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Abstra
t

It is supposed that there are only two main fa
tors in the pro
ess of geneti
 sear
h:

population diversity and sele
tive pressure. Many parameters that are used in order to 
ontrol

the pro
ess of geneti
 sear
h indire
tly in
uen
e population diversity and sele
tive pressure.

But su
h a 
ontrol of the evolution pro
ess seems to be very unrealisti
 from the biologi
al

point of view. With the Evolutionary Multi Agent Systems (EMAS) it is possible to model

biologi
al me
hanisms of spe
ies formation, rivalry and 
ompetition among spe
ies, so
ial

behavior and so on. In this paper we introdu
e the supervising me
hanism based on two non-


lassi
al evolution operators: aggregation and es
ape. The appli
ation of these new evolution

operators made it possible to 
onstru
t the evolution 
enters. In the evolution 
enters it

is possible to 
ontrol values of various parameters of the environment in order to in
uen
e

the 
ourse of the evolution pro
ess, to supervise this pro
ess and thereby to 
ontrol the

evolution pro
ess. Also, the appli
ation of this supervising me
hanism to the 
onstru
tion of

evolutionary multi-agent predi
tion system is presented. We dis
uss the results of simulation

experiments 
arried out with the SWARM-based evolutionary predi
tion system, whi
h show

how the use of su
h supervising me
hanism a�e
ts the modeled evolution pro
ess.

1 Introdu
tion

Perhaps the most important and 
hallenging part of resear
h in the �eld of evolution programs is

how to 
ontrol the modeled evolution pro
ess. It is supposed that there are only two main fa
tors

in the pro
ess of geneti
 sear
h: population diversity and sele
tive pressure. Many parameters that

are used in order to 
ontrol the pro
ess of geneti
 sear
h indire
tly in
uen
e population diversity

and sele
tive pressure [8℄. But su
h a 
ontrol of the evolution pro
ess seems to be very unrealisti


from the biologi
al point of view. It is questionable if we should interfere in the natural pro
ess

using arti�
ial and unrealisti
 me
hanisms. In order to supervise the modeled evolution pro
ess

we should rather try to utilize possibilities provided by the biologi
al evolution itself.

The te
hnology of Evolutionary Multi Agent Systems (EMAS) [3℄, that arises as a result of

realization of the evolution pro
ess in multi-agent world, 
an be treated as a new approa
h to the


onstru
tion of evolution programs and a new way of developing multi-agent systems.

With the Evolutionary Multi Agent Systems it is possible to model biologi
al me
hanisms of

spe
ies formation, rivalry and 
ompetition among spe
ies, so
ial behavior and so on. It was not

possible to model all these me
hanisms in the 
ase of 
lassi
al evolution programs [6, 8℄.

With the use of these biologi
al me
hanisms we 
an supply the modeled evolution pro
ess with

new impulses and try to dire
t it towards new and desirable (from our point of view) possibilities.

In this paper we introdu
e the supervising me
hanism based on two non-
lassi
al evolution op-

erators: aggregation and es
ape. The aggregation operator enables emergen
e of so
ial relations

among agents. With the use of the es
ape operator agents 
an migrate towards di�erent environ-

ments. Thus this operator enables modeling of the spe
ies formation pro
ess. The appli
ation of
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these new evolution operators made it possible to 
onstru
t the evolution 
enters. In evolution


enters it is possible to 
ontrol values of various environment parameters in order to in
uen
e

the 
ourse of the evolution pro
ess, to supervise this pro
ess and thereby to 
ontrol the evolution

pro
ess.

2 Elements of theory

2.1 Model of evolving multi-pro�le agent

In evolutionary system, predi
tion agent is de�ned as a multi-pro�le agent a whi
h 
ontains two

basi
 pro�les. First pro�le (a

1

) is in 
harge of realization of 
rossover and mutation algorithms.

Se
ond pro�le (a

2

) realizes aggregation and es
ape operations.

In the presented model of agent, within the framework of a

1

pro�le, a set of agents is 
onstru
ted

as an image of observed world. These agents are potential 
andidates for the realization of 
rossover

operation with parti
ular agent. Preliminary sele
tion of 
andidates and �nal 
hoi
e is made on the

basis of potential 
andidate's 
hara
teristi
 features. Agent's pro�le a

2

is in 
harge of realization

of aggregation operation. Similarly to the pro�le a

1

, also in this 
ase a set of potential 
andidates

to the realization of aggregation operation with parti
ular agent is 
onstru
ted on the basis of

observation of the environment. The 
hoi
e of 
andidate, similarly to the pro�le a

1

, is made on

the basis of set of 
andidate's features. The 
riterions of 
hoi
e and set of features are di�erent

from those that are used in the pro�le a

1

.

Agent's evaluation is made on the basis of two basi
 features: intelle
tual level and energeti


states (the quantity of life energy).

The intelle
tual level determines the quality of predi
tion that is made by agent. It is de�ned

as a per
entage of 
orre
t predi
tions made in a �xed period of time. \Intelle
tual" state of an

agent a�e
ts its attra
tiveness for other agents in de
ision making pro
ess 
on
erning the 
hoi
e

of partners for evolution operations.

Every agent possesses a \life" energy reserve. All operations made by an agent, in
luding

evolutionary operations, require the use of some amount of agent's energy. In the pro
ess of

realization of these operations, agent's energeti
 state p is redu
ed by some (�xed for parti
ular

operation) amount.

On the 
ontrary, positive results of some a
tions supply agent with energy. A
ting in the

environment, agent exe
utes operations and a

ording to the results of these operations it 
an

obtain or lose some �xed amounts of energy, in
reasing or de
reasing the amount of its energy.

The �nal de
ision 
on
erning the 
hoi
e of one of possible a
tions is made by an agent with

the use of de
ision fun
tion whi
h takes into a

ount the a
tual level of energy and intelle
tual

level of parti
ular agent and of an agent that parti
ular agent is going to 
ooperate with. In this


ase, intelle
tual level and energeti
 level (with di�erent weights) determine attra
tiveness of an

agent | 
andidate to 
ooperation.

2.2 Aggregation and es
ape operations

The agent-environment relation is the basi
 reason that for
es agents to parti
ipate in evolution

pro
ess. If state of this relation is not satis�ed for parti
ular agent, it 
an 
hoose one of the

following a
tions:

� agent may 
hange itself | adapting itself to the 
onditions of the environment with the use

of mutation and 
rossover operations,

� agent may 
hange the environment with, among others, the use of aggregation and es
ape

operations.

The evolution pro
ess in whi
h autonomous agent take part, may be realized with the use of

following operators that a�e
t single agent or �xed group of agents.
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Figure 1: The prin
iple of fun
tioning of the aggregation operator

Mutation, 
rossover and reprodu
tion operators in the agent environment have the same form

as presented in [5, 6, 8℄ with su
h an ex
eption that the evolution pro
ess of ea
h agent has its

own (individual for ea
h agent) 
hara
teristi
s, it depends on agent's de
isions, and it takes pla
e

a

ording to its own independent 
y
le.

The idea of aggregation operation may be 
onsidered as a 
reation (by agents) of new envi-

ronment in whi
h agents a
t. A group of agents (su
h that 
onditions of a
tual environment do

not suit them) make an agreement, whi
h goal is to take over the 
ontrol of the part of existing

environment. Thus agents 
hange the parameters of 
ontrolled environment, whi
h we mentioned

above, to make it better adapted to their requirements. After the 
reation of new environment,

a group of agents, mentioned above, owing to spe
ialization and 
ooperation, maintain desirable

parameters in the environment 
reated by them. This group (when it is seen from outside) a
t

like a new agent with new 
hara
teristi
 features that arose owing to the aggregation operation.

To sum up, the aggregation operator makes it possible to 
hange the agents-environment relation

with the 
hange of environment's parameters.

The se
ond operator that makes it possible to 
hange the agents-environment relation with

the 
hange of environment's parameters is the es
ape operator. Let us make an assumption that

the evolution pro
ess takes pla
e in several environments, and that agents 
an migrate among

these environments. The evolution pro
esses that take pla
e in ea
h of these environments di�er

in some range of their parameters from ea
h other. If in one of the mentioned environments the

agent is 
reated as a result of mutation, 
rossover or aggregation operation that is not well adapted

to this environment, it may migrate towards di�erent environment (with di�erent 
hara
teristi


parameters), where it 
an a
t better than in the previous environment. Then it may start there a

new population of agents with valuable 
hara
teristi
 features.

2.3 Evolution 
enters as a method of evolution pro
ess 
ontrol

The appli
ation of aggregation and es
ape operators makes it possible to 
ontrol the evolution

pro
ess, among others, through the mediation of organizing of, so 
alled, evolution 
enters.

Let us 
onsider the pro
ess of realization of aggregation operator (Fig. 1), whi
h 
onsists of

the following stages:

1. Let two parameters 
hara
terize the parti
ular environment: A and B (values of A and B

belong to f0; 1g). There are agents AgA and AgB in this environment. Agent AgA (agent

AgB) has the ability to in
uen
e its environment in su
h a way that it 
an maintain the

value of parameter A (B) equal to one in its neighborhood. Agents A and B require (prefer)

the values of both parameters (A and B) equal to one in their neighborhood.

2. Owing to the ability to move within the environment, agent AgA may stay near the agent

AgB (and similarly agent AgB may stay near the agent AgA).

3



Figure 2: The prin
iple of fun
tioning of the evolution 
enter

3. Agents AgA and AgB make an agreement and de
ide to aggregate together and 
reate a

new environment (with values of parameters satisfying requirements of both agents | A = 1

and B = 1) by taking over the 
ontrol of the part of existing environment.

4. As a result of aggregation, the new agent Ag0 is 
reated. This agent maintains the informa-

tion about the 
on�guration of agents A and B. The group of agents AgA, AgB, Ag0, and

the part of environment that they 
ontrol (with values of parameters A and B equal to one)


onstitute the new agent. Agent Ag0 keeps (for example en
oded in its genes) information

that is required to the reprodu
tion of this aggregated agent.

With the use of aggregation and es
ape operators we 
an 
onsider the organization of \evolution


enter", in whi
h it is possible to 
ontrol the values of environment parameters, what implies that

we 
an supervise the 
ourse of the evolution pro
ess. Let us 
onsider the example presented above,

in whi
h the realization of aggregation operator is 
ompleted with the appli
ation of remaining

evolution operators and the 
ontrol of environment parameters. Let us make an assumption that

there exist su
h agents of type X in the environment that they 
an not set the environment

parameters A and B in their neighborhood (i.e. set values A = 1 and B = 1). At the same time,

agents of type X prefer the environment whi
h parameters A and B are set (A = 1 and B = 1).

Agent of type X may obtain (as a result of mutation and 
rossover operations) the ability to set

the parameter A (A = 1) or B (B = 1) in its neighborhood (but not the ability to set both of

them). Then it be
omes the agent of type A or B. Let us make an assumption that the part

of environment | the evolution 
enter | is sele
ted. We 
an 
ontrol this evolution 
enter from

outside and 
hange the values of parameters A and B (setting their values to 0 or 1). The example

of supervising the evolution 
enter may be 
onsidered as following steps:

� Parameters A and B are set (A = 1 and B = 1) in sele
ted areas of evolution 
enter. Agents

of type X gather in this area (Fig. 2a).

� Parameter A is turned o� periodi
ally. This 
auses that some agents of type X obtain (as a

4



result of mutation and 
rossover operations) the ability to set the parameter A (A = 1) in

their neighborhood. Thus they be
ame type A agents (Fig. 2b).

� After some time, the parameter A is turned on (A = 1), and parameter B is turned o�

(B = 0) periodi
ally. This 
auses that some agents of type X obtain (as a result of mutation

and 
rossover operations) the ability to set the parameter B (B = 1) in their neighborhood.

Thus they be
ame type B agents (Fig. 2
).

� After some time, both parameters are turned o� (A = 0 and B = 0). Owing to the fa
t

that agents of type A and agents of type B remain within the same area and they neighbor

ea
h other, they 
an form the aggregates AB (as a result of aggregation operation). These

aggregates do not depend on the fa
t that parameters A and B are turned on or o�, what

implies that they 
an live in any environment (Fig. 2d).

Owing to the appli
ation of the idea of evolution 
enters (and the appli
ation of aggregation and

es
ape operators) we may obtain the possibility of supervising the evolution pro
ess by 
hanging

the values of environment parameters, or rather, to say it more pre
ise, by sele
ting the lo
al sets

of parameters.

3 The methodology of modeling

It is typi
al in the resear
h work made with the use of 
omputer simulation that we try to observe

and investigate properties of phenomena, whi
h adequate mathemati
al model 
annot be formu-

lated. We 
an only formulate models of subsystems (i.e. 
omponents of a system of interest) and

de�ne some basi
 intera
tions among them. But the relations that we are really interested in are

nowhere expli
itly en
oded. They rather emerge and be
ome a

essible for observation as a result

of intera
tions among the subsystems that we simulate.

The general resear
h program of investigating 
omplex dynami
al phenomena using simulation


an be expressed in two main steps [9℄:

1. It is ne
essary to formulate lower-level models of the important underlying subsystems (those

that de�ne the elemental subsystems and the element-element or obje
t-obje
t intera
tions).

2. We must 
reate the framework in whi
h the simulation of the subsystems in intera
tion is


omposed, and embody the system representation in that framework so that the phenomena

of interest 
an be generated and analyzed.

In the �rst part of resear
h program we will use the model based on the 
on
ept of M-Agent

ar
hite
ture [1, 2, 4℄. This model enables us to formalize the properties of the multi-agent system

(environment, agents, agent-agent and agent-environment relations).

The se
ond part of resear
h made with the use of 
omputer simulation requires appropriate

programming tools. These tools should enable us to obtain reliable and repeatable results of our

simulations. In our paper we propose the SWARM simulation system for this part of resear
h. This

system has all the features, whi
h are indispensable in the EMAS and arti�
ial life simulations.

3.1 The simulation tool: SWARM system

The SWARM simulation system has been 
reated at the Santa Fe Institute [10, 11℄. This system


an be very useful for the resear
hers working in the �eld of 
omputer simulations, espe
ially in

the area of multi-agent systems and arti�
ial life. The main goal of its authors was to 
reate su
h

a simulation tool that the results obtained with the use of it would be reliable and repeatable. In

order to a
hieve this goal SWARM has the following features:

1. Simulation writing is brought up to a higher level of expression. Appli
ations are written

with referen
e to a standard set of simulation tools.

5



2. The task of managing 
on
urren
y is made manageable. SWARM insulates the author of a

simulation from all the 
omputer s
ien
e knowledge that is usually required to implement

distributed and 
on
urrent systems reliable. In addition SWARM for
es experimenters to

make their 
on
urren
y assumptions expli
it.

SWARM is implemented in the Obje
t-Oriented Programming language Obje
tive C [7℄. Com-

putation in a SWARM appli
ation is made via obje
ts sending messages to ea
h other.

SWARM appli
ations are stru
tured around the 
on
ept of the \Swarm". Swarms are the basi


building blo
ks of the SWARM simulation. A Swarm is 
ombination of a 
olle
tion of obje
ts and

a s
hedule of a
tivity over those obje
ts. The 
olle
tions are like the matter of the Swarm and the

s
hedule is like the arrow of time.

The 
ore of every appli
ation is the \model swarm". It en
apsulates the simulated model, i.e.

agents, physi
al properties and stru
ture of the spa
e et
. In addition to the obje
t 
olle
tion, the

model swarm also 
ontains a s
hedule of a
tivity over these obje
ts. Model swarm 
onsists of a

set of inputs and outputs. The inputs are the model parameters and the outputs are the data,

whi
h are the result of the agents' a
tivity.

Se
ond very important part of the system is \observer swarm". The most important obje
t

in an observer swarm is the model swarm that is being studied. In addition observer swarm has

a 
olle
tion of obje
ts (instrumentation), a s
hedule of a
tivity and a set of inputs and outputs.

With the use of this instrumentation we 
an observe our arti�
ial world, 
olle
t data for future

analysis et
. The inputs to the observer swarm are 
on�gurations of the observer tools. The

outputs are the observations. The observer swarm 
an run in graphi
s mode or in bat
h mode.

In bat
h mode we 
annot intera
t with the simulation. The bat
h swarm reads the data from


on�guration �le and writes the data to the other �les for future analysis.

The SWARM system has large number of 
lass libraries, whi
h provides users tools that are

indispensable in the pro
ess of 
reation of the simulation. Detailed des
ription of all these libraries


an be found in [11℄.

4 Evolutionary multi-agent predi
tion system with evolu-

tion 
enters

In this se
tion we will des
ribe sample appli
ation of the Evolutionary Multi-Agent Systems

(EMAS) te
hnology to the 0/1 time sequen
e predi
tion system [2, 3℄.

In su
h a system the main goal of the population of agents is to predi
t the 
hanges of the

environment. In the environment a parameter � 2 f0; 1g is de�ned. Variations of the parameter

� in dis
rete moments of time may be represented by the binary sequen
e x(t), where x(t) is the

value of � in the time t. Value of the parameter � is available for all the agents a
ting in the

environment. Ea
h agent tries to predi
t the value that the � will take in the time t + 1. So the

agent a

i

generates the binary sequen
e y

i

, su
h that y

i

(t) = ~x(t + 1), where ~x(t+ 1) is predi
ted

value of parameter � in the time t+ 1.

4.1 Stru
ture of the environment

The spa
e in whi
h agents remain E = (R; T ), where R is a 
on�guration of resour
es, and T is a

topology of spa
e [2℄.

Resour
es available for all the agents are parameter � = x(�), where � = 0; : : : ; t and energy

of the environment P

e

. So, in the 
ase of our system, R = f�; P

e

g. The topology T of the

environment is graph. Every node of this graph has 
onne
tions with its eight neighbors.

4.2 Internal stru
ture of the agent

In the 
onsidered system the agent 
onsists of one or more 
ells. The 
ell 
onsists of the �nite

automaton, information about its age and statisti
s. Ea
h 
ell makes its predi
tions with the use
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Figure 3: Internal stru
ture of the agent (with one 
ell)

of �nite automaton, whi
h input/output language 
onsists of symbols 0 and 1. The 
on
ept of

predi
ting 
hanges of the environment by evolving population of �nite automatons is known as

\evolutionary programming" [5, 6, 8℄. The idea of the appli
ation of �nite automaton as agent's


hromosome is presented in [3℄. Parti
ular realization of this 
on
eption in system des
ribed in

this paper is shown in the Figure 3.

There are four 
hromosomes that 
ode the �nite automaton:

� transitions between states when the input symbol is 0,

� transitions between states when the input symbol is 1,

� output symbols when the input symbol is 0,

� output symbols when the input symbol is 1.

Number of genes in ea
h 
hromosome 
orresponds with the maximal number of states of the �nite

automaton (n

s

max

).

There are two parameters that show the quality of predi
tion made by parti
ular 
ell:

1. 	

S

j

(0)

ik

| probability of 
orre
t predi
tion 
onne
ted with the transition through 0 from the

state S

j

of the k-th 
ell of agent a

i

;

2. 	

S

j

(1)

ik

| probability of 
orre
t predi
tion 
onne
ted with the transition through 1 from the

state S

j

of the k-th 
ell of agent a

i

.

Two other parameters show the quality of predi
tion made by parti
ular agent:

1. 	

i

(t) | probability of 
orre
t predi
tion made by agent a

i

;

2. 	

i

max

(t) | maximal probability of 
orre
t predi
tion made by agent a

i

during its lifetime.

4.3 Intelle
tual pro�le

An agent 
an be des
ribed from two points of view that 
orrespond with two pro�les: intelle
tual

and energeti
 [2℄.

The model of the environment of agent a

i

in the time t is

m

i

(t) = h(Y

i

(t);


i

(t)); (Y

i

(t+ 1);


i

(t+ 1)); : : : i; (1)
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where

Y

i

(u) = fy

i1

(u); : : : ; y

in

(u) : n is the number of 
ellsg; (2)




i

(u) =

n

	

S

u

1

(x

1

(u))

i1

; : : : ;	

S

u

n

(x

n

(u))

in

: n is the number of 
ells

o

; (3)

for u = t; t+ 1; : : :

y

ik

(u) = t

S

u

k

ik

(x

k

(u)) (4)

is the output 
onne
ted with the transition of the k-th �nite automaton through x

k

(u), S

u

k

is the

state of the k-th �nite automaton in the time u,

x

k

(u) =

(

x(u) for u = t

y

ik

(u� 1) for u = t+ 1; t+ 2; : : :

(5)

for k = 1; : : : ; n, n is the number of 
ells of agent a

i

.

After applying the strategy realization operator X [2℄ the agent's model of the environment is

m

0

i

(t) = h(y

i

(t); !

i

(t)); (y

i

(t+ 1); !

i

(t+ 1); : : : )i; (6)

where y

i

(u) = y

ik

(u) for u = t; t+ 1; : : : , k is su
h that

!

i

(u) = 	

S

u

k

(z(u))

ik

= max

n

	

S

u

1

(z(u))

i1

; : : : ;	

S

u

n

(z(u))

in

: n is the number of 
ells

o

(7)

for u = t; t+ 1; : : : ,

z(u) =

(

x(u) for u = t

y

i

(u� 1) for u = t+ 1; t+ 2; : : :

(8)

The goal of the intelle
tual pro�le [2℄ is to make 
orre
t predi
tions:

q(m

i

(t);m

0

i

(t)) =

(

1 when y

i

(t) = x(t+ 1)

0 when y

i

(t) 6= x(t+ 1)

(9)

Now the time is in
remented and the observation operator I [2℄ generates the model

m

00

i

(t) = h(Y

i

(t);


i

(t)); (Y

i

(t+ 1);


i

(t+ 1)); : : : i; (10)

by getting the value of x(t) from the environment. This model is the initial model for next

iteration. The adaptation operator L = fL

m

g [2℄ is 
onsisted of all the evolution operators.

4.4 Energeti
 pro�le

Energeti
 pro�le of agent a

i

[2℄ is represented by the parameter P

i

(t) 2 R, P

i

(t) 2 [0; P

max

℄, P

max

is the maximal level of agent's energy. The main goal of the agent in this pro�le is to maximize

the value of P

i

(t). In order to realize this goal the energeti
 strategy s

p

[2℄ is realized by applying

one of the evolution operators. Every a
tion (su
h as move or reprodu
tion) 
osts some energy.

Energy may be obtained only through 
orre
t predi
tion. All de
isions of the agent (
on
erning

reprodu
tion, aggregation, and dire
tion of the move) depend on a
tual level of its energy. The

agent's energy also serves as a me
hanism of elimination of the agents with low level of �tness

to the environment 
onditions (i.e. making in
orre
t predi
tions) from the system. Agent a

i

dies

when P

i

(t) = 0.

The evaluation of the energy of agent a

i

during its lifetime may be expressed as follows:

P

i

(t) = P

i

(t

0

i

) +

t

X

k=t

0

i

+1

(Æ

p

i

(k) + Æ

a

i

(k)); (11)
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where t

0

i

is the time when agent a

i

was born, P

i

(t

i

0

) is the initial energy of agent a

i

(the energy

whi
h agent gets from its parents),

Æ

p

i

(k) =

(

Æ > 0 when y

i

(k � 1) = x(k)

Æ < 0 otherwise;

(12)

Æ

a

i

(k) =

(

Æ > 0 when agent a

i

formed an aggregate with other agent

0 otherwise:

(13)

The total energy of the system in time t:

P (t) = P

e

(t) +

m(t)

X

i=1

P

i

(t); (14)

where P

e

(t) is the energy of environment, P

i

(t) is the energy of agent a

i

, m(t) is the number of

agents that remain within the system in time t. The parameter P (t) prevents ex
essive growth of

the population of agents.

4.5 The evolution operators

4.5.1 The reprodu
tion, mutation, and 
rossover operators

The reprodu
tion of agent a

i

in time t o

urs with the probability p

r

when

P

r

i

(t) � P

i

(t) (15)

where P

r

i

(t) 2 [P

r

min

; P

max

℄ is pseudo-random number, P

r

min

is the minimal level of energy required

for reprodu
tion operation. If agent a

i

has more than one 
ell in time t then for reprodu
tion will

be 
hosen k-th 
ell, su
h that

	

S

t

k

(x(t))

ik

= max

n

	

S

t

1

(x(t))

i1

; : : : ;	

S

t

n

(x(t))

in

: n is the number of 
ells

o

(16)

Mutation operator may alter output symbol and transition between parti
ular states. The

mutation o

urs with the probability p

m

.

The 
rossover operation that mixes homologous 
hromosomes of two agents a

i

and a

j

o

urs

with the probability p




when agent a

i

(whi
h initializes the pro
ess of reprodu
tion) satis�es the

equation (15) and

9 a

j

, su
h that d(a

i

; a

j

) � d




max

^ P




j

(t) � P

j

(t) (17)

where d(a

i

; a

j

) is the length of the shortest path between agents a

i

and a

j

in graph-like environ-

ment, d




max

is the maximal length of the shortest path, P




j

(t) 2 [P




min

; P

max

℄ is pseudo-random

number, P




min

is the minimal level of energy required for 
rossover operation.

4.5.2 The aggregation operator

The aggregation operator serves as a me
hanism of emergen
e of so
ial relations among agents.

The idea of this operator is presented in [3℄. In this se
tion we present the realization of this idea

in predi
tion system with evolution 
enters.

The agent 
onsists of one or more 
ells:

a

i

= f


1

; : : : ; 


n

: 1 � n � n




max

g ; (18)

where 


i

is a 
ell, n




max

is the maximal number of 
ells 
ontained in the aggregate. Ea
h 
ell 
an

live from T

min

to T

max

units of time.

9



Two agents a

i

and a

j

form the aggregate in the time t with probability p

a

if the following


onditions are satis�ed

d(a

i

; a

j

) � d

a

max

^ n




i

+ n




j

� n




max

^	

i

(t) � 	

j

(t) ^	

i

max

(t) � 	

j

max

(t) (19)

where d

a

max

is the maximal length of the shortest path, n




i

and n




j

are the numbers of 
ells of agent

a

i

and a

j

, respe
tively.

The formed aggregate 
onsists of 
ells of both agents, and the aggregate's energy (when agent

a

i

absorbs 
ells of agent a

j

) is

P

i

(t+ 1) =

(

P

i

(t) + P

j

(t) if P

i

(t) + P

j

(t) < P

max

P

max

otherwise:

(20)

4.5.3 The es
ape operator

The es
ape operator enables agents to migrate towards di�erent environments (i.e. where agents

must predi
t values of the parameter � taken from di�erent pseudo-random sequen
es). The

existen
e of several environments 
auses that groups of agents are geographi
ally separated, thus

the pro
ess of spe
ies formation 
an take pla
e in the population of agents.

If agent a

i

remains within the environment E

j

, whi
h is 
ontrolled by agent a

e


j

, then the

distan
e between them will 
hange in the following way:

d

ij

(t) =

(

d

ij

< d

ij

(t� 1) if y

i

(t� 1) = x

j

(t)

d

ij

> d

ij

(t� 1) if y

i

(t� 1) 6= x

j

(t):

(21)

If agent a

i

moves outside the environment E

j

(i.e. if d

ij

(t) > r

j

, r

j

de�nes the size of environ-

ment E

j

) then it will move randomly until its energy value P

i

will be redu
ed to the level P

m

min

.

In su
h a situation agent will move towards the nearest agent a

e


k

(k 6= j).

If more than one environment exist, agent a

i

, whi
h lives in the environment E

k

, where k > 1,

is for
ed to move towards the main environment E

1

(in whi
h there are hardest living 
onditions)

in time t when

	

i

(t) > S

mig

min

^ P

i

(t) > P

mig

min

^ T

mig

(t) � t

i

(22)

where S

mig

min

is the minimal statisti
s required to migrate towards the environment E

1

, P

mig

min

is the

minimal energy, t

i

is the age of agent a

i

(t

i

= t � t

0

i

), T

mig

(t) 2 [T

min

; T

max

℄ is pseudo-random

number, T

min

and T

max

are, respe
tively, minimal and maximal possible age of 
ell.

Ea
h move operation 
osts some energy P

mv

(t), where P

mv

(t) 2 [P

mv

min

; P

mv

max

℄ is pseudo-random

number, P

mv

min

is minimal move energy, and P

mv

max

is maximal move energy.

The es
ape operator made it possible to 
onstru
t the evolution 
enters.

4.5.4 The evolution 
enter

In our system the evolution 
enters are represented by agents a

e


k

; k = 1; : : : ; n

e


, where n

e


is

the number of evolution 
enters in parti
ular simulation. Agents a

e


k

are pla
ed in some nodes of

graph-like spa
e. These agents are pla
ed permanently and 
annot move during the simulation.

Agent a

e


j

is responsible for generating values of parameter �

j

in the environment E

j

(i.e. for

generating sequen
e x

j

(t)), and for setting the 
onditions of evolution taking pla
e in environment

E

j

.

Parameters of evolution 
enter, represented by agent a

e


j

are:

x

j

(t) | binary pseudo-random sequen
e, whi
h length is l

j

,

r

j

| de�nes the size of evolution 
enter,

Æ | amount of energy transferred to predi
tion agent as a prize for 
orre
t predi
tion,

10



p

r

, p

m

, p




, p

a

| probability of reprodu
tion, mutation, 
rossover, and aggregation operations,

P

r

min

, P




min

| minimal level of energy required for reprodu
tion and 
rossover operations,

d




max

, d

a

max

| maximal length of the shortest path between two agents when 
rossover and ag-

gregation operations are allowed,

n




max

| maximal number of 
ells 
ontained in an aggregate,

T

min

, T

max

| minimal and maximal possible age of 
ell,

S

mig

min

| minimal statisti
s required to migrate towards environment E

1

,

P

mig

min

| minimal energy required to migrate towards environment E

1

,

P

mv

min

, P

mv

max

| minimal and maximal energy required for ea
h move.

5 Simulation experiments

The main goal of the simulation experiments was to investigate whether the appli
ation of the

evolution 
enters 
an improve the quality of predi
tion made by agents and how the use of su
h

supervising me
hanism a�e
ts the modeled evolution pro
ess. The intensity of mutation and


rossover were not taken into 
onsideration in this resear
h.

In ea
h experiment the maximal number of states of the �nite automaton n

s

max

= 5, and

maximal energy of agent P

max

= 100.

5.1 The 
on�guration of evolution 
enters

5.1.1 The 
on�guration of evolution 
enter E

1

In the main evolution 
enter (E

1

) the sequen
e x

1

(t) 
onsisted of sequen
es x

2

(t) and x

3

(t), ea
h of

them repeated 5 times alternately. The values of parameters were: Æ = 2:5, p

r

= 0:95, p

m

= 0:05,

p




= 0:9, p

a

= 0:9, P

r

min

= 75, P




min

= 60, d




max

= 3, d

a

max

= 3, n




max

= 2, T

min

= 300,

T

max

= 2000, S

mig

min

= 1, P

mig

min

= 100, P

mv

min

= 0:5, P

mv

max

= 1:5.

5.1.2 The 
on�guration of evolution 
enter E

2

In evolution 
enter E

2

the length of sequen
e x

2

(t) was l

2

= 10. This sequen
e was repeated

periodi
ally giving as a result in�nite sequen
e. The values of parameters were p

a

= 0:0 (i.e. the

aggregation was not allowed), S

mig

min

= 0:8, P

mig

min

= 50. The values of other parameters were su
h

as in the evolution 
enter E

1

.

5.1.3 The 
on�guration of evolution 
enter E

3

In evolution 
enter E

3

the length of sequen
e x

2

(t) was l

2

= 15. This sequen
e was repeated

periodi
ally giving as a result in�nite sequen
e. The values of other parameters were Æ = 2:7 (this

value is greater than in the E

2

be
ause the sequen
e is longer what implies that living 
onditions

are harder), p

a

= 0:0, S

mig

min

= 0:8, P

mig

min

= 50. The values of other parameters were su
h as in the

evolution 
enter E

1

.

5.2 Types of experiments

5.2.1 Experiment with one evolution 
enter

In this kind of experiment the population of agents lived in one evolution 
enter (E

1

) (Fig. 4).

Two other evolution 
enters were out of a
tion (r

2

= 0 and r

3

= 0). Agents 
ould form aggregates


onsisted of two 
ells.

11



Figure 4: Experiment with one evolution 
en-

ter

Figure 5: Experiment with three evolution


enters

Figure 6: Experiment with two evolution 
en-

ters

Figure 7: Population is migrating towards

evolution 
enter E

1
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Figure 8: Number of agents in population

5.2.2 Experiment with two evolution 
enters

This experiment 
onsisted of two parts. The �rst half of the simulation (2000 steps) was the

pro
ess of spe
ies formation. Agents lived in E

2

and E

3

evolution 
enters (Fig. 6). In these

evolution 
enters the aggregation was not allowed. Evolution 
enter E

1

was out of a
tion (r

1

= 0).

Then, they were for
ed to move towards evolution 
enter E

1

by setting parameters r

2

= 0, r

3

= 0,

and r

1

= 20 (Fig. 7). In evolution 
enter E

1

agents 
ould form aggregates 
onsisted of two 
ells.

5.2.3 Experiment with three evolution 
enters

There were three a
tive evolution 
enters during the whole simulation (Fig. 5). In E

2

and E

3

evolution 
enters the aggregation was not allowed. These two evolution 
enters served as areas

where the pro
ess of spe
ies formation took pla
e. In the evolution 
enter E

1

agents 
ould form

aggregates 
onsisted of two 
ells. Agents 
ould freely move from one evolution 
enter to another.

5.3 Dis
ussion of the results

Be
ause of the sto
hasti
 nature of the experiments all the results presented in this se
tion are

average values of three simulations 
arried out with the use of 0/1 random sequen
es x

2

(t) and

x

3

(t). The length of all the simulations was 4000 steps. Everywhere in the �gures shown below: 1

means results of the experiment 
arried out with the use of one evolution 
enter (Se
tion 5.2.1), 2

| with the use of two evolution 
enters (Se
tion 5.2.2), and 3 | with the use of three evolution


enters (Se
tion 5.2.3).

Figure 8 shows the 
hanges of the number of agents (aggregates) in the population during the

simulations. The initial number of agents is 300. In ea
h 
ase we 
an observe the de
line of the

number of agents just at the beginning of simulation. But after a short period of time the number

of agents rapidly grows and after several slight falls rea
hes a balan
e state. Only in the 
ase of

simulation with two environments we 
an again observe a de
line in 2000-th step of simulation.

This fa
t is 
aused by the pro
ess of migration of agents from evolution 
enters E

2

and E

3

to

evolution 
enter E

1

.

In the se
ond half of the simulation experiment with two evolution 
enters the number of agents

is smaller than in the �rst half be
ause in the se
ond half of the simulation agents remain within

13



Figure 9: Number of 
ells in population

Figure 10: Average number of 
ells in aggregate
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Figure 11: Best per
ent of 
orre
t predi
tions in population

the area of evolution 
enter E

1

, where the aggregation operator is a
tive. In the Figure 8 we 
an

see that in the se
ond half of this experiment the number of agents is almost identi
al as it is in

the 
ase of simulation with one evolution 
enter (similar 
onditions of the experiment). But there

are less 
ells in the experiment with two evolution 
enters (see Figures 9 and 10).

In the 
ase of experiment with three evolution 
enters one part of the population of agents

remains within evolution 
enters E

2

and E

3

(in whi
h aggregation is not allowed). We 
an therefore

observe the biggest number of agents (Fig. 8) and the smallest number of 
ells in this experiment

(Fig. 9 and 10).

In the Figure 11 we 
an see the 
omparison of best per
ent of 
orre
t predi
tions in sub-

population that predi
ts values of the � parameter in evolution 
enter E

1

(see Se
tion 5.1.1). In

the 
ase of results obtained with the use of two evolution 
enters the rapid growth near the 2000-th

step of simulation is the result of migration of the population from evolution 
enters E

2

and E

3

to evolution 
enter E

1

(there were no agents in E

1

be
ause r

1

= 0 until this moment). In all the


ases the best per
ent of 
orre
t predi
tions in population is between 85 and 90%, although we


an see slightly better results obtained with the use of two and three evolution 
enters by the end

of simulation.

Figure 12 shows average per
ent of 
orre
t predi
tions in sub-population that predi
ts values

of the � parameter in the evolution 
enter E

1

. When two and three evolution 
enters are used,

average per
ent of 
orre
t predi
tions ex
eeds the level of 75%, whi
h is not possible when only

one evolution 
enter is used.

Figures 13, 14, and 15 show 
hanges of per
ent of 
orre
t predi
tions' distribution in population

during the simulations with one, two, and three evolution 
enters. In the �rst step of simulation all

the agents have 50% of 
orre
t predi
tions (this is the initial value). The next generations of agents

are des
endants of the agents with best �tness to the environment 
onditions. We 
an therefore

observe systemati
 growth of the number of agents with higher levels of 
orre
t predi
tions.

In the 
ase of simulation experiment with one evolution 
enter the new maximum (about 41%

of population) is rising in the group of agents with 75-80% of 
orre
t predi
tions (Fig. 13). In the

last step of simulation there are about 13% of agents with 80-85% of 
orre
t predi
tions and 2%

of agents with 85-90% of 
orre
t predi
tions in the population (Fig. 13 and 16).

In the Figure 14 we 
an observe the shift of maximum from the group of agents with 85-90%

of 
orre
t predi
tions (about 65% of population) to the group with 80-85% of 
orre
t predi
tions

15



Figure 12: Average per
ent of 
orre
t predi
tions in population

Figure 13: Changes of per
ent of 
orre
t pre-

di
tions' distribution in population (one evo-

lution 
enter)

Figure 14: Changes of per
ent of 
orre
t pre-

di
tions' distribution in population (two evo-

lution 
enters)

Figure 15: Changes of per
ent of 
orre
t pre-

di
tions' distribution in population (three evo-

lution 
enters)

Figure 16: Per
ent of 
orre
t predi
tions' dis-

tribution in population in the last step of sim-

ulation
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(about 39% of population in the last step of simulation) after 2000-th step of simulation. This

fa
t is 
aused by the migration of population from evolution 
enters E

2

and E

3

to evolution


enter E

1

(the whole population has to predi
t the values of parameter � taken from the longest

sequen
e). But there still exists the group of agents (about 10% of population) with 85-90% of


orre
t predi
tions and the group of agents (about 16% of population) with 75-80% of 
orre
t

predi
tions (Fig. 14 and 16).

In the Figure 15 we 
an observe the results of the simulation experiment 
arried out with the

use of three evolution 
enters. There are three evolution 
enters during the whole simulation in

this type of experiment what implies that one sub-population remains within evolution 
enter E

1

and two others remain within evolution 
enters E

2

and E

3

(where the values of parameter � are

taken from the shorter sequen
es). We 
an therefore observe that the new maximum (about 28%

of population) is rising in the group of agents with 85-90% of 
orre
t predi
tions. Also, there is

the group of agents (about 12% of population) with 80-85% of 
orre
t predi
tions and the group

(about 19% of population) with 75-80% of 
orre
t predi
tions (Fig. 15 and 16).

To sum up the presented results:

� In the 
ase of all three experiments the best per
ent of 
orre
t predi
tions in population is

almost identi
al.

� The average per
ent of 
orre
t predi
tions is highest when two and three evolution 
enters

are used.

� Also, there are many more agents with high per
entage of 
orre
t predi
tions in the popu-

lation when two and three evolution 
enters are used and the pro
ess of spe
ies formation


an take pla
e.

6 Con
lusions

Evolution pro
ess realized in multi-agent world o�ers us two new possibilities:

1. Avoiding limitations of the 
lassi
al evolution programs.

2. The me
hanism of adaptation towards 
hanging environment for agents.

With the Evolutionary Multi Agent Systems it is possible to model biologi
al me
hanisms of

spe
ies formation, rivalry and 
ompetition among spe
ies, so
ial behavior and so on. With the use

of these biologi
al me
hanisms we 
an supply the modeled evolution pro
ess with new impulses

and try to dire
t it towards new and desirable (from our point of view) possibilities.

In this paper we have introdu
ed the supervising me
hanism based on two non-
lassi
al evo-

lution operators: aggregation and es
ape. The aggregation operator enables the emergen
e of

so
ial relations among agents [3℄. The es
ape operator enables agents to migrate towards di�er-

ent environments. The appli
ation of these evolution operators made it possible to 
onstru
t the

evolution 
enters. The evolution 
enters are geographi
ally separated areas, with di�erent envi-

ronment 
onditions and 
hara
teristi
 parameters. It is therefore possible to model the pro
ess of

spe
ies formation in the population of agents. In the evolution 
enters we also 
an 
ontrol values

of various environment parameters in order to supervise the evolution pro
ess.

We have applied the idea of evolution 
enters to the 
onstru
tion of evolutionary multi-agent

predi
tion system. It has been shown that the appli
ation of evolution 
enters signi�
antly im-

proved the evolution pro
ess realized in the multi-agent predi
tion system.

Future resear
h in the �eld of Evolutionary Multi Agent Systems should be fo
used on intro-

du
ing new evolution me
hanisms based on the biologi
al evolution. Therefore, it will be possible

to resear
h di�erent phenomena that exist in the pro
ess of biologi
al evolution and apply EMAS

te
hnology to solving 
omplex and hard problems.
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