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Abstra
t

In the paper the optimization of rotating variable-thi
kness annular elasti
 dis
s

based on a simulation model by means of (µ, λ)-evolution strategies is dis
ussed.

Additional mutation operator is introdu
ed as a means to preserve diversity in the

population. The 
onsiderations are illustrated by a review of obtained experimental

results.
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1 Introdu
tion

For very 
omplex engineering problems even approximate mathemati
al models often

prove so di�
ult that their analysis be
omes a non-trivial task for most traditional meth-

ods. In su
h 
ases simulation experiments may be useful to verify the 
orre
tness of the

proposed solutions, whi
h may be further improved (optimized) by the human designer.

However the globally optimal solution may be hardly found this way. It seems that this

task may be su

essfully handled by some (meta)heuristi
 
omputational te
hniques su
h

as evolutionary algorithms. This term 
overs a wide range of sear
h and optimization

methods, based on analogies to phenomena of natural evolution. Parti
ularly evolution

strategies are distinguished by real-valued representation (thus they are most often used

for 
ontinuous optimization problems), Gaussian mutation as main variation operator,

and deterministi
 sele
tion s
heme [4, 7℄.

The paper dis
usses the optimization of rotating variable-thi
kness annular elasti


dis
s based on the proposed simulation model by means of evolution strategies. The goal

of the design is to �nd su
h a shape of the dis
 that would ensure maximal elasti
 
arrying


apa
ity. While in many papers the shape is modeled with the use of some �xed 
lass

of fun
tions (e.g. hyperboli
, n-th order polynomial), in the model presented the pro�le

of the dis
 is de�ned by spline 
urves. To preserve diversity in the population additional

mutation operator is introdu
ed. This additional mutation range and rate de
rease during

the 
ourse of the algorithm, allowing for more intensive exploration of the sear
h spa
e at

the very beginning and then for more and more a

urate approximation of the solution.

The paper is organized as follows. Classi
al evolution strategies and additional muta-

tion operator are des
ribed in se
tion 2. Se
tion 3 presents the optimization problem: the

design of rotating variable-thi
kness annular elasti
 dis
, proposed representation of the



solutions, and the model used to evaluate their quality (�tness). Sele
ted experimental

results with the proposed (µ, λ)-evolution strategy 
on
lude the work.

2 Evolution strategies

Evolution strategies (ES) were developed by Re
henberg and S
hwefel in the 1960s at

the Te
hni
al University of Berlin. The �rst appli
ations were aimed at hydrodynami
al

problems like shape optimization of a bended pipe and drag minimization of a joint plate

[2℄. ES is a spe
ial instan
e of an evolutionary algorithm 
hara
terized by real-valued

ve
tor representation, Gaussian mutation as main variation operator, self-adaptation of

mutation rate, and deterministi
 sele
tion me
hanisms.

2.1 Classi
al approa
h

Algorithmi
 framework of 
ontemporary evolution strategies may be des
ribed with the

use of following notation introdu
ed by S
hwefel [6℄:

• (µ + λ)-ES generates λ o�spring from µ parents and sele
ts the µ best individuals

from µ + λ (parents and o�spring) individuals (1 ≤ µ ≤ λ),

• (µ, λ)-ES denotes an ES that ea
h time step generates λ o�spring from µ parents

and sele
ts the µ best individuals only from λ (o�spring) individuals (1 ≤ µ < λ).

The individuals in a population 
onsist of the obje
tive variables ve
tor x and a ve
tor

of strategy parameters σ, where σi denotes the standard deviation used when applying a

zero-mean Gaussian mutation to the i-th 
omponent in parent ve
tor. These parameters

are in
orporated into the representation of individual in order to obtain evolutionary self-

adaptation of an ES [7, 1℄. The mutation operator 
hanges strategy parameters a

ording

to:

σ′
i = σi exp(τ0N(0, 1) + τNi(0, 1)) (1)

and the obje
tive variables (a simpli�ed 
ase of un
orrelated mutations):

x′
i = xi + N(0, σ′

i) (2)

where the 
onstant τ ∝ 1√
2
√

n
, τ0 ∝ 1√

2n
, N(0, 1) is a standard Gaussian random variable

sampled on
e for all n dimensions and Ni(0, 1) is a standard Gaussian random variable

sampled for ea
h of the n dimensions.

If the number of parents µ > 1, the obje
tive variables and internal strategy param-

eters 
an be re
ombined with usual re
ombination operators, for example intermediate

re
ombination [3℄, whi
h a
ts on two parents x1 and x2 and 
reates an o�spring x
′
as the

weighted average:

x′
i = αx1i + (1 − α)x2i (3)

where α ∈ 〈0, 1〉 and i = 1, . . . , n. The same may be applied to standard deviations:

σ′
i = ασ1i + (1 − α)σ2i (4)

It is not ne
essary to apply the same re
ombination operator for obje
tive variables

and standard deviations. For example one 
an use dis
rete re
ombination for standard

deviations and intermediate re
ombination for obje
tive variables.



2.2 Preserving diversity

An evolutionary algorithm works properly (in terms of sear
hing for a global solution)

if the population 
onsists of individuals di�erent enough, i.e. the so-
alled diversity in

the population is preserved. Yet many algorithms tend to prematurely loose this useful

diversity, and as a result, there is possibility that population gets stu
k in some lo
al

extremum instead of sear
hing for a global one. To avoid premature 
onvergen
e in


lassi
al ES the me
hanism of self-adaptation, as des
ribed above, was proposed. Yet this

me
hanism proves often not su�
ient for very 
omplex multi-modal problems.

In order to prevent the premature 
onvergen
e of ES, an additional operator may be

introdu
ed. The operator is applied every time when the average of standard deviation,


al
ulated as a Gaussian norm:

σavg(t) =
1

µ

µ
∑

i=1

√

√

√

√

n
∑

j=1

[σij (t)]2 (5)

be
omes less than an a priori set minimum value: σavg < kσ. This additional variation

was applied to a limited number of individuals depending on the generation t:

L(t) = µ

(

1 − t

T

)2

(6)

The additional mutation range in generation t is de�ned via its standard deviation:

σij(t) = kσ

(

1 − t

T

)2

i = 1, . . . , µ, j = 1, . . . , N (7)

where: T � total (maximum) number of generations,

σij � standard deviations asso
iated with the j-th gene of the i-th individual.

3 The optimization problem

The most important assumptions about the physi
al model of the dis
ussed design prob-

lem are as follows [5℄:

1. We 
onsider an annular elasti
 dis
 of variable thi
kness h = h(r) rotating with


onstant angular velo
ity ω and subje
t to uniform tra
tion pb at the outer radius b.
The dis
 is 
lamped at the inner radius a.

2. The 
lassi
al theory of thin dis
s with small gradient dh/dr is assumed and hen
e

the stresses τrz and σz are negle
ted.

3. The material is linear-elasti
 with Young's modulus E, Poisson's ratio ν and subje
t

to the Huber-Mises-Hen
ky (H-M-H) yield 
ondition.

4. The small-strain theory is adopted.

3.1 Basi
 equations

The 
ondition of internal equilibrium in polar 
oordinates may be expressed as follows:

1

h

d

dr
(hσr) +

σr − σθ

r
+ ρmω2r = 0 (8)
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Figure 1: Annular dis
 under 
onsideration

where ρm stands for mass density and h for the dis
 thi
kness. Constitutive equations

(des
ribed by the Hooke's law) take the following form:

σr =
E

1 − ν2

(

du

dr
+ ν

u

r

)

, σθ =
E

1 − ν2

(

u

r
+ ν

du

dr

)

(9)

and 
ombine radial displa
ement u with radial σr and 
ir
umferential σθ stresses.

Taking advantage of 
onstitutive equations (9) after simple 
al
ulations the 
ondition

of internal equilibrium has the form:

d2u

dr2
+

1

r

(

1 +
r

h

dh

dr

)

du

dr
− 1

r2

(

1 − ν
r

h

dh

dr

)

u = −ρmω2
1 − ν2

E
r (10)

Boundary 
onditions:

u(a) = 0,
E

1 − ν2

[

du(b)

dr
+ ν

u(b)

r

]

= pb (11)

allow to �nd a numeri
al solution depending on external loadings (angular velo
ity ω and

uniform tra
tion pb). The stress intensity 
al
ulated a

ording to Huber-Mises-Hen
ky

hypothesis:

σi
2 = σr

2 + σθ
2 − σrσθ (12)

takes its maximal value at the boundary of the dis
 (usually at the inner radius) or at a


ertain point inside the dis
. It obviously depends on the shape of the dis
. When the

maximum value of the stress intensity rea
hes the value of yield stress σ0:

|σi(r0)|max = σ0 (13)

the elasti
 
arrying 
apa
ity is exhausted. Therefore (13) allows to �nd the external

loadings value (a 
ombination of angular velo
ity ω and uniform tra
tion pb), whi
h we


all the elasti
 
arrying 
apa
ity of the dis
.

3.2 Shape representation

As it was mentioned above, the pro�le of the dis
 is represented by the 3rd order spline

built on equidistant nodes (with δ being the distan
e between nodes). Coe�
ients of the



spline may be found from the set of linear equations:
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where:

dj =
6

δ2
(yj−1 − 2yj + yj+1) , j = 1, . . . , n − 1, (15)

d0 =
6

δ2
(y1 − y0) , dn =

6

δ2
(yn − yn−1) . (16)

After some 
al
ulations one may �nd the value of interpolating fun
tion as well as

its derivative at any point from the range r ∈ 〈a, b〉 (or, after introdu
ing dimensionless

radius x = r/a, x ∈ 〈a, b/a〉):

s(x) =
1

6δ

[

Mj−1 (xj − x)3 + Mj (x − xj−1)
3
]

+
[

yj − yj−1

δ
− δ

6
(Mj − Mj−1)

]

(x − xj−1) + (17)

yj−1 − Mj−1

δ2

6

ds(x)

dx
=

1

2δ

[

−Mj−1 (xj − x)2 + Mj (x − xj−1)
2
]

+

yj − yj−1

δ
− δ

6
(Mj − Mj−1) (18)

where x ∈ 〈xj−1, xj〉 and j = 1, . . . , n.
For numeri
al 
al
ulations we introdu
e the following dimensionless quantities:

β =
b

a
, x =

r

a
, y =

h

a
, w =

u

w
. (19)

The above group of parameters is 
onne
ted only with the geometry of the dis
 while the

next one des
ribe the material of the dis
 and its external loadings:

S =
σ0

E
, Ω =

√
3ρmω2a2

2σ0

, p =
pb

σ0

. (20)

3.3 The model

After introdu
ing basi
 equations (the physi
al model) one may formulate the optimization

problem by de�ning a de
ision variables ve
tor, a feasible region and an obje
tive fun
tion.

The de
ision variables ve
tor

Y = (y1, y2, . . . , yn) ∈ M ⊂ R
n

(21)
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Figure 2: Pro�le representation and 
onstrains of the shape

represents the shape of the dis
 in n equidistant points.

The feasible region:

M = {Y ∈ R
n | kd · hmin ≤ yj ≤ kg · Hmax ∀j = 1, . . . , n} (22)

assumes that the dis
 
an be neither too thin (not thinner than kd · hmin) nor too thi
k

(not thi
ker than kg · Hmax). Additionally, the stress intensity must satisfy (13).

Obje
tive fun
tion is des
ribed by the following formula:

Φ =

{

c

[

1

β − 1

∫ β

1

σi(x) dx

]

+ (1 − c)
√

p2 + Ω2

}

→ max (23)

where 0 ≤ c ≤ 1 makes it possible to set the importan
e of ea
h of the two 
riteria taken

into a

ount. The �rst of them (with the multiplier c) is 
onne
ted with the equalization

of the stress intensity and the se
ond one with the external loadings (it is worth noting

that if c = 0 this 
riterion be
omes a simple maximization of elasti
 
arrying 
apa
ity).

Su
h a generalization is very helpful in estimating the limit 
arrying 
apa
ity or de
ohesive


arrying 
apa
ity.

4 Experimental results

The system used in simulations was 
omposed of two subsystems: the �rst one 
ontrolled

evolutionary algorithm while the se
ond one realized simulation pro
esses. Su
h ar
hite
-

ture may be easy adapted for parallel 
omputation (e.g. based on master-slave model).

Below optimal shapes in the meaning of 
riterion (23) 
onne
ted with di�erent ratio

Ω/p are presented. All results were obtained for the typi
al material of the dis
 for whi
h:

ν = 0.3, σ0/E = 0.001 (24)

As regards geometri
al parameters all 
al
ulations were performed for the following

values:

β = b/a = 2, hmin = 1, Hmax = 3, kd = 0.9, kg = 1.1 (25)



Figure 3: Optimal dis
 for purely inertial loading

a) b)

Figure 4: Optimal dis
 for Ω/p = 2 (a) and Ω/p = 1 (b), c = 0.4

Figure 3 presents the shape of optimal dis
 when the external pressure is equal to zero.

There are two interesting things in the shape: �rst it is the �at part near the 
enter of

the dis
 and the se
ond one is the swelling near the outer radius. The �at segment results

from the 
onstraint 
onne
ted with the minimal thi
kness, whi
h be
omes a
tive near the


enter. The swelling results from the 
hara
ter of obje
tive fun
tion � this swelling is the

out
ome of more equal distribution of the stress intensity. The elasti
 
arrying 
apa
ity

(ECC) is des
ribed by the pair: Ω = 1.21; p = 0.
The optimal shape of the dis
 when the dimensionless angular velo
ity is twi
e greater

than the dimensionless external pressure is shown in �gure 4a. In this 
ase the shape

is more regular but a small swelling near the outer radius still remains. A more regular

shape 
an be explained by the fa
t that a part of inertia for
es in this 
ase is repla
ed

by the external pressure a
tion. In this 
ase the ECC is des
ribed by the following pair:

Ω = 0.94; p = 0.47. In �gure 4b the optimal shape of the dis
 for dimensionless external

pressure and rotation velo
ity being equal is shown. The elasti
 
arrying 
apa
ity is

des
ribed by the pair: Ω = 0.74; p = 0.74. It is interesting that for su
h a ratio the shape

is very smooth, whi
h may be, in a way, optimal for the work of the dis
.

4.1 The ES analysis

Figure 5 shows the minimum and maximum quality of the individuals and average stan-

dard deviation a

ording to (5) in subsequent steps of the algorithm. One should mention

the fast 
onvergen
e of 
lassi
 (µ, λ)-ES, whi
h may be 
onsidered an advantage. Yet it

may be dangerous for the evolution pro
ess whi
h 
an stop too early (premature 
onver-

gen
e). After about a hundredth step of the algorithm obtained solutions do not improve

so mu
h, and in fa
t the 
omputation may be stopped. Values of the most important

parameters used in 
al
ulations are presented in Fig. 5 and 6, where parameter σmin

stands for the minimum value of standard deviation (at a single parameter level).

4.2 Introdu
tion of additional mutation operator

In order to prevent the premature 
onvergen
e the additional mutation operator was

introdu
ed. Figure 6 shows the results of simulations with additional mutation operator.

In the �gure 6a the minimum and maximum value of the obje
tive fun
tion in population

is shown. When we 
ompare these results to the ones presented in the �gure 5a we 
an
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Figure 5: Minimal and maximal value of obje
tive fun
tion (a) and average standard

deviation (b) without additional mutation

noti
e that the introdu
tion of additional mutation operator slowed down the 
onvergen
e

and allowed for about four times longer maintenan
e of geneti
 diversity of the population.

This may also be seen in the �gure 6b. One 
an noti
e that average standard deviation

of the population needs over four times more simulation steps to approa
h zero value in


omparison with the 
ase when there were no additional mutation used.

5 Con
luding remarks

In many global optimization problems that appear in engineering design only experiments

(or their simulation) seem to be the only way to evaluate the quality of parti
ular solu-

tions. In these 
ases one must apply optimization methods that do not require stri
t

mathemati
al models of a problem like evolutionary algorithms or simulated annealing.

In the paper the possible appli
ation of evolution strategies to the design of rotating

variable-thi
kness annular elasti
 dis
 was des
ribed. The proposed representation of the

shape (the use of 3rd order splines) makes it possible to des
ribe the shape of the dis
 more

pre
isely (giving many degrees of freedom to the optimization problem). This analyti
al-

numeri
al approa
h may be helpful in many shape optimization problems e.g. looking for

the best pro�le of a rotating wheel. Results obtained in this way may be treated as the

�rst approa
h to the more exa
t solution based on FEM analysis.

The results of simulation experiments show that the proposed approa
h allows to in-


rease (even up to 80%) the dis
 
arrying 
apa
ity in 
omparison to the 
onstant thi
kness

(�at) shape. The use of additional mutation operator introdu
ed as a means to preserve

diversity in the population 
an improve this result by another 5% or more.

Further resear
h should 
on
entrate on di�erent variants of evolution strategy used

for the optimization in
luding spe
ialized operators and parallel (agent-based) implemen-

tation of the algorithm.
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Figure 6: Minimal and maximal value of obje
tive fun
tion (a) and average standard

deviation (b) with additional mutation
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