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Abstract:

The paper deals with a particular approach to crises management in transportation
systems. The considerations are based on a layered reference architecture dedicated to
monitoring and management of multi-agent systems. In the contribution agent-based and
evolutionary approaches are proposed as a basis for the simulation layer realisation.
Several variants are shortly discussed and illustrated by selected experimental results.
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1. INTRODUCTION

During the last decade the idea of an intelligent au-
tonomous agent gains more and more interest both
in academic community and in industry. A constantly
increasing number of computer systems are being
analysed and designed in terms of agents. Agents play
a key role in integration of Al sub-disciplines, which is
often necessary to design and build modern intelligent
systems. Agent technology is used in various domains,
providing concepts and tools for development of com-
plex, distributed and decentralised systems.

The systems under consideration may both be de-
signed from scratch as multi-agent ones (operating in
the virtual world, e.g. network information services,
virtual enterprises), as well as function in the reality
as a set of cooperating autonomous subsystems of
whatever origin (e.g. transportation systems, industrial
complexes). Acceptance of the agent-based approach
opens possibility for solving many problems that until
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now has been tractable only with respect to tightly
coupled centralized systems. Some of these problems
are risk and critical situations (states) analysis (Wu
and Soo, 1999; Collins et al., 1999).

The problem critical situations analysis with respect to
transportation systems will be of our special interest
here. Obviously effective construction of a transport
planning allows companies to highly limit sustained
costs and be more competitive on the market. There-
fore, an important challenge is to create tools, which
support development of such planning on the basis of
acquired knowledge on available transport resources,
incoming transport requests and road network struc-
ture. One of the applied approaches is simulation re-
search, which facilitates selection and configuration of
transport planning algorithms.

Based on a general scheme of crises management in
multi-agent systems (MAS), as well as preliminary
results obtained in the field of transportation systems
(Nawarecki et al., 2005), a variety of possible vari-
ants of planning-support techniques are considered in
the paper. Section 2 introduces fundamental concepts



of the approach—a reference architecture for crises
management for MAS. Section 3 presents selected
approaches to solving transportation problems, with
special attention to evolutionary algorithms and agent-
based systems. And finally section 4 describes several
realisations and selected results of performed experi-
ments.

2. MANAGEMENT OF CRITICAL SITUATIONS
IN MULTI-AGENT SYSTEMS

Multi-agent systems (both real and virtual) are marked
by the possibility of arising critical situations that can
be caused by both outer (e.g. undesirable interference,
the forces of nature) and inner (e.g. resource deficit,
local damages) factors. Crisis is interpreted here as a
threat of loss (partial or complete) of the system func-
tionality. Based on the principal assumptions of MAS
operation an architecture was proposed, which seems
to be general enough to be used as a reference one for
describing crises management activities (Nawarecki et
al., 2005).

The architecture is actually a four-layer one as pre-
sented in fig. 1. The bottom layer (MAS) constitutes
the system under consideration. The directly higher
layer (Monitoring) consists of agents that are assigned
to gathering information about the subject system by
inquiring and observing done according to the agent
paradigm (Kisiel-Dorohinicki, 2005). An agent-based
simulation constitutes the next layer (vMAS), which
aims at foreseeing future states of the system based
on the monitoring data. The main purpose of the up-
per monitoring layer is the evaluation of situations
(states) arising in the course of simulations carried out
using VMAS. It is assumed that selected results can
be applied as a direct management or influence on
mechanisms (e.g. organization) of the system. Thus
the agents of the upper layer may be equipped with
the ability of decision making and, in turn, have an
effect on the system. This may create a loop of semi-
automatic prevention of crises in the proposed archi-
tecture.

The agent-based model of the considered system situ-
ated at the third layer (vMAS) is of our special interest
here. Its agents try reconstruct future states of the
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Fig. 1. MAS management structure

system, simulating the possible behaviour of the real
one using the monitoring data, in various aspects and
different time horizons. These scenario-based studies
are carried out aiming at critical situations detection
and search for an anti-crisis policy. The upper layer
is designed to monitor VMAS and the main purpose
of its agents is the evaluation of situations (states)
arising in the course of simulations. The idea is that
the investigation of a reach enough bunch of scenarios
leads to finding the strategy of avoiding the crisis in
the system or, at least, reducing its effects. Of course
the evaluation may evoke a need of communication
among the agents.

The simulation layer may have different structure and
may employ a variety of techniques accordingly to
the particular application area. A review of different
possibilities in case of transportation systems is given
in the next section.

3. SOLVING TRANSPORTATION PROBLEMS

Transportation problems like Vehicle Routing Prob-
lem with Time Windows (VRPTW) or Pickup and
Delivery Problem with Time Windows (PDPTW)
are defined by a set of known transport requests to
be performed with the least resources available and
time consumption (Desaulniers et al., 2000; Mitrowic-
Minic, 1998). Time windows restrict the acceptable
time periods of service realization at visited points.
The maximum capacities of vehicles cannot be ex-
ceeded by the overall load. The routes of vehicles
should start and finish at a given depot point. In
VRPTW it is assumed that each transport request is
described by one location which should be visited
by a vehicle respecting given constraints. The loads
are delivered either from a starting depot to differ-
ent destinations or from different starting locations to
one destination. In PDPTW each transport request is
expressed by two locations, which are visited by the
same vehicle: a pickup and delivery point.

For both VRPTW and PDPTW the solution consists
of a set of routes associated with particular vehicles.
Each route contains a list of visited request points with
information concerning the time of arrival and depar-
ture. Solving static problems consists of calculating
the optimal routes so as to service all requests from
a fixed set. Because of high computational complexity
of exact methods, approaches based on various heuris-
tics are often used. During the first phase of computa-
tion, initial solutions are built using different versions
of construction heuristics, which insert subsequent
request points into the routes (they differ mainly in
the order of insertions). After the construction phase,
the optimisation occurs, which is done e.g. by tabu
search, evolutionary algorithms or simulated anneal-
ing. Operations of solution modification are based on
emptying some routes (by moving request points to
other routes), different versions of request exchange



among routes, or changing the order of requests within
a route. In dynamic problems it is assumed that re-
quests may also arrive while the system is running,
which makes dynamic modification of vehicle routes
necessary. Thus the modelling of vehicle location also
has to be considered. In this case some modifications
of the above algorithms are used, e.g. in (Gendreau
et al., 1998) a parallel system using tabu search with
adaptive memory is presented.

Evolutionary algorithms are based on iterative trans-
formation of the population of individuals represent-
ing the set of potential solutions of the given problem.
Evolution consists on generating consecutive genera-
tions, using so called genetic operators (or variation
operators) and the process of selection. The process
of evolution should tend to generate better individuals
and finally to find the needed (usually approximate)
problem solution. Yet, evolutionary algorithms often
suffer from the loss of population diversity, often re-
sulting in the premature convergence, which means
locating the basin of attraction of local optima instead
of a global one. This is especially important consider-
ing transportation problems like VRPTW or PDPTW,
because of introduced constraints, which practically
eliminate many new individuals from the population.

Niching methods are aimed at forming and stably
maintaining subpopulations (species) throughout the
search process, thereby allowing to locate multiple
basins of attraction of local minima (Mahfoud, 1995).
Various techniques have been proposed that allow for
species formation via the modification of the mech-
anism of selecting individuals for new generation
(crowding), or the parent selection mechanism (fitness
sharing). Sexual selection also applies to the parent se-
lection mechanism and is based on individuals’ prefer-
ences (Ratford et al., 1997). Another possibility is the
restricted application of selection and/or recombina-
tion mechanisms e.g. by introducing the environment
with some topography within which the individuals
are located (Canti-Paz, 1998).

In co-evolutionary algorithms the fitness of each in-
dividual depends not only on the quality of solution
to the given problem but also (or solely) on other
individuals® fitness. Co-evolutionary techniques are
aimed at overcoming limited adaptive capacity of evo-
lutionary algorithms resulting from the loss of use-
ful diversity of population. As the result of ongoing
research quite many co-evolutionary techniques have
been proposed. Generally, each of these techniques be-
longs to one of two classes: competitive or cooperative
(Paredis, 1995).

A multi-agent approach is based on the cooperation
of intelligent, autonomous elements, called agents.
Each agent constructs a plan so as to accomplish its
goal interacting with other agents. This should lead
to the accomplishment of system goals. Multi-agent
systems for transport planning and scheduling offers
additional features in comparison to meta-heuristic ap-

proaches. A model of the problem is developed for the
purpose of being as close to real life as possible. For
example, the components of the vehicles, the avail-
able drivers, and the loading and unloading process
specifications for different kinds of cargoes are con-
sidered. Some elements (like drivers) need a degree
of autonomy which favours the multi-agent approach
(e.g. they should rest if they feel very tired, or take
decisions concerning detours if necessary). The other
important feature is a possibility of keeping informa-
tion by agents representing competing companies or
other bodies confidential. Below is a review of some
existing multi-agent systems for transport planning
and scheduling.

MARS system (Fischer et al., 1996) is realized to sim-
ulate planning and scheduling for a society of shipping
companies. Agents represent transportation compa-
nies and vehicles. Protocol Contract Net (Smith, 1980)
as well as its extension is applied to assign requests
to particular vehicles. Simulated trading (Bachem et
al., 1994) is used for dynamic re-planning or for op-
timization of the current solution. The MARS system
also makes possible to take into consideration modifi-
cations of travel time because of traffic jams.

TeleTruck (Burckert et al., 1998) is a distributed multi-
agent system to support dispatch officers in shipping
companies. The architecture is based on the concept of
holonic agents, agents may build temporary, complex
structures composed of several agents, and closely co-
operate loosing to some degree their autonomy. There
are several types of agents (driver, truck, trailer, con-
tainer, chassis) which possess and manage specific
types of resources (driving time, motor, chassis, load-
ing space). Such an approach makes it possible to con-
sider different aspects of transport problems like stor-
ing, transportation, management of cargoes, drivers,
trucks etc.

4. REALISED SYSTEMS AND OBTAINED
RESULTS

There exists a number of benchmarks for testing the
quality of algorithms solving static problems, both
PDPTW, prepared by Li and Lim, as well as VRPTW,
prepared by Solomon and by Gehring and Homberger
(Benchmarks - Vehicle Routing and Travelling Sales-
person Problems, 2004). The benchmarks differ in
the number of customers (transport requests) to be
served, spatial distribution of requests (positioned
randomly—LR, in clusters—LC or with mix of ran-
dom and clustered positions—LRC), scheduling hori-
zon (the number of requests, which should be served
by a vehicle) and the size of time windows. Dynamic
problems were generated on the basis of static bench-
marks in such a way that the given percentage of
requests from a static problem was added randomly
during simulation.



Several techniques based on the evolutionary and
multi-agent approach were utilized in the realised im-
plementations of the simulation layer (vMAS) ded-
icated for the crises management in transportation
systems. As it was already stated, static approaches
do not consider the previously elaborated patterns of
management, and define the strategy to be applied
from scratch, based on the actual state of the system.
Thus they may utilize a variety of existing methods
and tools, but their computational complexity must
be taken into account. Yet, which is of vast impor-
tance here, in static problems, the possibility of re-
searching crisis situations is rather limited. One can
introduce into the algorithm some different condi-
tions/constraints which, if fulfilled, improve the secu-
rity level offered by the solution and make it easier
to find an alternative solution e.g. when a car is out
of order. It is possible to consider, as an example, a
condition which promotes balanced distances among
vehicles in each time point or make slacker routes
schedules, which allows the realization of future ad-
ditional requests.

In the island model of parallel evolutionary algo-
rithm developed for static PDPTW solving a high
diversity of the population is guaranteed thanks to the
introduction of islands, on which two different evolu-
tionary algorithms are applied. There are a number of
differences among these algorithms. First of all they
concern a different solution representation method (a
traditional representation, containing points of pickup
and delivery, or a limited representation, which con-
tains only pickup points, the delivery points only be-
ing added when the value of the quality function is
calculated). They also differ in the application of a
virtual route, that temporarily stores those requests
that highly deteriorate the quality of other routes.

Experiments were performed using the different ex-
ample problems. 25 percent of the test results are
equal to the best solutions obtained so far, and 40
percent of test results had equal route numbers but
slightly higher total distances. In the fig. 2 selected
results (number of vehicles used in the solution and
total travel distance) of tests for problems with 200
customers are presented, results obtained for tests with
100 customers were better.
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Fig. 2. Island model for static PDPTW: solutions of
200-customers problems

Another approach utilizes a multi-agent system,
which serves as an environment where many opti-
mization processes are run concurrently, solving the
PDPTW transport problem. This approach makes it
possible to explore different parts of a solution space.
Parts of solutions are exchanged among agents and
agents which provide solutions estimated as valuable,
are rewarded.

In the constructed multi-agent system, each agent rep-
resents a solution of the problem, which is then sub-
jected to an optimization process. The agents may
apply different optimization algorithms, but in the cur-
rent realization they perform tabu search algorithms,
based on solutions presented in (Li and Lim, 2001)
but with the utility functions expressed by different
equations.

Obtained results do not differ from the best know
solutions. For 46 percent of the 100 customer tests and
35 percent of the 200 customer tests, the results were
equal to the best solutions obtained so far, and for the
rest, an average diversity regarding the best solutions
is equal to 6 percent. In the fig. 3 are presented
obtained solutions (number of vehicles used in the
solution and total travel distance) for the problems
with 200 customers.
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Fig. 3. MAS for static PDPTW: solutions of 200-
customers problems

The agents may examine different test examples
(benchmarks) concurrently. Some of them may be
modified so as to represent expected crisis situations.
The choice of different utility functions may promote
a lower number of vehicles or shorter distances. The
latter may accept an increased number of vehicles
whose routes are short, so that these vehicles have
a higher chance of serving additional requests when
other vehicles are out of order. The important factor
may be to promote a construction of special route
configurations e.g. the ones where two vehicles are not
far one from another at any given point in time, which
may make it easier to take over the requests in cases
of breakdown.

On the contrary to static approaches, dynamic ones
try to modify the current management policy, and
thus they need specific mechanisms yet should be
computationally less complicated. But first of all they



form a natural means for development and analysis of
anti-crises strategies.

Co-evolutionary algorithm with island model proved
especially useful in the case of dynamic vehicle

routing problems, where the configuration of clients

is changing during simulation. Such techniques can

much improve solutions generated by evolutionary al-

gorithm by strengthening their adaptive capabilities.

The co-evolutionary algorithm used is based on two
populations: A and B (Machado et al., 2002). The
individuals from the first one have the numbers of
clients in each route coded in their genotypes. The
individuals from the second one have clients coded
in their genotype. The complete solution is the pair
of individuals in which each of them comes from
different population. The fitness value of individual
from the A population ¢* is the average fitness of
pairs containing individual ¢* and individuals coming
from a group of individuals selected from the popu-
lation B. The individuals from population B are eval-
uated in analogical way. The fitness function for the
pair of individuals is given by: ¢(a*,a®) = penalty -
nroutes + totdist, where nroutes is the number of ve-
hicles used, and the rotdist is the total distance. Tour-
nament, roulette wheel and deterministic selection
mechanism are used. The partially mapped crossover
(PMX) operator is used in both populations, shift mu-
tation is used in population B, and uniform mutation
in population A (detailed description of operators may
be, for example, found in (Michalewicz, 1996)). Also
some experiments with the use of local optimization
technique were carried out.

In order to introduce additional population diversity
the island model (Canti-Paz, 1998) is used. In each
island there is different fitness function: fitness of in-
dividual a is the maximal fitness of pairs within which
it was evaluated or average fitness described above is
used. Also, the penalty parameter have different value
on each island. The best individuals are allowed to
migrate between islands.
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Fig. 4. Frequencies of the number of unserved clients
in all dynamic benchmark problems

In the case of dynamic VRPTW problems there is no
commonly used test problems and quality of solution
measures, so the number of unserved clients was used
as the measure of how good the solution found by
co-evolutionary algorithm is. In the case of dynamic
problems generated on the basis of C Solomon’s prob-
lems there was about 6% of unserved clients, in the
case of R problems there was about 2.2% of unserved
clients, and in the case of RC problems there was about
1.6% of unserved clients. The frequencies of the num-
bers of unserved clients for all Solomon’s problems
can be seen in fig. 4.

Another approach uses evolution strategy with nich-
ing technique based on sexual selection mechanism.
Niching technique based on sexual selection can
make evolutionary algorithm easily adapt to con-
stantly changing conditions in the case dynamic ve-
hicle routing problems. In the considered case each
individual’s genotype is composed of two chromo-
some’s. The first one represents a solution and the
second one is composed of evolution operator’s pa-
rameters (number of mutations performed during mu-
tation phase and the indicator of the goal of mutation
operators: minimization of vehicles or minimization
of total distance), as well as the sex marker (female
or male). During the reproduction phase individuals
are sorted (within each sex separately) on the basis of
their fitness values. Individuals are then paired in such
a way that best male individual is paired with best
female individual, second male with second female
and so on. The offspring is produced with the use of
recombination (RBX and SBX) and mutation (LSM)
operators (Michalewicz, 1996).
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. 5. Percentage of distance growth (as compared
to the best known solution for static problems)
for different percentages of dynamic requests—
the average values for all benchmark problems.
Comparison of algorithms with (darker line) and
without (brighter line) sexual selection

Evolutionary algorithm with sexual selection was
compared to the evolutionary algorithm without any
niching technique. On the average, the algorithm with
sexual selection generated better solutions (about 50%
shorter total distance) than evolutionary algorithm
without niching technique. Also, when the percentage
of dynamic requests grows the total distance grows
much slower in the case of evolutionary algorithm
with sexual selection than in the case of evolutionary
algorithm without any special mechanism (see fig. 5).



5. CONCLUDING REMARKS

The article is concerned with the application of agent
and evolutionary approach to the problem of manage-
ment of critical situations in transportation systems.
Several techniques are discussed that solve classically
defined VRPTW and PDPTW problems used for eval-
uation of plans that concern future behaviour of the
system in consideration.

Future work will concentrate on the applications to
crises management in real transportation enterprises
of different organisation. The implementation of crisis
situations simulator is foreseen, allowing for elaborat-
ing different scenarios (for example, changing travel
time between two clients, priorities of clients, shift-
ing time windows, and vehicle’s fault). More detailed
comparison of the algorithms in the case of crisis sit-
uations in VRPTW and PDPTW will follow, in order
to justify and deepen solutions and conclusions elabo-
rated so far.
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