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Rafał Dreżewski and Marek Kisiel-Dorohinicki

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland

{drezew,doroh}@agh.edu.pl

Abstract. Niching techniques for evolutionary algorithms are aimed at main-
taining the diversity through forming subpopulations (species) in multi-modal
domains. Similar techniques may be applied to evolutionarymulti-agent systems,
which provide a decentralised model of evolution. In this paper a specific EMAS
realisation is presented, in which the new species formation occurs as a result
of co-evolutionary interactions between preexisting species. Experimental results
aim at comparing the approach with a classical niching techniques and a basic
EMAS implementation.

1 Introduction

The term Evolutionary Computation is usually used to describe a wide range ofglobal
search and optimization techniques based on analogies to natural evolutionary processes.
However, both experiments and analysis show that for multi-modal problem landscapes
a simple evolutionary algorithm will inevitably loose the diversity of its population and
in consequence locate only a single solution—which is oftena local optimum. In or-
der to overcome this limitation some mechanism that createsand maintains different
subpopulations (species) in a multi-modal domain must be used.

Traditionally, there are two basic approaches in evolutionary biology to understand-
ing speciation process[3]. The first one calledallopatric speciationoccurs when sub-
populations of a given species become geographically isolated. After isolation they fol-
low different paths of evolution, which eventually lead to forming of different species.
The second kind of speciation is calledsympatric speciation. Such speciation results
from niche separation due to resource competition, predator-prey co-evolution, sexual
selection, etc. In this case speciation process takes placewithin single population.

Evolutionary multi-agent systems assume adecentralisedmodel of evolution [5],
which incorporates mechanisms of both allopatric (geographical isolation due to phys-
ical distribution of subpopulations) and sympatric (competition for limited resources
in energy-based selection) speciation. In fact, these mechanisms prove not powerful
enough to maintain stable subpopulations locating different optima. That is why the idea
of co-evolutionarymulti-agent system (CoEMAS) was introduced [2], which opens new
possibilities of modeling biological speciation mechanisms based on co-evolutionary
interactions—like predator-prey interactions, sexual preferences, etc.



2 Maintaining diversity in evolutionary algorithms

During the years of research various mechanisms and techniques for creating and main-
taining species located within the basins of attraction of local minima (niches) have been
proposed. All theseniching techniquesallow species formation via the modification of
the parent selection mechanism (fitness sharing[4]), the modification of mechanism
of selecting individuals for new generation (crowding [6]), the restriction of applica-
tion of the selection and/or recombination mechanisms (bygrouping individuals into
subpopulations or by introducing the environment with sometopography in which the
individuals are located [1]).

In co-evolutionary algorithmsthe fitness of each individual depends not only on
the quality of solution to the given problem but also (or solely) on other individuals’
fitness. This makes such techniques applicable in the cases where the fitness function
formulation is difficult (or even impossible). Co-evolution of species was also used as a
mechanism for maintaining population diversity, introducing open-ended evolution and
improving adaptive capabilities of evolutionary algorithms in dynamic environments.
As the result of ongoing research quite many co-evolutionary techniques have been
proposed. Generally, each of these techniques belongs to one of two classes: competi-
tive [7] or cooperative [8].

3 Evolutionary and co-evolutionary multi-agent systems

The main idea ofevolutionary multi-agent systemis the modeling of evolution process
in MAS [5]. In opposition to classical evolutionary algorithms, inEMASthere is no cen-
tralized algorithm which manipulates the whole population. All individuals (agents) are
independent and make their own decisions, particularly these concerning reproduction
and death.

Selection in EMAS is based on a non-renewable resources, which are possessed by
the agents. Every activity costs some resource and may be realized provided that the
agent’s resource level is high enough. Resources can be gained only from the environ-
ment or other agents, and the rule is that better fit agents aregiven more resources than
less fit ones. This means the competition for limited resources in common environment,
which allows forsympatric speciation.

Agents live within an environment with a defined spatial structure and may change
their location within the environment. It is thus a natural model ofallopatric speciation
because evolutionary processes may run with different conditions in many locations co-
existing in parallel. Agents migrate, so the genetic material (information) is exchanged
between locations. This model is, to some extent, similar toisland modelof PEA with
all its advantages and disadvantages.

The key idea that differentiatesco-evolutionarymulti-agent system (CoEMAS)
from EMAS is theco-evolutionof several species (which cooperate or compete) in one
environment [2]. In the particular model of EMAS withco-evolving species(NCoEMAS)
there is a hierarchical structure of species: agents-solutions live within agents-niches.

In NCoEMAS there is a closed circulation of resources. Some resource is given
from the environment to the agents-niches (proportionallyto their fitness) and then
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Fig. 1. The number of Rastrigin’s function local minima neighborhoods located (a) and the value
of proportional species’ sizes indicator (b) – average values from 20 runs of different algorithms

redistributed among agents-solutions (a competition for limited resources). In spite of
the proportional amount of resource, all agents-niches arealso given some minimal
amount of resource in order to keep alive less fitted species of solutions. The resource
spent by the agents returns to the environment.

Each time step every agent-solution searches for the agent-niche, which is located
within the basin of attraction of the same local minimum. If there are no such agents-
niches, the agent-solution creates a new agent-niche, which genotype is the copy of
its own genotype and migrates into it. Then each agent-solution, which have enough
resource, searches its agent-niche for the reproduction partner.

In the considered case genotypes of all agents are real-valued vectors. Intermediate
recombination and mutation with self-adaptation are used for agents-solutions and spe-
cial mutation for agents-niches (the resulting genotype isthe center of gravity of agents-
solutions that belong to the agent-niche which genotype is mutated). Only agents-niches
can migrate within the environment. They can also merge if they are located at the same
place of environment and if they are located within the basinof attraction of the same
local minimum.

4 Experimental results

The experiments were carried out for four techniques: EMAS,and NCoEMAS, as well
as deterministic crowding (DC [6]) and fitness sharing (FS[4]). Figure 1a shows the av-
erage number of Rastrigin’s function local minima neighborhoods located by the com-
pared systems. The local minima neighborhood was classifiedas “located” when there
was at least 3 individuals closer than 0.05 to that local minima. Figure 1b shows the av-
erage values of proportional species’ sizes indicatornpd(t). Thenpd(t) indicator gives



the higher measure when the sizes of species located within basins of attractions of
local minima are proportional to the “quality” of that localminima.

The results of experiments indicate thatNCoEMASlocated more neighborhoods of
local minima and maintained subpopulations more stably than two classical niching
techniques (fitness sharinganddeterministic crowding), as well as a classicalEMAS.
Tendency to maintain high diversity within species was observed forFS, but in this case
there were also agents located outside the basins of attraction of local minima.DC has
the strong tendency to lose located basins of attraction of local minima during the evo-
lution process.EMAScannot be applied to multi-modal function optimization without
introducing special mechanisms such as co-evolution. It turned out that competition for
limited resources and environment with a defined spatial structure are not enough to
form and maintain more than one species in the case of multi-modal problems.

5 Concluding remarks

Most of classical niching techniquesindirectlymodel resource sharing within the niches.
On the other hand, parallel evolutionary algorithms model speciation caused by ge-
ographical isolation of subpopulations. The approach of co-evolutionary multi-agent
systems combines all these techniques in one coherent model. It allows for natural im-
plementation of the process ofsympatric speciationbased on niche separation due to
resource competition. At the same timeallopatric speciationis achieved based on en-
vironmental structure of EMAS.

The presented results of simulation experiments are promising and encourage fur-
ther work on the idea of co-evolution in EMAS. It demands moreexperimental studies
to find out which parametrs of the introduced techniques are of vast importance for their
efficiency, and how the behaviur of the system changes for different kinds of problems.
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