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Abstract. Niching techniques for evolutionary algorithms are aimédanain-
taining the diversity through forming subpopulations ($ps) in multi-modal
domains. Similar techniques may be applied to evolutionauiti-agent systems,
which provide a decentralised model of evolution. In thipgraa specific EMAS
realisation is presented, in which the new species formatcurs as a result
of co-evolutionary interactions between preexisting sgedExperimental results
aim at comparing the approach with a classical niching tiectas and a basic
EMAS implementation.

1 Introduction

The term Evolutionary Computation is usually used to déscai wide range aflobal
search and optimization techniques based on analogietu@ahevolutionary processes.
However, both experiments and analysis show that for nmudtital problem landscapes
a simple evolutionary algorithm will inevitably loose thigeksity of its population and
in consequence locate only a single solution—which is oftércal optimum. In or-
der to overcome this limitation some mechanism that cremtelsmaintains different
subpopulationssgpecieyin a multi-modal domain must be used.

Traditionally, there are two basic approaches in evolaigiiology to understand-
ing speciation procesk3]. The first one calledllopatric speciatioroccurs when sub-
populations of a given species become geographicallytesbl@fter isolation they fol-
low different paths of evolution, which eventually lead torhing of different species.
The second kind of speciation is callsgmpatric speciationSuch speciation results
from niche separation due to resource competition, pregaty co-evolution, sexual
selection, etc. In this case speciation process takes plidti@ single population.

Evolutionary multi-agent systems assumdezentralisednodel of evolution [5],
which incorporates mechanisms of both allopatric (gedgjgbisolation due to phys-
ical distribution of subpopulations) and sympatric (cotitfm for limited resources
in energy-based selection) speciation. In fact, these argsims prove not powerful
enough to maintain stable subpopulations locating diffesptima. That is why the idea
of co-evolutionarynulti-agent system (CoEMAS) was introduced [2], which cpeew
possibilities of modeling biological speciation mechamisbased on co-evolutionary
interactions—Ilike predator-prey interactions, sexuef@rences, etc.



2 Maintaining diversity in evolutionary algorithms

During the years of research various mechanisms and tagdmfqr creating and main-
taining species located within the basins of attractiomoél minima (niches) have been
proposed. All thesaiching techniqueallow species formation via the modification of
the parent selection mechanisfitress sharind4]), the modification of mechanism
of selecting individuals for new generatiocrgwding[6]), the restriction of applica-
tion of the selection and/or recombination mechanismsgfioypingindividuals into
subpopulations or by introducing the environment with s@apegraphy in which the
individuals are located [1]).

In co-evolutionary algorithmshe fithess of each individual depends not only on
the quality of solution to the given problem but also (or §glen other individuals’
fithess. This makes such techniques applicable in the cdsexevhe fithess function
formulation is difficult (or even impossible). Co-evolutiof species was also used as a
mechanism for maintaining population diversity, introthgropen-ended evolution and
improving adaptive capabilities of evolutionary algonith in dynamic environments.
As the result of ongoing research quite many co-evolutipt@chniques have been
proposed. Generally, each of these techniques belongstofdwo classes: competi-
tive [7] or cooperative [8].

3 Evolutionary and co-evolutionary multi-agent systems

The main idea oévolutionary multi-agent systeisithe modeling of evolution process
in MAS [5]. In opposition to classical evolutionary algdmihs, inEMASthere is no cen-
tralized algorithm which manipulates the whole populatidihindividuals (agent$ are
independent and make their own decisions, particularlgetoncerning reproduction
and death.

Selection in EMAS is based on a non-renewable resourceshveine possessed by
the agents. Every activity costs some resource and may beegarovided that the
agent’s resource level is high enough. Resources can bedyairly from the environ-
ment or other agents, and the rule is that better fit agentgeea more resources than
less fit ones. This means the competition for limited resesiic common environment,
which allows forsympatric speciation

Agents live within an environment with a defined spatial stinwe and may change
their location within the environment. It is thus a naturadel ofallopatric speciation
because evolutionary processes may run with differentitiond in many locations co-
existing in parallel. Agents migrate, so the genetic matg¢imformation) is exchanged
between locations. This model is, to some extent, similésléemd modebf PEA with
all its advantages and disadvantages.

The key idea that differentiateso-evolutionarymulti-agent system (CoEMAS)
from EMAS is theco-evolutiorof several species (which cooperate or compete) in one
environment[2]. In the particular model of EMAS witlo-evolving specigNCoEMAS)
there is a hierarchical structure of species: agentsisakitive within agents-niches.

In NCoEMAS there is a closed circulation of resources. Soesaurce is given
from the environment to the agents-niches (proportion@llyheir fithess) and then
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Fig. 1. The number of Rastrigin’s function local minima neighbastis located (a) and the value
of proportional species’ sizes indicator (b) — averageesliiom 20 runs of different algorithms

redistributed among agents-solutions (a competitionifoitéd resources). In spite of
the proportional amount of resource, all agents-nichesal® given some minimal
amount of resource in order to keep alive less fitted spedisslotions. The resource
spent by the agents returns to the environment.

Each time step every agent-solution searches for the amjems; which is located
within the basin of attraction of the same local minimumhiéte are no such agents-
niches, the agent-solution creates a new agent-niche hvgeaotype is the copy of
its own genotype and migrates into it. Then each agentisaluvhich have enough
resource, searches its agent-niche for the reproductitingra

In the considered case genotypes of all agents are read/akctors. Intermediate
recombination and mutation with self-adaptation are usedgents-solutions and spe-
cial mutation for agents-niches (the resulting genotypleesenter of gravity of agents-
solutions that belong to the agent-niche which genotypaitatad). Only agents-niches
can migrate within the environment. They can also mergeey tire located at the same
place of environment and if they are located within the bas$iattraction of the same
local minimum.

4 Experimental results

The experiments were carried out for four techniques: EMsk®, NCOEMAS, as well
as deterministic crowdindC [6]) and fithess sharindg<S[4]). Figure 1a shows the av-
erage number of Rastrigin’s function local minima neightmards located by the com-
pared systems. The local minima neighborhood was classifiétbcated” when there
was at least 3 individuals closer than 0.05 to that local m&iFigure 1b shows the av-
erage values of proportional species’ sizes indicafmi(t). Thenpd(t) indicator gives



the higher measure when the sizes of species located wittsim® of attractions of
local minima are proportional to the “quality” of that logainima.

The results of experiments indicate tiNCoEMASocated more neighborhoods of
local minima and maintained subpopulations more stabln tha classical niching
techniquesf{tness sharin@nddeterministic crowding as well as a classicIMAS
Tendency to maintain high diversity within species was olesforFS, but in this case
there were also agents located outside the basins of atrasftiocal minima.DC has
the strong tendency to lose located basins of attractiooaafl Iminima during the evo-
lution processEMAScannot be applied to multi-modal function optimizationivatit
introducing special mechanisms such as co-evolutiontiiet out that competition for
limited resources and environment with a defined spatiacsire are not enough to
form and maintain more than one species in the case of moltiafproblems.

5 Concluding remarks

Most of classical niching techniquienslirectlymodel resource sharing within the niches.
On the other hand, parallel evolutionary algorithms mogbelcgation caused by ge-
ographical isolation of subpopulations. The approach eéwmutionary multi-agent
systems combines all these techniques in one coherent nibaléws for natural im-
plementation of the process sympatric speciatiotvased on niche separation due to
resource competition. At the same tirakopatric speciationis achieved based on en-
vironmental structure of EMAS.

The presented results of simulation experiments are piog@&ad encourage fur-
ther work on the idea of co-evolution in EMAS. It demands mexperimental studies
to find out which parametrs of the introduced techniques fwvasi importance for their
efficiency, and how the behaviur of the system changes fterdifit kinds of problems.
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