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Abstra
t

Evolutionary algorithms often su�er from premature loss of population diversity.

This limits their adaptive 
apa
ities in dynami
 environments and makes di�
ult

the appli
ation of evolutionary algorithms to multi-modal optimization problems.

Su
h te
hniques as ni
hing or 
o-evolution are aimed at maintaining population

diversity, spe
ies formation and the realization of open-ended evolution. This paper

introdu
es the 
o-evolutionary multi-agent system with spe
iation resulting from


o-evolutionary intera
tions and 
ompetition for limited resour
es. Su
h system is

applied to multi-modal fun
tion optimization. The 
omparison with 
lassi
al ni
hing

te
hniques is presented and the in�uen
e of resour
e sharing me
hanism parameter's

values on the 
ourse of spe
iation pro
ess is investigated.

1 Introdu
tion

Evolutionary Algorithms (EAs) have demonstrated in pra
ti
e e�
ien
y and robustness

as global optimization te
hniques. However, they often su�er from premature loss of

population diversity what results in premature 
onvergen
e and may lead to lo
ating lo
al

optima instead of a global one. What is more, in the 
ase of multi-modal optimization

problems EA (without any spe
ial me
hanisms) will inevitably lo
ate a single solution

[12℄. If the goal is to �nd multiple solutions of the given problem some multi-modal

optimization te
hniques should be used.

Ni
hing and spe
iation te
hniques for EAs are aimed at forming and stably maintaining

ni
hes (spe
ies) throughout the sear
h pro
ess, thereby allowing to lo
ate the basins of

attra
tion of lo
al minima [13, 5℄ (through the rest of this paper the minimization problems

are 
onsidered). During the years of resear
h various me
hanisms and te
hniques have

been proposed . All these te
hniques allow ni
he formation via the modi�
ation of the

parent sele
tion me
hanism (�tness sharing [8℄ or sexual sele
tion [16℄), the modi�
ation

of me
hanism of sele
ting individuals for new generation (
rowding [11℄) or the restri
tion

of appli
ation of the sele
tion and/or re
ombination me
hanisms (by grouping individuals

[10℄ or by introdu
ing the environment with some topography in whi
h the individuals

are lo
ated [17℄).

In EAs the �tness of ea
h individual depends only on how well it solves the given

problem. In 
o-evolutionary algorithms the �tness of ea
h individual depends not only

on the quality of solution to the given problem but also (or solely) on other individuals'
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Figure 1: NCoEMAS system

�tness. This makes su
h te
hniques appli
able in the 
ases where the �tness fun
tion

formulation is di�
ult (or even impossible). As the result of ongoing resear
h quite

many 
o-evolutionary te
hniques have been proposed. Generally, ea
h of these te
hniques

belongs to one of two 
lasses: 
ompetitive ([14℄) or 
ooperative ([15℄).

Although 
o-evolutionary te
hniques are aimed at over
oming limited adaptive 
apa
-

ities of evolutionary algorithms resulting from the loss of useful population diversity, they

are not very often applied in the �eld of multi-modal optimization. In fa
t, to our best

knowledge, only one ni
hing te
hnique based on 
o-evolution was developed ([9℄).

2 Co-Evolutionary Multi-Agent System with Spe
ia-

tion

The main idea of evolutionary multi-agent system (EMAS) is the modeling of evolution

pro
ess in multi-agent system (MAS) [4℄. The basi
 EMAS model allows the evolution

of only one spe
ies. The model of 
o-evolutionary multi-agent system (CoEMAS) al-

lows modeling of biologi
al spe
iation me
hanisms based on 
o-evolutionary intera
tions,


ompetition for limited resour
es, and geographi
al isolation [6℄. Systems based on Co-

EMAS model 
an be applied, for example, to multi-modal fun
tion optimization [7℄ and

multi-obje
tive optimization.

In �gure 1 
o-evolutionary multi-agent system for multi-modal fun
tion optimization

(NCoEMAS ) is presented. The topography of environment, in whi
h agents live, is graph

with every node (pla
e) 
onne
ted with its four neighbors. Within the environment two


o-evolving spe
ies (ni
hes (nch) and solutions (sol)) live. There exist resour
e in the

environment whi
h is given to the ni
hes and then distributed between solutions, that

live within ea
h ni
he. There is 
losed 
ir
ulation of resour
e within the system. The

resour
e 
an be possessed by environment or agents. Environment gives the resour
e to



agents and every agent's a
tion (su
h as migration or reprodu
tion) 
osts some resour
e,

so the resour
e is returned to the environment.

The 
ompetition for limited resour
es me
hanism (resour
e sharing me
hanism) works

as follows. Ea
h time step agent-ni
he a performs the 〈get〉 a
tion. This a
tion is aimed

at gaining some resour
e from the environment (pre
isely speaking, from the node v in

whi
h agent a is lo
ated):

get : ra 7→ ra + req + rprop

rv 7→ rv − req − rprop

(1)

where ra
is the amount of resour
e that is in the possession of agent a, rv

is the amount

of resour
e that is in the possession of node v, req is the amount of resour
e given to ea
h

agent-ni
he, and rprop is the amount of resour
e that is proportional to agent-ni
he �tness

value. The minimal amount of resour
e (req) is given to ea
h agent-ni
he in order to keep

alive less �tted spe
ies of agents-solutions.

Next ea
h agent-ni
he distributes its resour
e among agents-solutions that 
urrently

belong to it. The resour
e is distributed proportionally to agents-solutions' �tness values

with the assumption that ea
h agent-solution 
an possess no more than rsol
max of resour
e.

Ni
hes 
an migrate within the environment and all solutions live within ni
hes and

migrate with them within the environment. Ea
h time step every solution sear
hes for the

ni
he that is lo
ated within the basin of attra
tion of the same lo
al minima. Modi�ed

version of hill-valley fun
tion ([18℄) is used in order to 
he
k if two individuals are lo
ated

within the basin of attra
tion of the same lo
al minima. If there are no ni
hes lo
ated in

the same basin of attra
tion, agent-solution 
reates new agent-ni
he, whi
h genotype is

the 
opy of its own genotype (ni
he is splitted into two ni
hes).

Then ea
h agent-solution sear
hes its ni
he for the reprodu
tion partner. Reprodu
tion

takes pla
e only when agents have enough amount of resour
e. The genotypes of all agents

are real-valued ve
tors. Intermediate re
ombination [3℄ and mutation with self-adaptation

[2℄ are used for solutions and spe
ial mutation for ni
hes. Ea
h time step the agent-ni
he's

genotype is mutated in su
h a way, that the resulting genotype is the 
enter of gravity

of agents-solutions that belong to the agent-ni
he (�tness value of ea
h agent-solution

serves here as a weight value). Su
h me
hanism 
auses that value of agent-ni
he's �tness

depends on the �tness values of agents-solutions that 
urrently belong to it. Ni
hes 
an

merge if they are lo
ated at the same pla
e of environment and if they are lo
ated within

the basin of attra
tion of the same lo
al minima.

3 The results of experiments

3.1 Test Fun
tion

In all experiments Rastrigin fun
tion was used as the test �tness lands
ape (see �g. 2).

This is multi-modal fun
tion 
ommonly used in studies of ni
hing methods. Rastrigin

fun
tion used in experiments is given by

10 ∗ n +
n∑

i=1

(x2

i − 10 ∗ cos(2 ∗ π ∗ xi)) xi ∈ [−2.5, 2.5] for i = 1, . . . , n (2)

where n is the number of dimensions (n = 2 in all experiments). The fun
tion has 25

lo
al minima for x1, x2 ∈ [−2.5, 2.5].



a)

Rastrigin

-2

-1

 0

 1

 2
-2

-1

 0

 1

 2
 0

 10
 20
 30
 40
 50
 60

b)

-2 -1  0  1  2

-2

-1

 0

 1

 2

      50
      40
      30
      20
      10

Figure 2: Rastrigin fun
tion (a) and its 
ontour plot (b)
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Figure 3: The number of lo
al minima neighborhoods lo
ated (the average values from

20 experiments, nimin = 3). The 
omparison of di�erent systems' results

3.2 The Comparison of NCoEMAS and Classi
al Ni
hing Te
h-

niques

In this se
tion the 
omparison of NCoEMAS to other ni
hing te
hniques (�tness sharing

� FS [8℄ and deterministi
 
rowding � DC [11℄) is presented.

Figure 3 shows the average number of lo
al minima neighborhoods lo
ated by 
om-

pared systems. The lo
al minima neighborhood was 
lassi�ed as �lo
ated� when there

was at least nimin = 3 individuals 
loser than 0.05 to that lo
al minima. The experiments

was made for four te
hniques: NCoEMAS, EMAS, DC and FS.

NCoEMAS stood relatively well when 
ompared to other te
hniques. On the average,

it stably maintained over 20 lo
al minima neighborhoods. DC qui
kly lo
ated about 13�

14 lo
al minima neighborhoods but there was quite strong tenden
y to lose almost all of

them during the rest part of simulation. FS te
hnique dete
ted and stably maintained

about 12�13 lo
al minima neighborhoods on the average. EMAS without any ni
hing

me
hanism was not able to stably populate more than one lo
al minima neighborhood.



Parameter E1 E2 E3 E4 E5 E6

req 5rsol
max 0 2.5rsol

max 3.75rsol
max 15rsol

max 27.5rsol
max

Table 1: The values of req parameter for di�erent experiments, rsol
max is the maximal amount

of resour
e that 
an be in the possession of agent-solution
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Figure 4: The number of lo
al minima neighborhoods lo
ated (a) and the population sizes

in experiments with di�erent values of req parameter of NCoEMAS system (the average

values from 20 experiments, nimin = 3)

It turned out that in 
ase of multi-modal optimization problems it works just like simple

EA.

3.3 The Results of the Experiments with Resour
e Sharing Me
h-

anism

In this se
tion the results of the experiments with di�erent values of req parameter are

presented. The value of this parameter is 
ru
ial to the 
orre
t working of the resour
e

sharing me
hanism in NCoEMAS system. The table 1 shows the values of req parameter

used in di�erent types of experiments.

Figure 4a shows the number of lo
al minima neighborhoods lo
ated in experiments

with di�erent values of req parameter. The results are worst in the 
ase of E2 and E3 ex-

periments. In the 
ase of other experiments the results are quite 
omparable. This means

that if there are no minimal amount of resour
e given to the agents-ni
hes (experiments of

type E2) or this amount is too small (experiments of type E3) the spe
ies lo
ated within

the basins of attra
tion of �worse� (that means with greater value of �tness fun
tion) lo
al

minima have no 
han
es to survive and to win the 
ompetition for limited resour
es with

the spe
ies lo
ated within the basins of attra
tion of �better� lo
al minima.

In the 
ase of E2 and E3 experiments the population sizes are generally larger than

in the 
ase of other experiments (see �g. 4b). The number of agents rapidly grows at the

beginning of simulation, approa
hes some level and then stays approximately the same



during the rest of the experiment. There is no adaptation of the population size to the

di�
ultness of the problem (to the number of lo
al minima of the �tness fun
tion in the


ase of presented experiments). In the 
ase of E2 and E3 experiments spe
ies lo
ated

within the basins of attra
tion of �worse� lo
al minima qui
kly loose the 
ompetition with

other spe
ies and die o�. In su
h 
ase the operator of merging ni
hes does not work, simply

be
ause there are no ni
hes to merge. The number of agents stays generally at the higher

level than in the 
ase of other experiments, be
ause the same amount of resour
e is given

by environment to the smaller number of agents-ni
hes and the subpopulations of agents-

solutions that belong to them are bigger. In the 
ase of other types of experiments, when

there is enough resour
e given to ea
h agent-ni
he, the number of agents in the system

adapts to the number of lo
al minima of �tness fun
tion (see �g. 4b). In su
h 
ase spe
ies

of agents-solutions (whi
h live within the agents-ni
hes) do not die o�. All spe
ies has

the 
han
es to survive. The me
hanism of merging ni
hes lo
ated within the basins of

attra
tion of the same lo
al minima 
auses that after the rapid grow of the number of

agents, the population size de
reases slightly and approa
hes the optimal level.

4 Con
luding Remarks

The idea of 
o-evolutionary multi-agent system (CoEMAS) allows us to model many e
o-

logi
al 
o-evolutionary intera
tions between spe
ies su
h as resour
e 
ompetition, predator-

prey and host-parasite 
o-evolution, sexual preferen
es, et
.

In this paper sample CoEMAS with two 
o-evolving spe
ies: ni
hes and solutions

was presented. This system was applied to multi-modal fun
tion optimization. The

presented results show that NCoEMAS was able to dete
t and stably maintain more

neighborhoods of Rastrigin fun
tion lo
al minima than two 
lassi
al ni
hing te
hniques

and EMAS system.

The presented results also indi
ate that it is ne
essary to loosen the 
ompetition for

limited resour
es between spe
ies lo
ated within the basins of attra
tion of lo
al minima

of di�erent �quality�. In the 
ase of strong 
ompetition, the spe
ies lo
ated within the

basins of attra
tion of �worse� lo
al minima 
an eventually 
ompletely die o�. What is

more, in su
h 
ase there is no adaptation of the population size to the di�
ulty of the

problem being solved (to the number of lo
al minima in the 
ase of fun
tion minimization

problems).

Future resear
h will in
lude more detailed 
omparison to other ni
hing te
hniques,

CoEMAS based on the me
hanisms of predator-prey or host-parasite 
o-evolution. Also

the parallel implementation of CoEMAS using MPI is in
luded in future resear
h plans.
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