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Abstrat

In the paper the optimization of rotating variable-thikness annular elasti diss

based on a simulation model by means of (µ, λ)-evolution strategies is disussed.

Additional mutation operator is introdued as a means to preserve diversity in the

population. The onsiderations are illustrated by a review of obtained experimental

results.
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1 Introdution

For very omplex engineering problems even approximate mathematial models often

prove so di�ult that their analysis beomes a non-trivial task for most traditional meth-

ods. In suh ases simulation experiments may be useful to verify the orretness of the

proposed solutions, whih may be further improved (optimized) by the human designer.

However the globally optimal solution may be hardly found this way. It seems that this

task may be suessfully handled by some (meta)heuristi omputational tehniques suh

as evolutionary algorithms. This term overs a wide range of searh and optimization

methods, based on analogies to phenomena of natural evolution. Partiularly evolution

strategies are distinguished by real-valued representation (thus they are most often used

for ontinuous optimization problems), Gaussian mutation as main variation operator,

and deterministi seletion sheme [4, 7℄.

The paper disusses the optimization of rotating variable-thikness annular elasti

diss based on the proposed simulation model by means of evolution strategies. The goal

of the design is to �nd suh a shape of the dis that would ensure maximal elasti arrying

apaity. While in many papers the shape is modeled with the use of some �xed lass

of funtions (e.g. hyperboli, n-th order polynomial), in the model presented the pro�le

of the dis is de�ned by spline urves. To preserve diversity in the population additional

mutation operator is introdued. This additional mutation range and rate derease during

the ourse of the algorithm, allowing for more intensive exploration of the searh spae at

the very beginning and then for more and more aurate approximation of the solution.

The paper is organized as follows. Classial evolution strategies and additional muta-

tion operator are desribed in setion 2. Setion 3 presents the optimization problem: the

design of rotating variable-thikness annular elasti dis, proposed representation of the



solutions, and the model used to evaluate their quality (�tness). Seleted experimental

results with the proposed (µ, λ)-evolution strategy onlude the work.

2 Evolution strategies

Evolution strategies (ES) were developed by Rehenberg and Shwefel in the 1960s at

the Tehnial University of Berlin. The �rst appliations were aimed at hydrodynamial

problems like shape optimization of a bended pipe and drag minimization of a joint plate

[2℄. ES is a speial instane of an evolutionary algorithm haraterized by real-valued

vetor representation, Gaussian mutation as main variation operator, self-adaptation of

mutation rate, and deterministi seletion mehanisms.

2.1 Classial approah

Algorithmi framework of ontemporary evolution strategies may be desribed with the

use of following notation introdued by Shwefel [6℄:

• (µ + λ)-ES generates λ o�spring from µ parents and selets the µ best individuals

from µ + λ (parents and o�spring) individuals (1 ≤ µ ≤ λ),

• (µ, λ)-ES denotes an ES that eah time step generates λ o�spring from µ parents

and selets the µ best individuals only from λ (o�spring) individuals (1 ≤ µ < λ).

The individuals in a population onsist of the objetive variables vetor x and a vetor

of strategy parameters σ, where σi denotes the standard deviation used when applying a

zero-mean Gaussian mutation to the i-th omponent in parent vetor. These parameters

are inorporated into the representation of individual in order to obtain evolutionary self-

adaptation of an ES [7, 1℄. The mutation operator hanges strategy parameters aording

to:

σ′
i = σi exp(τ0N(0, 1) + τNi(0, 1)) (1)

and the objetive variables (a simpli�ed ase of unorrelated mutations):

x′
i = xi + N(0, σ′

i) (2)

where the onstant τ ∝ 1√
2
√

n
, τ0 ∝ 1√

2n
, N(0, 1) is a standard Gaussian random variable

sampled one for all n dimensions and Ni(0, 1) is a standard Gaussian random variable

sampled for eah of the n dimensions.

If the number of parents µ > 1, the objetive variables and internal strategy param-

eters an be reombined with usual reombination operators, for example intermediate

reombination [3℄, whih ats on two parents x1 and x2 and reates an o�spring x
′
as the

weighted average:

x′
i = αx1i + (1 − α)x2i (3)

where α ∈ 〈0, 1〉 and i = 1, . . . , n. The same may be applied to standard deviations:

σ′
i = ασ1i + (1 − α)σ2i (4)

It is not neessary to apply the same reombination operator for objetive variables

and standard deviations. For example one an use disrete reombination for standard

deviations and intermediate reombination for objetive variables.



2.2 Preserving diversity

An evolutionary algorithm works properly (in terms of searhing for a global solution)

if the population onsists of individuals di�erent enough, i.e. the so-alled diversity in

the population is preserved. Yet many algorithms tend to prematurely loose this useful

diversity, and as a result, there is possibility that population gets stuk in some loal

extremum instead of searhing for a global one. To avoid premature onvergene in

lassial ES the mehanism of self-adaptation, as desribed above, was proposed. Yet this

mehanism proves often not su�ient for very omplex multi-modal problems.

In order to prevent the premature onvergene of ES, an additional operator may be

introdued. The operator is applied every time when the average of standard deviation,

alulated as a Gaussian norm:

σavg(t) =
1

µ

µ
∑

i=1

√

√

√

√

n
∑

j=1

[σij (t)]2 (5)

beomes less than an a priori set minimum value: σavg < kσ. This additional variation

was applied to a limited number of individuals depending on the generation t:

L(t) = µ

(

1 − t

T

)2

(6)

The additional mutation range in generation t is de�ned via its standard deviation:

σij(t) = kσ

(

1 − t

T

)2

i = 1, . . . , µ, j = 1, . . . , N (7)

where: T � total (maximum) number of generations,

σij � standard deviations assoiated with the j-th gene of the i-th individual.

3 The optimization problem

The most important assumptions about the physial model of the disussed design prob-

lem are as follows [5℄:

1. We onsider an annular elasti dis of variable thikness h = h(r) rotating with

onstant angular veloity ω and subjet to uniform tration pb at the outer radius b.
The dis is lamped at the inner radius a.

2. The lassial theory of thin diss with small gradient dh/dr is assumed and hene

the stresses τrz and σz are negleted.

3. The material is linear-elasti with Young's modulus E, Poisson's ratio ν and subjet

to the Huber-Mises-Henky (H-M-H) yield ondition.

4. The small-strain theory is adopted.

3.1 Basi equations

The ondition of internal equilibrium in polar oordinates may be expressed as follows:

1

h

d

dr
(hσr) +

σr − σθ

r
+ ρmω2r = 0 (8)
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Figure 1: Annular dis under onsideration

where ρm stands for mass density and h for the dis thikness. Constitutive equations

(desribed by the Hooke's law) take the following form:

σr =
E

1 − ν2

(

du

dr
+ ν

u

r

)

, σθ =
E

1 − ν2

(

u

r
+ ν

du

dr

)

(9)

and ombine radial displaement u with radial σr and irumferential σθ stresses.

Taking advantage of onstitutive equations (9) after simple alulations the ondition

of internal equilibrium has the form:

d2u

dr2
+

1

r

(

1 +
r

h

dh

dr

)

du

dr
− 1

r2

(

1 − ν
r

h

dh

dr

)

u = −ρmω2
1 − ν2

E
r (10)

Boundary onditions:

u(a) = 0,
E

1 − ν2

[

du(b)

dr
+ ν

u(b)

r

]

= pb (11)

allow to �nd a numerial solution depending on external loadings (angular veloity ω and

uniform tration pb). The stress intensity alulated aording to Huber-Mises-Henky

hypothesis:

σi
2 = σr

2 + σθ
2 − σrσθ (12)

takes its maximal value at the boundary of the dis (usually at the inner radius) or at a

ertain point inside the dis. It obviously depends on the shape of the dis. When the

maximum value of the stress intensity reahes the value of yield stress σ0:

|σi(r0)|max = σ0 (13)

the elasti arrying apaity is exhausted. Therefore (13) allows to �nd the external

loadings value (a ombination of angular veloity ω and uniform tration pb), whih we

all the elasti arrying apaity of the dis.

3.2 Shape representation

As it was mentioned above, the pro�le of the dis is represented by the 3rd order spline

built on equidistant nodes (with δ being the distane between nodes). Coe�ients of the



spline may be found from the set of linear equations:
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(14)

where:

dj =
6

δ2
(yj−1 − 2yj + yj+1) , j = 1, . . . , n − 1, (15)

d0 =
6

δ2
(y1 − y0) , dn =

6

δ2
(yn − yn−1) . (16)

After some alulations one may �nd the value of interpolating funtion as well as

its derivative at any point from the range r ∈ 〈a, b〉 (or, after introduing dimensionless

radius x = r/a, x ∈ 〈a, b/a〉):

s(x) =
1

6δ

[

Mj−1 (xj − x)3 + Mj (x − xj−1)
3
]

+
[

yj − yj−1

δ
− δ

6
(Mj − Mj−1)

]

(x − xj−1) + (17)

yj−1 − Mj−1

δ2

6

ds(x)

dx
=

1

2δ

[

−Mj−1 (xj − x)2 + Mj (x − xj−1)
2
]

+

yj − yj−1

δ
− δ

6
(Mj − Mj−1) (18)

where x ∈ 〈xj−1, xj〉 and j = 1, . . . , n.
For numerial alulations we introdue the following dimensionless quantities:

β =
b

a
, x =

r

a
, y =

h

a
, w =

u

w
. (19)

The above group of parameters is onneted only with the geometry of the dis while the

next one desribe the material of the dis and its external loadings:

S =
σ0

E
, Ω =

√
3ρmω2a2

2σ0

, p =
pb

σ0

. (20)

3.3 The model

After introduing basi equations (the physial model) one may formulate the optimization

problem by de�ning a deision variables vetor, a feasible region and an objetive funtion.

The deision variables vetor

Y = (y1, y2, . . . , yn) ∈ M ⊂ R
n

(21)
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Figure 2: Pro�le representation and onstrains of the shape

represents the shape of the dis in n equidistant points.

The feasible region:

M = {Y ∈ R
n | kd · hmin ≤ yj ≤ kg · Hmax ∀j = 1, . . . , n} (22)

assumes that the dis an be neither too thin (not thinner than kd · hmin) nor too thik

(not thiker than kg · Hmax). Additionally, the stress intensity must satisfy (13).

Objetive funtion is desribed by the following formula:

Φ =

{

c

[

1

β − 1

∫ β

1

σi(x) dx

]

+ (1 − c)
√

p2 + Ω2

}

→ max (23)

where 0 ≤ c ≤ 1 makes it possible to set the importane of eah of the two riteria taken

into aount. The �rst of them (with the multiplier c) is onneted with the equalization

of the stress intensity and the seond one with the external loadings (it is worth noting

that if c = 0 this riterion beomes a simple maximization of elasti arrying apaity).

Suh a generalization is very helpful in estimating the limit arrying apaity or deohesive

arrying apaity.

4 Experimental results

The system used in simulations was omposed of two subsystems: the �rst one ontrolled

evolutionary algorithm while the seond one realized simulation proesses. Suh arhite-

ture may be easy adapted for parallel omputation (e.g. based on master-slave model).

Below optimal shapes in the meaning of riterion (23) onneted with di�erent ratio

Ω/p are presented. All results were obtained for the typial material of the dis for whih:

ν = 0.3, σ0/E = 0.001 (24)

As regards geometrial parameters all alulations were performed for the following

values:

β = b/a = 2, hmin = 1, Hmax = 3, kd = 0.9, kg = 1.1 (25)



Figure 3: Optimal dis for purely inertial loading

a) b)

Figure 4: Optimal dis for Ω/p = 2 (a) and Ω/p = 1 (b), c = 0.4

Figure 3 presents the shape of optimal dis when the external pressure is equal to zero.

There are two interesting things in the shape: �rst it is the �at part near the enter of

the dis and the seond one is the swelling near the outer radius. The �at segment results

from the onstraint onneted with the minimal thikness, whih beomes ative near the

enter. The swelling results from the harater of objetive funtion � this swelling is the

outome of more equal distribution of the stress intensity. The elasti arrying apaity

(ECC) is desribed by the pair: Ω = 1.21; p = 0.
The optimal shape of the dis when the dimensionless angular veloity is twie greater

than the dimensionless external pressure is shown in �gure 4a. In this ase the shape

is more regular but a small swelling near the outer radius still remains. A more regular

shape an be explained by the fat that a part of inertia fores in this ase is replaed

by the external pressure ation. In this ase the ECC is desribed by the following pair:

Ω = 0.94; p = 0.47. In �gure 4b the optimal shape of the dis for dimensionless external

pressure and rotation veloity being equal is shown. The elasti arrying apaity is

desribed by the pair: Ω = 0.74; p = 0.74. It is interesting that for suh a ratio the shape

is very smooth, whih may be, in a way, optimal for the work of the dis.

4.1 The ES analysis

Figure 5 shows the minimum and maximum quality of the individuals and average stan-

dard deviation aording to (5) in subsequent steps of the algorithm. One should mention

the fast onvergene of lassi (µ, λ)-ES, whih may be onsidered an advantage. Yet it

may be dangerous for the evolution proess whih an stop too early (premature onver-

gene). After about a hundredth step of the algorithm obtained solutions do not improve

so muh, and in fat the omputation may be stopped. Values of the most important

parameters used in alulations are presented in Fig. 5 and 6, where parameter σmin

stands for the minimum value of standard deviation (at a single parameter level).

4.2 Introdution of additional mutation operator

In order to prevent the premature onvergene the additional mutation operator was

introdued. Figure 6 shows the results of simulations with additional mutation operator.

In the �gure 6a the minimum and maximum value of the objetive funtion in population

is shown. When we ompare these results to the ones presented in the �gure 5a we an
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Figure 5: Minimal and maximal value of objetive funtion (a) and average standard

deviation (b) without additional mutation

notie that the introdution of additional mutation operator slowed down the onvergene

and allowed for about four times longer maintenane of geneti diversity of the population.

This may also be seen in the �gure 6b. One an notie that average standard deviation

of the population needs over four times more simulation steps to approah zero value in

omparison with the ase when there were no additional mutation used.

5 Conluding remarks

In many global optimization problems that appear in engineering design only experiments

(or their simulation) seem to be the only way to evaluate the quality of partiular solu-

tions. In these ases one must apply optimization methods that do not require strit

mathematial models of a problem like evolutionary algorithms or simulated annealing.

In the paper the possible appliation of evolution strategies to the design of rotating

variable-thikness annular elasti dis was desribed. The proposed representation of the

shape (the use of 3rd order splines) makes it possible to desribe the shape of the dis more

preisely (giving many degrees of freedom to the optimization problem). This analytial-

numerial approah may be helpful in many shape optimization problems e.g. looking for

the best pro�le of a rotating wheel. Results obtained in this way may be treated as the

�rst approah to the more exat solution based on FEM analysis.

The results of simulation experiments show that the proposed approah allows to in-

rease (even up to 80%) the dis arrying apaity in omparison to the onstant thikness

(�at) shape. The use of additional mutation operator introdued as a means to preserve

diversity in the population an improve this result by another 5% or more.

Further researh should onentrate on di�erent variants of evolution strategy used

for the optimization inluding speialized operators and parallel (agent-based) implemen-

tation of the algorithm.
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Figure 6: Minimal and maximal value of objetive funtion (a) and average standard

deviation (b) with additional mutation
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