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Abstract. Co-evolutionary techniques are aimed at overcoming limited
adaptive capacity of evolutionary algorithms resulting from the loss of
useful diversity of population. In this paper the idea of co-evolutionary
multi-agent system (CoEMAS) is introduced. In such a system two or
more species of agents co-evolve in order to solve given problem. Also,
the formal model of CoEMAS and the results from runs of CoEMAS
applied to multi-modal function optimization are presented.

1 Introduction

Evolutionary algorithms (EAs) have demonstrated in practice efficiency and ro-
bustness as global optimization techniques. However, they often suffer from pre-
mature loss of population diversity what results in premature convergence and
may lead to locating local optima instead of a global one. What is more, both the
experiments and analysis show that for multi-modal problem landscapes a simple
EA will inevitably locate a single solution [10]. If we are interested in finding mul-
tiple solutions of comparable fitness then a multi-modal function optimization
technique (niching method) should be used [10]. The loss of diversity also limits
the adaptive capacities of EAs in dynamic environments. Co-evolutionary tech-
niques are aimed at improving adaptive capacities and introducing open-ended
evolution into EAs [11, 12].

This paper introduces the idea of co-evolutionary multi-agent system (Co-
EMAS), which opens new possibilities of modeling different ecological interac-
tions between species such as competition for limited resources, predator-prey
and host-parasite co-evolution, sexual preferences, and so on. Also the formal
model of CoEMAS and preliminary results from runs of niching co-evolutionary
multi-agent system (NCoEMAS) against commonly used test functions are pre-
sented.

2 Previous Research in Co-Evolutionary Algorithms

In classical EAs each individual in the population is considered to be a potential
solution of the problem being solved. The fitness of each individual depends
only on how well it solves the problem. Selection pressure causes that better fit
individuals have the greater chance to survive and/or reproduce and the less fit
ones have the smaller chance.



In co-evolutionary systems the fitness of each individual depends not only
on the quality of solution to the given problem but also on other individuals’
fitness. As the result of ongoing research many co-evolutionary techniques have
been proposed. Generally, each of these techniques belongs to one of two classes:
“Competitive Fitness Functions” (CFF) or multi-population [11]. Also some of
the niching techniques may be considered as co-evolutionary.

In CFF based systems two (or more) individuals compete in a game and
their “Competitive Fitness Functions” are calculated based on their relative
performance in that game [1, 4]. Each time step given individual competes with
different opponents, so its fitness value varies. Because in such systems an indi-
vidual’s fitness depends on other individuals’ fitness, they are co-evolutionary in
nature.

The second group consists of systems that use multiple populations. In such
systems a problem is decomposed into sub-problems and each of them is then
solved by different EA [14, 13]. Each individual is evaluated within a group of
randomly chosen individuals coming from different sub-populations. Its fitness
value depends on how well the group solved the problem and on how well the
individual assisted in the solution.

Some of the niching techniques may also be considered as being co-evolutiona-
ry since fitness of each individual depends on other individuals in a population.
In fitness sharing techniques [5] each individual is considered to be the mem-
ber of a niche with radius σsh. Fitness of each individual is reduced for every
other individual, which lives in its niche, in a proportion to their similarity. In
co-evolutionary shared niching (CSN) technique [6] (inspired by the economic
model of monopolistic competition) two co-evolving populations are used. The
customer population is the usual population of candidate solutions. The busi-
nessman population evolve to obtain largest payoff (best cover the peaks in
multi-modal domain).

Haynes and Sen [7, 8] used co-evolution and genetic programming (GP) to
design behavioral strategies of agents acting in predator-prey domain. Yong and
Miikkulainen [15] studied cooperative co-evolution of agents controlled by neu-
ral networks (NNs). Although all these works also deal with the co-evolution in
multi-agent systems there are some differences with our model. First, all tech-
niques mentioned above utilize classical centralized EAs to evolve strategies or
NNs, which are then evaluated in multi-agent predator-prey domain, while we
are focusing on modeling of co-evolution process in multi-agent system. Sec-
ond, their goal is to evolutionary design control mechanisms of agents while our
CoEMAS is used as computational technique.

In [11] Morrison and Oppacher presented a general model of co-evolution for
genetic algorithms. Their model can express all types of co-evolutionary relations
studied in the ecological literature. However, it can not be easily applied to co-
evolutionary multi-agent systems. Our approach differs to their in two points.
First, we will focus on co-evolutionary relations between species rather than
between individuals. The second difference results from decentralized nature of
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Fig. 1. Sample niching co-evolutionary multi-agent system

CoEMAS what implies different selection mechanisms and more complicated
individuals that should be modeled.

In the following sections we will present the idea of co-evolution realized
in multi-agent system and the formal model, which allows us to define many
co-evolutionary interactions that exist in nature.

3 The Idea of Co-Evolutionary Multi-Agent Systems

The main idea of evolutionary multi-agent system (EMAS) is the modeling of
evolution process in multi-agent system (MAS) [3]. Co-evolutionary multi-agent
system (CoEMAS) allows co-evolution of several species of agents. CoEMAS can
be applied, for example, to multi-objective optimization and multi-modal func-
tion optimization (niching co-evolutionary multi-agent system — NCoEMAS ).

In CoEMAS several (usually two) different species co-evolve. One of them
represents solutions. The goal of the second species is to cooperate (or compete)
with the first one in order to force the population of solutions to locate Pareto
frontier or proportionally populate and stably maintain niches in multi-modal
domain.

In figure 1 sample system for multi-modal optimization with two co-evolving
species: niches and solutions is presented. In such NCoEMAS we can model
niches as individuals that are characterized by parameters like location, radius,
etc. and evolve to best cover real niches in multi-modal domain. Two additional
operators can be introduced for niches: splitting and merging. Each niche can
make decision on splitting into two niches based on the current distribution of its
subpopulation. Also, the decision of merging can be made by two niches that are
close enough and that are located on the same peak in the multi-modal domain.
In order to proportionally populate niches the mechanism of explicit resource



sharing can be introduced. Agents’ life energy can be treated as a resource for
which individuals compete. This mechanism can be called energy sharing.

It seems that CoEMAS is especially suited for modeling different co-evolutio-
nary interactions (resource competition, predator-prey and host-parasite co-
evolution, sexual preferences, etc.)

4 The Model of CoEMAS

In this section the formal model of CoEMAS is presented. The model is based
on the idea of M-Agent [2] and on the model of EMAS [9].

4.1 CoEMAS

The CoEMAS may be described as 3-tuple

CoEMAS = 〈ENV,S,R〉, (1)

where ENV is an environment of the CoEMAS, S is a set of species that
coevolve in CoEMAS (S ∈ S), R is a set of relations between species.

R = R+ ∪ R−, (2)

where:
R+ =

{

ri+−−→: ri ∈ RES
}

, (3)

R− =
{

ri−−−→: ri ∈ RES
}

(4)

RES is a set of resources that exist in CoEMAS, RES = 〈r1, r2, . . . , rn〉.
r−
−−→ and

r+
−−→ are relations between species:

r−
−−→=

{

〈Si, Sj〉 ∈ S × S : agents from species Si decrease fitness of agents

from species Sj via the influence on the amount of resource r
}

(5)

r+
−−→=

{

〈Si, Sj〉 ∈ S × S : agents from species Si increase fitness of agents

from species Sj via the influence on the amount of resource r
}

(6)

Having such relations defined we can easily define different co-evolutionary
interactions between species that can be modeled in CoEMAS.

Definition 1 Mutualism between two species, A and B, occurs if and only if

∃ri, rj ∈ RES such that A
ri+−−→ B and B

rj+
−−→ A.

Definition 2 Commensalism between two species, A and B, occurs if and only

if ∃ri ∈ RES such that A
ri+−−→ B and ∀rj ∈ RES ¬(B

rj+
−−→ A ∨ B

rj−

−−→ A).

Definition 3 Predator-prey interactions between two species, A (predators) and

B (preys), occurs if and only if ∃ri ∈ RES such that A
ri−−−→ B and B

ri+−−→ A.

Definition 4 Competition for limited resources between two species, A and B,

occurs if and only if ∃ri ∈ RES such that A
ri−−−→ B and B

ri−−−→ A.



4.2 Environment

The environment of CoEMAS may be described as 3-tuple

ENV = 〈TENV , RES, INF 〉 (7)

where TENV is the topography of environment ENV , RES = 〈r1, r2, . . . , rn〉
is a set of resources that exist in CoEMAS, INF = 〈i1, i2, . . . , im〉 is a set of
informations that exist in CoEMAS.

The topography of the environment ENV is usually a graph. The distance
between two nodes is defined as the length of the shortest path between these
nodes.

4.3 Species

Species S that exist in CoEMAS (S ∈ S) can be defined as

S = 〈AGS , INT S〉 (8)

AGS is a set of agents that belong to species S (agS ∈ AGS). INT S is a set of
interactions with another species

INT S = 〈int1, int2, . . . , intn〉 (9)

where

inti = 〈S, Sj〉, such that S
r−
−−→ Sj ∨ S

r+
−−→ Sj , r ∈ RES, S, Sj ∈ S (10)

4.4 Agent

An agent agS (agS ∈ AGS) can be defined as 4-tuple

agS = 〈GEN, RESS , PRF, ACT 〉 (11)

GEN is a genotype of a given agent, for example GEN = (gen1, gen2, . . . , genk),
geni ∈ R, GEN ∈ R

k. RESS is a set of resources of agent agS that belongs
to species S (RESS ⊆ RES). PRF is a set of agent’s profiles with the order
relation � defined.

PRF = 〈prf1, prf2, . . . , prfn〉

prf1 � prf2 � · · · � prfn

(12)

Here, profile prf1 is the most basic profile which means that goals within this
profile have precedence of another profiles’ goals. ACT is a set of actions that
an agent can perform.

Profile k may be the resource profile

prfk =
{

RESS,k, ST k, RST k, GLk
}

(13)

or the information profile

prfk =
{

MDL, ST k, RST k, GLk
}

(14)

where



RESS,k is a set of resources that are used in a profile k, RESS,k ⊆ RESS;
MDL is a set of informations that represents agent’s knowledge about the en-

vironment and other agents.
ST k is a set of strategies that an agent may apply in a given profile, ST k =

〈st1, st2, . . . stl〉;
RST k is a set of strategies that are realized within profile k, RST k ⊆ ST k;
GLk is a set of goals that an agent should realize within given profile, GLk =

{gl1, gl2, . . . glp}.

Single strategy consists of actions taken by an agent in order to realize a goal.
If agent should apply strategy that is not realized within active profile then the
appropriate profile is activated.

In the case of CoEMAS the set of profiles should at least include the follow-
ing profiles

PRF = 〈prf res, prfrep, prf int, prfmig〉 (15)

Resource profile prf res is the most basic profile and it is responsible for
maintaining agent’s resources above the minimal levels. Reproductive profile
prfrep realizes all strategies connected with reproduction process. Interaction
profile prf int is responsible for interactions with other individuals. The migration
profile prfmig is responsible for migration of given agent within the environment
of CoEMAS.

5 The Application of CoEMAS to Multi-Modal Function

Optimization

In this section the application of the idea of CoEMAS to multi-modal function
optimization problem is presented. First simulation experiments were aimed at
testing if CoEMAS is able to detect and stably maintain all peaks in multi-modal
domain throughout the search process. In the following sections the system, test
functions and the results of experiments are presented.

5.1 The System

The system presented in this paper is the first one, which construction is based
on the idea of CoEMAS (see fig. 2). There exist two different species: niches and
solutions. All agents live in 2D space, which has the structure of discrete torus.
Every node of this graph-like structure has connections with its four neighbors.

All agents representing niches are located in nodes and can not change their
location. Agents representing solutions are also located in nodes but they can
change their location in environment migrating from node to node. Every agent-
solution has some amount of resource called life energy. There is closed circu-
lation of energy in the system, which means that the total energy possessed
by agents and the environment is constant during the whole simulation. Agents
need energy for almost every activity: migration, reproduction etc. An individual
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Fig. 2. NCoEMAS used in experiments

dies when its energy is equal to 0. An agent can migrate from one node to an-
other guided by the total energy of agents living in that node. The reproduction
process can take place when agent’s energy is above the given level. Agent starts
reproduction, searches in its neighborhood for partner and then new agent is
created. Mutation and crossover (one point crossover is used) are applied with
the given probability in order to produce child’s chromosome. An agent created
in reproduction process obtains energy from the environment.

The EA for niche population is very similar to that used for businessman
population in co-evolutionary shared niching technique [6]. Each time step a
single mutation site is selected randomly. The resulting individual replaces its
parent if it is at least dmin from other niche and it is better fit than its parent.
Otherwise another mutation site is selected (max. nlimit times).

In the time t every agent-solution searches for the closest niche (the weighted
sum of Hamming distance in genotype space and Euclidean distance in environ-
ment is used). If there is no niche, such that its distance from the agent is less
than given value, then the new niche is created with the copy of agent’s chro-
mosome (imprint mechanism).

In each time step less fit agents must give some amount of their energy to
better fit agents (according to fitness function). Agents are compared within
niches and also outside niches in the environment space. The latter comparisons
are realized within nodes. Given agent is compared with agents that stay in its
node and also with agents from the neighboring nodes.

5.2 Test Functions

There were four test functions used in experiments (see fig. 3 and 4): F1, F2,
F3, F4 [5, 10]. These functions are commonly used as baseline tests in studies of
niching methods. They are a starting place for testing new niching techniques and



a)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
1(

x)

x

F1(x) = sin6(5 π  x)

b)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

F
2(

x)

x

F2(x) = exp(-2 ln(2) ((x - 0.1) / 0.8)2) sin6(5 π x)

Fig. 3. Function F1 (a) and F2 (b)
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Fig. 4. Function F3 (a) and F4 (b)

comparing them to earlier works. Although these are very simple functions many
potential nichers have in the past had problems with detecting and maintaining
all of their peaks.

5.3 Results

In this section the results from runs of NCoEMAS against test functions are
presented.

Figure 5 shows the average numbers of agents representing solutions within
each niche from ten runs of NCoEMAS against F1 and F2 functions. It can be
seen that NCoEMAS properly detected and stably maintained peaks of these
two test functions. What is more, peaks were populated proportionally to their
relative fitness.

In case of F3 function (see fig. 6a) NCoEMAS also properly detected and
stably maintained all peaks in multi-modal domain. However peaks were not
properly populated. All niches should be equally populated but it seems that
agents preferred wider peaks. Peaks of F4 function (fig. 6b) were also properly
located and populated almost proportionally to their relative fitness. The prob-
lems mentioned above are connected with energy sharing mechanism, what is
the subject of ongoing research.
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Fig. 5. The average number of agents-solutions within each niche from ten runs of
NCoEMAS against function F1 (a) and F2 (b)
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Fig. 6. The average number of agents-solutions within each niche from ten runs of
NCoEMAS against function F3 (a) and F4 (b)

6 Concluding Remarks

The idea of co-evolutionary multi-agent system (CoEMAS) allows us to model
many ecological co-evolutionary interactions between species such as resource
competition, predator-prey and host-parasite co-evolution, sexual preferences,
etc.

In this paper the formal model of co-evolution in multi-agent system was
presented. Also, we applied this model to the construction of system for multi-
modal function optimization (niching co-evolutionary multi-agent system).

NCoEMAS presented in this paper was based on co-evolution of two species:
niches and solutions. System properly detected and maintained all peaks of test
functions and, as presented preliminary results show, has proved to be the valid
and promising niching technique.

Future research will include: experiments with more complex test functions,
the comparison to other co-evolutionary approaches (especially to Goldberg and
Wang’s CSN technique), CoEMAS based on the mechanisms of predator-prey
(host-parasite) co-evolution and sexual preferences, the application of CoEMAS
to engineering shape design problems, and parallel CoEMAS.
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