The Mechanism of Supervising the Evolution Process
Realized in Multi Agent World

Krzysztof CETNAROWICZ * Rafal DREZEWSKI T
e-mail: cetnar@agh.edu.pl e-mail: drezew@agh.edu.pl
Abstract

It is supposed that there are only two main factors in the process of genetic search:
population diversity and selective pressure. Many parameters that are used in order to control
the process of genetic search indirectly influence population diversity and selective pressure.
But such a control of the evolution process seems to be very unrealistic from the biological
point of view. With the Evolutionary Multi Agent Systems (EMAS) it is possible to model
biological mechanisms of species formation, rivalry and competition among species, social
behavior and so on. In this paper we introduce the supervising mechanism based on two non-
classical evolution operators: aggregation and escape. The application of these new evolution
operators made it possible to construct the evolution centers. In the evolution centers it
is possible to control values of various parameters of the environment in order to influence
the course of the evolution process, to supervise this process and thereby to control the
evolution process. Also, the application of this supervising mechanism to the construction of
evolutionary multi-agent prediction system is presented. We discuss the results of simulation
experiments carried out with the SWARM-based evolutionary prediction system, which show
how the use of such supervising mechanism affects the modeled evolution process.

1 Introduction

Perhaps the most important and challenging part of research in the field of evolution programs is
how to control the modeled evolution process. It is supposed that there are only two main factors
in the process of genetic search: population diversity and selective pressure. Many parameters that
are used in order to control the process of genetic search indirectly influence population diversity
and selective pressure [8]. But such a control of the evolution process seems to be very unrealistic
from the biological point of view. It is questionable if we should interfere in the natural process
using artificial and unrealistic mechanisms. In order to supervise the modeled evolution process
we should rather try to utilize possibilities provided by the biological evolution itself.

The technology of Evolutionary Multi Agent Systems (EMAS) [3], that arises as a result of
realization of the evolution process in multi-agent world, can be treated as a new approach to the
construction of evolution programs and a new way of developing multi-agent systems.

With the Evolutionary Multi Agent Systems it is possible to model biological mechanisms of
species formation, rivalry and competition among species, social behavior and so on. It was not
possible to model all these mechanisms in the case of classical evolution programs [6, 8].

With the use of these biological mechanisms we can supply the modeled evolution process with
new impulses and try to direct it towards new and desirable (from our point of view) possibilities.
In this paper we introduce the supervising mechanism based on two non-classical evolution op-
erators: aggregation and escape. The aggregation operator enables emergence of social relations
among agents. With the use of the escape operator agents can migrate towards different environ-
ments. Thus this operator enables modeling of the species formation process. The application of
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these new evolution operators made it possible to construct the evolution centers. In evolution
centers it is possible to control values of various environment parameters in order to influence
the course of the evolution process, to supervise this process and thereby to control the evolution
process.

2 Elements of theory

2.1 Model of evolving multi-profile agent

In evolutionary system, prediction agent is defined as a multi-profile agent a which contains two
basic profiles. First profile (a1) is in charge of realization of crossover and mutation algorithms.
Second profile (a2) realizes aggregation and escape operations.

In the presented model of agent, within the framework of a1 profile, a set of agents is constructed
as an image of observed world. These agents are potential candidates for the realization of crossover
operation with particular agent. Preliminary selection of candidates and final choice is made on the
basis of potential candidate’s characteristic features. Agent’s profile as is in charge of realization
of aggregation operation. Similarly to the profile a;, also in this case a set of potential candidates
to the realization of aggregation operation with particular agent is constructed on the basis of
observation of the environment. The choice of candidate, similarly to the profile a;, is made on
the basis of set of candidate’s features. The criterions of choice and set of features are different
from those that are used in the profile a;.

Agent’s evaluation is made on the basis of two basic features: intellectual level and energetic
states (the quantity of life energy).

The intellectual level determines the quality of prediction that is made by agent. It is defined
as a percentage of correct predictions made in a fixed period of time. “Intellectual” state of an
agent affects its attractiveness for other agents in decision making process concerning the choice
of partners for evolution operations.

Every agent possesses a “life” energy reserve. All operations made by an agent, including
evolutionary operations, require the use of some amount of agent’s energy. In the process of
realization of these operations, agent’s energetic state p is reduced by some (fixed for particular
operation) amount.

On the contrary, positive results of some actions supply agent with energy. Acting in the
environment, agent executes operations and according to the results of these operations it can
obtain or lose some fixed amounts of energy, increasing or decreasing the amount of its energy.

The final decision concerning the choice of one of possible actions is made by an agent with
the use of decision function which takes into account the actual level of energy and intellectual
level of particular agent and of an agent that particular agent is going to cooperate with. In this
case, intellectual level and energetic level (with different weights) determine attractiveness of an
agent — candidate to cooperation.

2.2 Aggregation and escape operations

The agent-environment relation is the basic reason that forces agents to participate in evolution
process. If state of this relation is not satisfied for particular agent, it can choose one of the
following actions:

e agent may change itself — adapting itself to the conditions of the environment with the use
of mutation and crossover operations,

e agent may change the environment with, among others, the use of aggregation and escape
operations.

The evolution process in which autonomous agent take part, may be realized with the use of
following operators that affect single agent or fixed group of agents.
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Figure 1: The principle of functioning of the aggregation operator

Mutation, crossover and reproduction operators in the agent environment have the same form
as presented in [5, 6, 8] with such an exception that the evolution process of each agent has its
own (individual for each agent) characteristics, it depends on agent’s decisions, and it takes place
according to its own independent cycle.

The idea of aggregation operation may be considered as a creation (by agents) of new envi-
ronment in which agents act. A group of agents (such that conditions of actual environment do
not suit them) make an agreement, which goal is to take over the control of the part of existing
environment. Thus agents change the parameters of controlled environment, which we mentioned
above, to make it better adapted to their requirements. After the creation of new environment,
a group of agents, mentioned above, owing to specialization and cooperation, maintain desirable
parameters in the environment created by them. This group (when it is seen from outside) act
like a new agent with new characteristic features that arose owing to the aggregation operation.
To sum up, the aggregation operator makes it possible to change the agents-environment relation
with the change of environment’s parameters.

The second operator that makes it possible to change the agents-environment relation with
the change of environment’s parameters is the escape operator. Let us make an assumption that
the evolution process takes place in several environments, and that agents can migrate among
these environments. The evolution processes that take place in each of these environments differ
in some range of their parameters from each other. If in one of the mentioned environments the
agent is created as a result of mutation, crossover or aggregation operation that is not well adapted
to this environment, it may migrate towards different environment (with different characteristic
parameters), where it can act better than in the previous environment. Then it may start there a
new population of agents with valuable characteristic features.

2.3 Evolution centers as a method of evolution process control

The application of aggregation and escape operators makes it possible to control the evolution
process, among others, through the mediation of organizing of, so called, evolution centers.

Let us consider the process of realization of aggregation operator (Fig. 1), which consists of
the following stages:

1. Let two parameters characterize the particular environment: A and B (values of A and B
belong to {0,1}). There are agents AgA and AgB in this environment. Agent AgA (agent
AgB) has the ability to influence its environment in such a way that it can maintain the
value of parameter A (B) equal to one in its neighborhood. Agents A and B require (prefer)
the values of both parameters (A and B) equal to one in their neighborhood.

2. Owing to the ability to move within the environment, agent AgA may stay near the agent
AgB (and similarly agent AgB may stay near the agent AgA).
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Figure 2: The principle of functioning of the evolution center

3. Agents AgA and AgB make an agreement and decide to aggregate together and create a
new environment (with values of parameters satisfying requirements of both agents — A =1
and B = 1) by taking over the control of the part of existing environment.

4. As aresult of aggregation, the new agent Ag0 is created. This agent maintains the informa-
tion about the configuration of agents A and B. The group of agents AgA, AgB, Ag0, and
the part of environment that they control (with values of parameters A and B equal to one)
constitute the new agent. Agent Ag0 keeps (for example encoded in its genes) information
that is required to the reproduction of this aggregated agent.

With the use of aggregation and escape operators we can consider the organization of “evolution
center”, in which it is possible to control the values of environment parameters, what implies that
we can supervise the course of the evolution process. Let us consider the example presented above,
in which the realization of aggregation operator is completed with the application of remaining
evolution operators and the control of environment parameters. Let us make an assumption that
there exist such agents of type X in the environment that they can not set the environment
parameters A and B in their neighborhood (i.e. set values A =1 and B = 1). At the same time,
agents of type X prefer the environment which parameters A and B are set (A =1 and B = 1).
Agent of type X may obtain (as a result of mutation and crossover operations) the ability to set
the parameter A (A = 1) or B (B = 1) in its neighborhood (but not the ability to set both of
them). Then it becomes the agent of type A or B. Let us make an assumption that the part
of environment — the evolution center — is selected. We can control this evolution center from
outside and change the values of parameters A and B (setting their values to 0 or 1). The example
of supervising the evolution center may be considered as following steps:

e Parameters A and B are set (A =1 and B = 1) in selected areas of evolution center. Agents
of type X gather in this area (Fig. 2a).

e Parameter A is turned off periodically. This causes that some agents of type X obtain (as a



result of mutation and crossover operations) the ability to set the parameter A (A = 1) in
their neighborhood. Thus they became type A agents (Fig. 2b).

e After some time, the parameter A is turned on (A = 1), and parameter B is turned off
(B = 0) periodically. This causes that some agents of type X obtain (as a result of mutation
and crossover operations) the ability to set the parameter B (B = 1) in their neighborhood.
Thus they became type B agents (Fig. 2c).

e After some time, both parameters are turned off (A = 0 and B = 0). Owing to the fact
that agents of type A and agents of type B remain within the same area and they neighbor
each other, they can form the aggregates AB (as a result of aggregation operation). These
aggregates do not depend on the fact that parameters A and B are turned on or off, what
implies that they can live in any environment (Fig. 2d).

Owing to the application of the idea of evolution centers (and the application of aggregation and
escape operators) we may obtain the possibility of supervising the evolution process by changing
the values of environment parameters, or rather, to say it more precise, by selecting the local sets
of parameters.

3 The methodology of modeling

It is typical in the research work made with the use of computer simulation that we try to observe
and investigate properties of phenomena, which adequate mathematical model cannot be formu-
lated. We can only formulate models of subsystems (i.e. components of a system of interest) and
define some basic interactions among them. But the relations that we are really interested in are
nowhere explicitly encoded. They rather emerge and become accessible for observation as a result
of interactions among the subsystems that we simulate.

The general research program of investigating complex dynamical phenomena using simulation
can be expressed in two main steps [9]:

1. It is necessary to formulate lower-level models of the important underlying subsystems (those
that define the elemental subsystems and the element-element or object-object interactions).

2. We must create the framework in which the simulation of the subsystems in interaction is
composed, and embody the system representation in that framework so that the phenomena
of interest can be generated and analyzed.

In the first part of research program we will use the model based on the concept of M-Agent
architecture [1, 2, 4]. This model enables us to formalize the properties of the multi-agent system
(environment, agents, agent-agent and agent-environment relations).

The second part of research made with the use of computer simulation requires appropriate
programming tools. These tools should enable us to obtain reliable and repeatable results of our
simulations. In our paper we propose the SWARM simulation system for this part of research. This
system has all the features, which are indispensable in the EMAS and artificial life simulations.

3.1 The simulation tool: SWARM system

The SWARM simulation system has been created at the Santa Fe Institute [10, 11]. This system
can be very useful for the researchers working in the field of computer simulations, especially in
the area of multi-agent systems and artificial life. The main goal of its authors was to create such
a simulation tool that the results obtained with the use of it would be reliable and repeatable. In
order to achieve this goal SWARM has the following features:

1. Simulation writing is brought up to a higher level of expression. Applications are written
with reference to a standard set of simulation tools.



2. The task of managing concurrency is made manageable. SWARM insulates the author of a
simulation from all the computer science knowledge that is usually required to implement
distributed and concurrent systems reliable. In addition SWARM forces experimenters to
make their concurrency assumptions explicit.

SWARM is implemented in the Object-Oriented Programming language Objective C [7]. Com-
putation in a SWARM application is made via objects sending messages to each other.

SWARM applications are structured around the concept of the “Swarm”. Swarms are the basic
building blocks of the SWARM simulation. A Swarm is combination of a collection of objects and
a schedule of activity over those objects. The collections are like the matter of the Swarm and the
schedule is like the arrow of time.

The core of every application is the “model swarm”. It encapsulates the simulated model, i.e.
agents, physical properties and structure of the space etc. In addition to the object collection, the
model swarm also contains a schedule of activity over these objects. Model swarm consists of a
set of inputs and outputs. The inputs are the model parameters and the outputs are the data,
which are the result of the agents’ activity.

Second very important part of the system is “observer swarm”. The most important object
in an observer swarm is the model swarm that is being studied. In addition observer swarm has
a collection of objects (instrumentation), a schedule of activity and a set of inputs and outputs.
With the use of this instrumentation we can observe our artificial world, collect data for future
analysis etc. The inputs to the observer swarm are configurations of the observer tools. The
outputs are the observations. The observer swarm can run in graphics mode or in batch mode.
In batch mode we cannot interact with the simulation. The batch swarm reads the data from
configuration file and writes the data to the other files for future analysis.

The SWARM system has large number of class libraries, which provides users tools that are
indispensable in the process of creation of the simulation. Detailed description of all these libraries
can be found in [11].

4 Evolutionary multi-agent prediction system with evolu-
tion centers

In this section we will describe sample application of the Evolutionary Multi-Agent Systems
(EMAS) technology to the 0/1 time sequence prediction system [2, 3].

In such a system the main goal of the population of agents is to predict the changes of the
environment. In the environment a parameter a € {0, 1} is defined. Variations of the parameter
a in discrete moments of time may be represented by the binary sequence x(t), where z(t) is the
value of « in the time t. Value of the parameter « is available for all the agents acting in the
environment. Each agent tries to predict the value that the o will take in the time ¢ + 1. So the
agent a; generates the binary sequence y;, such that y;(¢t) = Z(t + 1), where Z(t + 1) is predicted
value of parameter « in the time ¢ + 1.

4.1 Structure of the environment

The space in which agents remain E = (R, T'), where R is a configuration of resources, and T is a
topology of space [2].

Resources available for all the agents are parameter o = z(7), where 7 = 0,...,¢ and energy
of the environment P.. So, in the case of our system, R = {a,P,}. The topology T of the
environment is graph. Every node of this graph has connections with its eight neighbors.

4.2 Internal structure of the agent

In the considered system the agent consists of one or more cells. The cell consists of the finite
automaton, information about its age and statistics. Each cell makes its predictions with the use
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of finite automaton, which input/output language consists of symbols 0 and 1. The concept of
predicting changes of the environment by evolving population of finite automatons is known as
“evolutionary programming” [5, 6, 8]. The idea of the application of finite automaton as agent’s
chromosome is presented in [3]. Particular realization of this conception in system described in
this paper is shown in the Figure 3.

There are four chromosomes that code the finite automaton:

e transitions between states when the input symbol is 0,
e transitions between states when the input symbol is 1,
e output symbols when the input symbol is 0,

e output symbols when the input symbol is 1.

Number of genes in each chromosome corresponds with the maximal number of states of the finite
automaton (ns ,.).
There are two parameters that show the quality of prediction made by particular cell:
1. \Iliskj(o) — probability of correct prediction connected with the transition through 0 from the
state S; of the k-th cell of agent a;;

2. \I’fk"(l) — probability of correct prediction connected with the transition through 1 from the
state S; of the k-th cell of agent a;.
Two other parameters show the quality of prediction made by particular agent:

1. ¥,;(t) — probability of correct prediction made by agent a;;
2. Ut

¢ oz (t) — maximal probability of correct prediction made by agent a; during its lifetime.

4.3 Intellectual profile

An agent can be described from two points of view that correspond with two profiles: intellectual
and energetic [2].
The model of the environment of agent a; in the time ¢ is

m;(t) = ((Yi(t), (1)), (Yi(t + 1), it +1)),...), (1)



where

Yi(u) = {yin(u),...,yin(u) : nis the number of cells}, (2)
Qi(u) = {‘Irl.slil(zl(“)), ) i the number of cells} , (3)
foru=tt+1,...
P
yie(u) =ty (zk(u)) (4)

is the output connected with the transition of the k-th finite automaton through xy(u), Sy is the
state of the k-th finite automaton in the time u,

z(u foru=t
ra(u) = 7 - 5)
yir(lu—1) foru=t+1,t+2,...

for k=1,...,n, n is the number of cells of agent a;.
After applying the strategy realization operator X [2] the agent’s model of the environment is

where y;(u) = yix(u) for u =¢,t+1,..., k is such that

w;(u) = llrfg(z(")) = max {llfilu(z(")), @) g the number of cells} (7)
foru=tt+1,...,
x(u) foru=t
z(u) = _ (8)
yi(u—1) foru=t+1,t+2,...

The goal of the intellectual profile [2] is to make correct predictions:

1 when y;(t) =x(t+1
ol (1), mi(1)) = ilt) =~ ot ) )
0 when y;(t) # z(t + 1)
Now the time is incremented and the observation operator I [2] generates the model

by getting the value of z(t) from the environment. This model is the initial model for next
iteration. The adaptation operator L = {L,,} [2] is consisted of all the evolution operators.

4.4 Energetic profile

Energetic profile of agent a; [2] is represented by the parameter P;(t) € R, P;(t) € [0, Pnaz], Praz
is the maximal level of agent’s energy. The main goal of the agent in this profile is to maximize
the value of P;(t). In order to realize this goal the energetic strategy s, [2] is realized by applying
one of the evolution operators. Every action (such as move or reproduction) costs some energy.
Energy may be obtained only through correct prediction. All decisions of the agent (concerning
reproduction, aggregation, and direction of the move) depend on actual level of its energy. The
agent’s energy also serves as a mechanism of elimination of the agents with low level of fitness
to the environment conditions (i.e. making incorrect predictions) from the system. Agent a; dies
when P;(t) = 0.
The evaluation of the energy of agent a; during its lifetime may be expressed as follows:

Pi(t) = P(t) + Y (67(k) + 67 (K)), (11)

k=t?+1



where #? is the time when agent a; was born, P;(t}) is the initial energy of agent a; (the energy
which agent gets from its parents),

d>0 when y;(k—1)=ua(k
sp(ky = 40> 0 when ik —1) = (k) 1)
d <0 otherwise,
50 (k) = 0 >0 when a‘gent a; formed an aggregate with other agent (13)
0 otherwise.

The total energy of the system in time ¢:

m(t)
P(t):Pe(t)+ZPi(t)a (14)
i=1
where P,(t) is the energy of environment, P;(t) is the energy of agent a;, m(t) is the number of
agents that remain within the system in time ¢. The parameter P(t) prevents excessive growth of
the population of agents.

4.5 The evolution operators
4.5.1 The reproduction, mutation, and crossover operators

The reproduction of agent a; in time ¢ occurs with the probability p, when

Py (t) < Pi(t) (15)

where P} (t) € [P}, Pmaz] is pseudo-random number, P . is the minimal level of energy required
for reproduction operation. If agent a; has more than one cell in time ¢ then for reproduction will

be chosen k-th cell, such that
\I!fk’t“(x(t)) = max {\Ilisf(x(t)), e, \Ilfi‘(x(t)) : n is the number of cells} (16)

Mutation operator may alter output symbol and transition between particular states. The
mutation occurs with the probability p,.

The crossover operation that mixes homologous chromosomes of two agents a; and a; occurs
with the probability p. when agent a; (which initializes the process of reproduction) satisfies the
equation (15) and

3 Qaj, such that d(ai,aj) S ds A ch(t) S Pj(t) (17)

mazx

where d(a;,a;) is the length of the shortest path between agents a; and a; in graph-like environ-
ment, dy,,, is the maximal length of the shortest path, Pf(t) € [Py, Praz] is pseudo-random

maz min’
number, B is the minimal level of energy required for crossover operation.

4.5.2 The aggregation operator

The aggregation operator serves as a mechanism of emergence of social relations among agents.
The idea of this operator is presented in [3]. In this section we present the realization of this idea
in prediction system with evolution centers.

The agent consists of one or more cells:

ai:{cl,---,cn: ]-Sngnfnam}7 (18)

where ¢; is a cell, nf, .. is the maximal number of cells contained in the aggregate. Each cell can

live from T},in t0 Tines units of time.



Two agents a; and a; form the aggregate in the time ¢ with probability p, if the following
conditions are satisfied

(t) < W00 (D) (19)

max

d(ai,a;) < dy, e Ang+n5 <npo, AVG(E) > W5(E) A K

max max

where dy, . is the maximal length of the shortest path, n{ and nf are the numbers of cells of agent
a; and a;, respectively.
The formed aggregate consists of cells of both agents, and the aggregate’s energy (when agent

a; absorbs cells of agent a;) is

Pl(t) + Pj(t) if Pl(t) + P]’(t) < Pz

. (20)
Poz otherwise.

Pi(t+1)={

4.5.3 The escape operator

The escape operator enables agents to migrate towards different environments (i.e. where agents
must predict values of the parameter a taken from different pseudo-random sequences). The
existence of several environments causes that groups of agents are geographically separated, thus
the process of species formation can take place in the population of agents.

If agent a; remains within the environment Ej;, which is controlled by agent aj¢, then the
distance between them will change in the following way:

. di]' < di]'(t — 1) if yi(t — 1) = ZL”]'(t)
dij () = {di]- >dij(t—1) if yi(t — 1) # 2;(t). (21)

If agent a; moves outside the environment E; (i.e. if d;;(t) > r;, r; defines the size of environ-
ment FE;) then it will move randomly until its energy value P; will be reduced to the level P .
In such a situation agent will move towards the nearest agent af® (k # j).

If more than one environment exist, agent a;, which lives in the environment Ej,, where k > 1,
is forced to move towards the main environment F; (in which there are hardest living conditions)
in time ¢ when

U,(t) > S9N Pi(t) > P9 A T (t) <t (22)
where Sszt is the minimal statistics required to migrate towards the environment F, P;Zi’g is the
minimal energy, ¢; is the age of agent a; (t; =t — t2), Trmig(t) € [Tmin, Timaz] is pseudo-random
number, Ty,in and Thee are, respectively, minimal and maximal possible age of cell.

Each move operation costs some energy Pp,,(t), where P, (t) € [PY, PV ] is pseudo-random

min?
number, P"" is minimal move energy, and P’ is maximal move energy.

max
The escape operator made it possible to construct the evolution centers.

4.5.4 The evolution center

In our system the evolution centers are represented by agents aj°, k = 1,...,n.., where n.. is
the number of evolution centers in particular simulation. Agents a;° are placed in some nodes of
graph-like space. These agents are placed permanently and cannot move during the simulation.
Agent a$° is responsible for generating values of parameter a; in the environment Ej (i.e. for
generating sequence z;(t)), and for setting the conditions of evolution taking place in environment
E;.
Parameters of evolution center, represented by agent aj° are:

xj(t) — binary pseudo-random sequence, which length is [;,
r; — defines the size of evolution center,

0 — amount of energy transferred to prediction agent as a prize for correct prediction,

10



Drs Pms Pes Pa — Probability of reproduction, mutation, crossover, and aggregation operations,

Pl ins Prin — minimal level of energy required for reproduction and crossover operations,
dCaws A% nr — maximal length of the shortest path between two agents when crossover and ag-

gregation operations are allowed,

n%,.. — maximal number of cells contained in an aggregate,

Timins Tmaz — minimal and maximal possible age of cell,

S™9 _ minimal statistics required to migrate towards environment Fj,
P™9 __ minimal energy required to migrate towards environment F
P, P — minimal and maximal energy required for each move.

5 Simulation experiments

The main goal of the simulation experiments was to investigate whether the application of the
evolution centers can improve the quality of prediction made by agents and how the use of such
supervising mechanism affects the modeled evolution process. The intensity of mutation and
crossover were not taken into consideration in this research.

In each experiment the maximal number of states of the finite automaton n} . = 5, and
maximal energy of agent P,,,, = 100.

5.1 The configuration of evolution centers
5.1.1 The configuration of evolution center F;

In the main evolution center (E;) the sequence x1(t) consisted of sequences x5 (t) and x3(t), each of
them repeated 5 times alternately. The values of parameters were: § = 2.5, p,, = 0.95, p,,, = 0.05,
p. = 09, p, =09, P’. =75 P.. =60,d5 .. =3, dv.: =3, N5or = 2, Trin = 300,

Trnaw = 2000, S™9 =1, P™¥ = 100, P™ = 0.5, P™ = 1.5.

min min min mazx

5.1.2 The configuration of evolution center E;

In evolution center E» the length of sequence z»(t) was [ = 10. This sequence was repeated
periodically giving as a result infinite sequence. The values of parameters were p, = 0.0 (i.e. the
aggregation was not allowed), S;"9 = 0.8, P"'Y = 50. The values of other parameters were such
as in the evolution center Ej.

5.1.3 The configuration of evolution center Ej3

In evolution center E3 the length of sequence z1(t) was I = 15. This sequence was repeated
periodically giving as a result infinite sequence. The values of other parameters were § = 2.7 (this
value is greater than in the E» because the sequence is longer what implies that living conditions
are harder), p, = 0.0, S;";% = 0.8, P,""Y = 50. The values of other parameters were such as in the
evolution center Ej.

5.2 Types of experiments
5.2.1 Experiment with one evolution center

In this kind of experiment the population of agents lived in one evolution center (E;) (Fig. 4).
Two other evolution centers were out of action (ro = 0 and r3 = 0). Agents could form aggregates
consisted of two cells.
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5.2.2 Experiment with two evolution centers

This experiment consisted of two parts. The first half of the simulation (2000 steps) was the
process of species formation. Agents lived in Ey and Ej3 evolution centers (Fig. 6). In these
evolution centers the aggregation was not allowed. Evolution center E; was out of action (r; = 0).
Then, they were forced to move towards evolution center E; by setting parameters ro = 0, r3 = 0,
and ry = 20 (Fig. 7). In evolution center E; agents could form aggregates consisted of two cells.

5.2.3 Experiment with three evolution centers

There were three active evolution centers during the whole simulation (Fig. 5). In E and Es
evolution centers the aggregation was not allowed. These two evolution centers served as areas
where the process of species formation took place. In the evolution center F; agents could form
aggregates consisted of two cells. Agents could freely move from one evolution center to another.

5.3 Discussion of the results

Because of the stochastic nature of the experiments all the results presented in this section are
average values of three simulations carried out with the use of 0/1 random sequences z»(t) and
x3(t). The length of all the simulations was 4000 steps. Everywhere in the figures shown below: 1
means results of the experiment carried out with the use of one evolution center (Section 5.2.1), 2
— with the use of two evolution centers (Section 5.2.2), and 3 — with the use of three evolution
centers (Section 5.2.3).

Figure 8 shows the changes of the number of agents (aggregates) in the population during the
simulations. The initial number of agents is 300. In each case we can observe the decline of the
number of agents just at the beginning of simulation. But after a short period of time the number
of agents rapidly grows and after several slight falls reaches a balance state. Only in the case of
simulation with two environments we can again observe a decline in 2000-th step of simulation.
This fact is caused by the process of migration of agents from evolution centers F, and E3 to
evolution center Fj.

In the second half of the simulation experiment with two evolution centers the number of agents
is smaller than in the first half because in the second half of the simulation agents remain within
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the area of evolution center F, where the aggregation operator is active. In the Figure 8 we can
see that in the second half of this experiment the number of agents is almost identical as it is in
the case of simulation with one evolution center (similar conditions of the experiment). But there
are less cells in the experiment with two evolution centers (see Figures 9 and 10).

In the case of experiment with three evolution centers one part of the population of agents
remains within evolution centers Es and F3 (in which aggregation is not allowed). We can therefore
observe the biggest number of agents (Fig. 8) and the smallest number of cells in this experiment
(Fig. 9 and 10).

In the Figure 11 we can see the comparison of best percent of correct predictions in sub-
population that predicts values of the o parameter in evolution center E; (see Section 5.1.1). In
the case of results obtained with the use of two evolution centers the rapid growth near the 2000-th
step of simulation is the result of migration of the population from evolution centers E> and Ej3
to evolution center E; (there were no agents in E; because r1 = 0 until this moment). In all the
cases the best percent of correct predictions in population is between 85 and 90%, although we
can see slightly better results obtained with the use of two and three evolution centers by the end
of simulation.

Figure 12 shows average percent of correct predictions in sub-population that predicts values
of the o parameter in the evolution center E;. When two and three evolution centers are used,
average percent of correct predictions exceeds the level of 75%, which is not possible when only
one evolution center is used.

Figures 13, 14, and 15 show changes of percent of correct predictions’ distribution in population
during the simulations with one, two, and three evolution centers. In the first step of simulation all
the agents have 50% of correct predictions (this is the initial value). The next generations of agents
are descendants of the agents with best fitness to the environment conditions. We can therefore
observe systematic growth of the number of agents with higher levels of correct predictions.

In the case of simulation experiment with one evolution center the new maximum (about 41%
of population) is rising in the group of agents with 75-80% of correct predictions (Fig. 13). In the
last step of simulation there are about 13% of agents with 80-85% of correct predictions and 2%
of agents with 85-90% of correct predictions in the population (Fig. 13 and 16).

In the Figure 14 we can observe the shift of maximum from the group of agents with 85-90%
of correct predictions (about 65% of population) to the group with 80-85% of correct predictions
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(about 39% of population in the last step of simulation) after 2000-th step of simulation. This
fact is caused by the migration of population from evolution centers FE, and FE3 to evolution
center E; (the whole population has to predict the values of parameter a taken from the longest
sequence). But there still exists the group of agents (about 10% of population) with 85-90% of
correct predictions and the group of agents (about 16% of population) with 75-80% of correct
predictions (Fig. 14 and 16).

In the Figure 15 we can observe the results of the simulation experiment carried out with the
use of three evolution centers. There are three evolution centers during the whole simulation in
this type of experiment what implies that one sub-population remains within evolution center E;
and two others remain within evolution centers E» and E3 (where the values of parameter a are
taken from the shorter sequences). We can therefore observe that the new maximum (about 28%
of population) is rising in the group of agents with 85-90% of correct predictions. Also, there is
the group of agents (about 12% of population) with 80-85% of correct predictions and the group
(about 19% of population) with 75-80% of correct predictions (Fig. 15 and 16).

To sum up the presented results:

e In the case of all three experiments the best percent of correct predictions in population is
almost identical.

e The average percent of correct predictions is highest when two and three evolution centers
are used.

e Also, there are many more agents with high percentage of correct predictions in the popu-
lation when two and three evolution centers are used and the process of species formation
can take place.

6 Conclusions
Evolution process realized in multi-agent world offers us two new possibilities:

1. Avoiding limitations of the classical evolution programs.

2. The mechanism of adaptation towards changing environment for agents.

With the Evolutionary Multi Agent Systems it is possible to model biological mechanisms of
species formation, rivalry and competition among species, social behavior and so on. With the use
of these biological mechanisms we can supply the modeled evolution process with new impulses
and try to direct it towards new and desirable (from our point of view) possibilities.

In this paper we have introduced the supervising mechanism based on two non-classical evo-
lution operators: aggregation and escape. The aggregation operator enables the emergence of
social relations among agents [3]. The escape operator enables agents to migrate towards differ-
ent environments. The application of these evolution operators made it possible to construct the
evolution centers. The evolution centers are geographically separated areas, with different envi-
ronment conditions and characteristic parameters. It is therefore possible to model the process of
species formation in the population of agents. In the evolution centers we also can control values
of various environment parameters in order to supervise the evolution process.

We have applied the idea of evolution centers to the construction of evolutionary multi-agent
prediction system. It has been shown that the application of evolution centers significantly im-
proved the evolution process realized in the multi-agent prediction system.

Future research in the field of Evolutionary Multi Agent Systems should be focused on intro-
ducing new evolution mechanisms based on the biological evolution. Therefore, it will be possible
to research different phenomena that exist in the process of biological evolution and apply EMAS
technology to solving complex and hard problems.
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