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Abstract

Evolutionary algorithms often suffer from premature loss of population diversity.
This limits their adaptive capacities in dynamic environments and makes difficult
the application of evolutionary algorithms to multi-modal optimization problems.
Such techniques as niching or co-evolution are aimed at maintaining population
diversity, species formation and the realization of open-ended evolution. This paper
introduces the co-evolutionary multi-agent system with speciation resulting from
co-evolutionary interactions and competition for limited resources. Such system is
applied to multi-modal function optimization. The comparison with classical niching
techniques is presented and the influence of resource sharing mechanism parameter’s
values on the course of speciation process is investigated.

1 Introduction

FEvolutionary Algorithms (EAs) have demonstrated in practice efficiency and robustness
as global optimization techniques. However, they often suffer from premature loss of
population diversity what results in premature convergence and may lead to locating local
optima instead of a global one. What is more, in the case of multi-modal optimization
problems EA (without any special mechanisms) will inevitably locate a single solution
[12]. If the goal is to find multiple solutions of the given problem some multi-modal
optimization techniques should be used.

Niching and speciation techniques for EAs are aimed at forming and stably maintaining
niches (species) throughout the search process, thereby allowing to locate the basins of
attraction of local minima [13, 5| (through the rest of this paper the minimization problems
are considered). During the years of research various mechanisms and techniques have
been proposed . All these techniques allow niche formation via the modification of the
parent selection mechanism (fitness sharing [8] or sezual selection [16]), the modification
of mechanism of selecting individuals for new generation (crowding [11]) or the restriction
of application of the selection and/or recombination mechanisms (by grouping individuals
[10] or by introducing the environment with some topography in which the individuals
are located [17]).

In EAs the fitness of each individual depends only on how well it solves the given
problem. In co-evolutionary algorithms the fitness of each individual depends not only
on the quality of solution to the given problem but also (or solely) on other individuals’
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Figure 1: NCoEMAS system

fitness. This makes such techniques applicable in the cases where the fitness function
formulation is difficult (or even impossible). As the result of ongoing research quite
many co-evolutionary techniques have been proposed. Generally, each of these techniques
belongs to one of two classes: competitive ([14]) or cooperative ([15]).

Although co-evolutionary techniques are aimed at overcoming limited adaptive capac-
ities of evolutionary algorithms resulting from the loss of useful population diversity, they
are not very often applied in the field of multi-modal optimization. In fact, to our best
knowledge, only one niching technique based on co-evolution was developed ([9]).

2 Co-Evolutionary Multi-Agent System with Specia-
tion

The main idea of evolutionary multi-agent system (EMAS) is the modeling of evolution
process in multi-agent system (MAS) [4]. The basic EMAS model allows the evolution
of only one species. The model of co-evolutionary multi-agent system (CoEMAS) al-
lows modeling of biological speciation mechanisms based on co-evolutionary interactions,
competition for limited resources, and geographical isolation [6]. Systems based on Co-
EMAS model can be applied, for example, to multi-modal function optimization [7] and
multi-objective optimization.

In figure 1 co-evolutionary multi-agent system for multi-modal function optimization
(NCoEMALS) is presented. The topography of environment, in which agents live, is graph
with every node (place) connected with its four neighbors. Within the environment two
co-evolving species (niches (nch) and solutions (sol)) live. There exist resource in the
environment which is given to the niches and then distributed between solutions, that
live within each niche. There is closed circulation of resource within the system. The
resource can be possessed by environment or agents. Environment gives the resource to



agents and every agent’s action (such as migration or reproduction) costs some resource,
so the resource is returned to the environment.

The competition for limited resources mechanism (resource sharing mechanism) works
as follows. Each time step agent-niche a performs the (get) action. This action is aimed
at gaining some resource from the environment (precisely speaking, from the node v in
which agent a is located):

get: 1= 1t Teg + Tprop
v v (1)
=1 = Teg — Tprop

where r¢ is the amount of resource that is in the possession of agent a, r* is the amount
of resource that is in the possession of node v, 7., is the amount of resource given to each
agent-niche, and 7,,,, is the amount of resource that is proportional to agent-niche fitness
value. The minimal amount of resource (r.,) is given to each agent-niche in order to keep
alive less fitted species of agents-solutions.

Next each agent-niche distributes its resource among agents-solutions that currently
belong to it. The resource is distributed proportionally to agents-solutions’ fitness values
with the assumption that each agent-solution can possess no more than r:% of resource.

Niches can migrate within the environment and all solutions live within niches and
migrate with them within the environment. Each time step every solution searches for the
niche that is located within the basin of attraction of the same local minima. Modified
version of hill-valley function ([18]) is used in order to check if two individuals are located
within the basin of attraction of the same local minima. If there are no niches located in
the same basin of attraction, agent-solution creates new agent-niche, which genotype is
the copy of its own genotype (niche is splitted into two niches).

Then each agent-solution searches its niche for the reproduction partner. Reproduction
takes place only when agents have enough amount of resource. The genotypes of all agents
are real-valued vectors. Intermediate recombination [3] and mutation with self-adaptation
[2] are used for solutions and special mutation for niches. Each time step the agent-niche’s
genotype is mutated in such a way, that the resulting genotype is the center of gravity
of agents-solutions that belong to the agent-niche (fitness value of each agent-solution
serves here as a weight value). Such mechanism causes that value of agent-niche’s fitness
depends on the fitness values of agents-solutions that currently belong to it. Niches can
merge if they are located at the same place of environment and if they are located within
the basin of attraction of the same local minima.

3 The results of experiments

3.1 Test Function

In all experiments Rastrigin function was used as the test fitness landscape (see fig. 2).
This is multi-modal function commonly used in studies of niching methods. Rastrigin
function used in experiments is given by

10 n + Z(:cf —10*cos(2*m*x;)) x; € [-2.5,25]fori=1,....n (2)

=1

where n is the number of dimensions (n = 2 in all experiments). The function has 25
local minima for x1, zo € [—2.5,2.5].
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Figure 2: Rastrigin function (a) and its contour plot (b)
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Figure 3: The number of local minima neighborhoods located (the average values from
20 experiments, ni,,;, = 3). The comparison of different systems’ results

3.2 The Comparison of NCoEMAS and Classical Niching Tech-
niques

In this section the comparison of NCoEMAS to other niching techniques (fitness sharing
— F'S [8] and deterministic crowding — DC' [11]) is presented.

Figure 3 shows the average number of local minima neighborhoods located by com-
pared systems. The local minima neighborhood was classified as “located” when there
was at least ni,,;, = 3 individuals closer than 0.05 to that local minima. The experiments
was made for four techniques: NCoEMAS, EMAS, DC and FS.

NCoEMAS stood relatively well when compared to other techniques. On the average,
it stably maintained over 20 local minima neighborhoods. DC quickly located about 13—
14 local minima neighborhoods but there was quite strong tendency to lose almost all of
them during the rest part of simulation. FS technique detected and stably maintained
about 12-13 local minima neighborhoods on the average. EMAS without any niching
mechanism was not able to stably populate more than one local minima neighborhood.



Parameter | E1 E2 E3 Ej E5 E6
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Table 1: The values of r., parameter for different experiments, 7% is the maximal amount
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Figure 4: The number of local minima neighborhoods located (a) and the population sizes
in experiments with different values of r., parameter of NCoEMAS system (the average
values from 20 experiments, n,,;, = 3)

It turned out that in case of multi-modal optimization problems it works just like simple
EA.

3.3 The Results of the Experiments with Resource Sharing Mech-
anism

In this section the results of the experiments with different values of r., parameter are
presented. The value of this parameter is crucial to the correct working of the resource
sharing mechanism in NCoEMAS system. The table 1 shows the values of 7., parameter
used in different types of experiments.

Figure 4a shows the number of local minima neighborhoods located in experiments
with different values of 7., parameter. The results are worst in the case of £2 and E3 ex-
periments. In the case of other experiments the results are quite comparable. This means
that if there are no minimal amount of resource given to the agents-niches (experiments of
type E2) or this amount is too small (experiments of type E3) the species located within
the basins of attraction of “worse” (that means with greater value of fitness function) local
minima have no chances to survive and to win the competition for limited resources with
the species located within the basins of attraction of “better” local minima.

In the case of E2 and E3 experiments the population sizes are generally larger than
in the case of other experiments (see fig. 4b). The number of agents rapidly grows at the
beginning of simulation, approaches some level and then stays approximately the same



during the rest of the experiment. There is no adaptation of the population size to the
difficultness of the problem (to the number of local minima of the fitness function in the
case of presented experiments). In the case of E2 and E3 experiments species located
within the basins of attraction of “worse” local minima quickly loose the competition with
other species and die off. In such case the operator of merging niches does not work, simply
because there are no niches to merge. The number of agents stays generally at the higher
level than in the case of other experiments, because the same amount of resource is given
by environment to the smaller number of agents-niches and the subpopulations of agents-
solutions that belong to them are bigger. In the case of other types of experiments, when
there is enough resource given to each agent-niche, the number of agents in the system
adapts to the number of local minima of fitness function (see fig. 4b). In such case species
of agents-solutions (which live within the agents-niches) do not die off. All species has
the chances to survive. The mechanism of merging niches located within the basins of
attraction of the same local minima causes that after the rapid grow of the number of
agents, the population size decreases slightly and approaches the optimal level.

4 Concluding Remarks

The idea of co-evolutionary multi-agent system (CoEMAS) allows us to model many eco-
logical co-evolutionary interactions between species such as resource competition, predator-
prey and host-parasite co-evolution, sexual preferences, etc.

In this paper sample CoEMAS with two co-evolving species: niches and solutions
was presented. This system was applied to multi-modal function optimization. The
presented results show that NCoEMAS was able to detect and stably maintain more
neighborhoods of Rastrigin function local minima than two classical niching techniques
and EMAS system.

The presented results also indicate that it is necessary to loosen the competition for
limited resources between species located within the basins of attraction of local minima
of different “quality”. In the case of strong competition, the species located within the
basins of attraction of “worse” local minima can eventually completely die off. What is
more, in such case there is no adaptation of the population size to the difficulty of the
problem being solved (to the number of local minima in the case of function minimization
problems).

Future research will include more detailed comparison to other niching techniques,
CoEMAS based on the mechanisms of predator-prey or host-parasite co-evolution. Also
the parallel implementation of COEMAS using MPI is included in future research plans.
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