret

preditions (Fig. 14 and 16).

In the Figure 15 we an observe the results of the simulation experiment arried out with the

use of three evolution enters. There are three evolution enters during the whole simulation in

this type of experiment what implies that one sub-population remains within evolution enter E

1

and two others remain within evolution enters E

2

and E

3

(where the values of parameter � are

taken from the shorter sequenes). We an therefore observe that the new maximum (about 28%

of population) is rising in the group of agents with 85-90% of orret preditions. Also, there is

the group of agents (about 12% of population) with 80-85% of orret preditions and the group

(about 19% of population) with 75-80% of orret preditions (Fig. 15 and 16).

To sum up the presented results:

� In the ase of all three experiments the best perent of orret preditions in population is

almost idential.

� The average perent of orret preditions is highest when two and three evolution enters

are used.

� Also, there are many more agents with high perentage of orret preditions in the popu-

lation when two and three evolution enters are used and the proess of speies formation

an take plae.

6 Conlusions

Evolution proess realized in multi-agent world o�ers us two new possibilities:

1. Avoiding limitations of the lassial evolution programs.

2. The mehanism of adaptation towards hanging environment for agents.

With the Evolutionary Multi Agent Systems it is possible to model biologial mehanisms of

speies formation, rivalry and ompetition among speies, soial behavior and so on. With the use

of these biologial mehanisms we an supply the modeled evolution proess with new impulses

and try to diret it towards new and desirable (from our point of view) possibilities.

In this paper we have introdued the supervising mehanism based on two non-lassial evo-

lution operators: aggregation and esape. The aggregation operator enables the emergene of

soial relations among agents [3℄. The esape operator enables agents to migrate towards di�er-

ent environments. The appliation of these evolution operators made it possible to onstrut the

evolution enters. The evolution enters are geographially separated areas, with di�erent envi-

ronment onditions and harateristi parameters. It is therefore possible to model the proess of

speies formation in the population of agents. In the evolution enters we also an ontrol values

of various environment parameters in order to supervise the evolution proess.

We have applied the idea of evolution enters to the onstrution of evolutionary multi-agent

predition system. It has been shown that the appliation of evolution enters signi�antly im-

proved the evolution proess realized in the multi-agent predition system.

Future researh in the �eld of Evolutionary Multi Agent Systems should be foused on intro-

duing new evolution mehanisms based on the biologial evolution. Therefore, it will be possible

to researh di�erent phenomena that exist in the proess of biologial evolution and apply EMAS

tehnology to solving omplex and hard problems.
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