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Abstract. Co-evolutionary techniques for evolutionary algorithms are aimed at
overcoming their limited adaptive capabilities and allow for the application of
such algorithms to problems for which it is difficult or even impossible to formu-
late explicit fitness function. In this paper the idea ofco-evolutionary multi-agent
system with host-parasite mechanism for multi-objective optimization is intro-
duced. In presented system the Pareto frontier is located bythe population of
agents as a result of co-evolutionary interactions betweenspecies. Also, results
from runs of presented system against test functions are presented.

1 Introduction

Evolutionary algorithms (EAs)are techniques for finding suboptimal solutions of global
optimization and adaptation problems, which are based on analogies to biological evo-
lutionary processes. Evolutionary algorithms, however, often suffer from premature loss
of population diversity. This results in premature convergence and may lead to locating
local optimum instead of a global one. In the case of multi-modal problem landscapes
EA without any special mechanisms will inevitably locate basin of attraction of single
optimum. The loss of diversity also limits the adaptive capabilities of EAs in dynamic
environments.

In co-evolutionary algorithmsthe fitness of each individual depends not only on
the quality of solution to the given problem but also (or solely) on other individuals’
fitness. This makes such techniques applicable in the cases where the fitness function
formulation is difficult (or even impossible). Co-evolutionary techniques, are aimed
at improving adaptive capabilities and introducing open-ended evolution into EAs by
maintaining population diversity [8].

High quality approximation ofPareto frontiershould fulfill at least three distin-
guishing features: first of all it of course should be “located” as close to the ideal Pareto
frontier as possible what is very natural and common condition for both single- and
multi- objective optimization, secondly it should includeas many alternatives as pos-
sible and, at last, all proposed non-dominated alternatives should be evenly distributed
over the whole ideal Pareto set.

In consequence, in the case of multi-objective optimization, premature loss of pop-
ulation diversity can result not only in lack of drifting to the ideal Pareto frontier but
also in obtaining approximation of Pareto set that is focused around its selected area(s)



— what of course is very undesirable assuming that preference-based multi-objective
optimization is not considered in this place.

Evolutionary multi-agent systems (EMAS)have proved their grate usefulness for
solving a lot of different discrete, continuous, combinatorial and non-combinatorial
multi-objective optimization problems [12, 11]. Co-evolutionary mechanisms are aimed
at maintaining population diversity and improving adaptive capabilities of EMAS sys-
tems — especially in dynamic environments. This paper introduces the idea ofco-
evolutionary multi-agent system with host-parasite mechanism for multi-objective opti-
mization. The process of locating Pareto frontier in such system emerges as a result
of co-evolutionary interactions between species of agents. The results from runs of
co-evolutionary multi-agent system for multi-objective optimization against commonly
used test functions are also presented and the comparison toclassical multi-objective
evolutionary algorithms is made.

2 Evolutionary and Co-Evolutionary Multi-Objective
Optimization

During most real-life decision processes a lot of different (often contradictory) factors
have to be considered, and the decision maker has to deal withan ambiguous situation:
the solutions which optimize one criterion may prove insufficiently good considering
the others. From the mathematical point of view such multi-objective (or multi-criteria)
problem can be formulated as follows [13].

Let the problem variables be represented by a real-valued vector:

x= [x1, x2, . . . , xN]T ∈ IRN (1)

whereN gives number of the variables. Then a subset of IRN of all possible (feasible)
decision alternatives (options) can be defined by a system of:

– inequalities (constraints):gk(x) ≥ 0 andk= 1,2, . . . ,K,
– equalities (bounds):hl(x) = 0, l = 1,2, . . . ,L

and denoted byD. The alternatives are evaluated by a system ofM functions (objec-
tives) denoted here by vectorF =

[

f1, f2, . . . , fM
]T :

fm : IRN→ IR, m= 1,2, . . . ,M (2)

The key issue of optimality in the Pareto sense is theweak domination relation.
Alternativexa is dominated byxb (which is often denoted byxb � xa) if and only if
(assuming maximization of all objectives):

∀m fm(xa) ≤ fm(xb) and∃m fm(xa) < fm(xb) (3)

A solution in the Pareto sense of the multi-objective optimization problem means de-
termination of all non-dominated (in the sense of the definedaboveweak domination
relation) alternatives from the setD, which is sometimes called aPareto-optimal set.



The Pareto-optimal set consists of globally optimal solutions, however there may
also exist locally optimal solutions, which constitute locally non-dominated set (local
Pareto-optimal set) [2]. The setPlocal ⊆ D is local Pareto-optimal set if [13]:

∀xa ∈ Plocal : ∄xb ∈ D such thatxb � xa∧
∥

∥

∥xb− xa
∥

∥

∥ < ε∧
∥

∥

∥F(xb)−F(xa)
∥

∥

∥ < δ (4)

where‖·‖ is a distance metric andε > 0, δ > 0.
The setP ⊆ D is global Pareto-optimal set if [13]:

∀xa ∈ P : ∄xb ∈ D such thatxb � xa (5)

These locally or globally non-dominated solutions create (in the criteria space) so-
called local (PF local) or global (PF ) Pareto frontiers that can be defined as follows:

PF local =
{

y= F (x) ∈ IRM | x ∈ Plocal

}

(6a)

PF =
{

y= F (x) ∈ IRM | x ∈ P
}

(6b)

Multi-objective problems with one global and many local Pareto frontiers are called
multi-modal multi-objective problems[2].

For the last 20 years a variety of evolutionary multi-criteria optimization techniques
have been proposed. In the Deb’s typology of evolutionary multi-objective algorithms
(EMOAs) firstly the elitist and non-elitist ones are distinguished [3]. The main differ-
ence between these two groups of techniques consists in utilizing the so-called elite-
preserving operators that give the best individuals (the elite of population) the opportu-
nity to be directly carried over to the next generation regardless of the actual selection
mechanism used. Deb’s typology includes also so-calledconstrained EMOAs—i.e. al-
gorithms and techniques that enable handling constraints connected with problem that
is being solved.

Laumanns, Rudolph and Schwefel proposed co-evolutionary algorithm with predator-
prey model and spatial graph-like structure for multi-objective optimization [6]. Deb in-
troduced modified algorithm in which predators eliminated preys not only on the basis
of one criteria but on the basis of the weighted sum of all criteria [3]. Li proposed other
modifications to this algorithm [7]. The main difference was that not only predators
were allowed to migrate within the graph but also preys coulddo it.

Co-evolution is the biological mechanism responsible for biodiversity and sym-
patric speciation. However it was not widely used as a mechanism of maintaining useful
genetic diversity of population for evolutionary algorithms. It seems that co-evolution
should introduce open-ended evolution, improve adaptive capabilities of EA (especially
in dynamic environments) and allow speciation (the formation of species located within
different areas of Pareto frontier or within local and global Pareto-frontiers in case of
multi-modal multi-objective problems) but this is still anopen issue and the subject of
ongoing research.



3 Co-Evolutionary Multi-Agent System for Multi-Objective
Optimization

The main idea ofco-evolutionary multi-agent system (CoEMAS)is the realization of
species and sexes co-evolution inmulti-agent system (MAS)[4]. CoEMAS model, as
opposed to the basicevolutionary multi-agent system (EMAS)model [1], allows for the
existence of several species and sexes which can interact with each other and co-evolve.
CoEMAS is especially suited for modeling different co-evolutionary interactions, such
as resource competition, predator-prey and host-parasiteco-evolution, sexual prefer-
ences, etc. Systems based on CoEMAS model can be applied, forexample, to multi-
modal function optimization and multi-objective optimization because such systems
maintain population diversity and easily adapt to changingenvironment.

3.1 Co-evolutionary Multi-Agent System with Host-Parasite Model

The essence of host-parasite approach consists in common evolutionary process (co-
evolution) of two populations: population ofhosts— representing problem solutions
and population ofparasites— representing tests that should be passed byhosts. Hosts’
fitness value is proportional to the number of tests that eachof them passed whereas
parasites’fitness function value depends on number ofhoststhat do not pass test rep-
resented by givenparasite. Of course each population can be characterized by its own:
size, selection type, type of representation, genetic operators, probabilities of crossover
and mutation etc. So, in another words, these are co-evolving but simultaneously inde-
pendent populations.

Presentedco-evolutionary multi-agent system for multi-objective optimization with
host-parasite mechanismhas been developed usingJagWorldplatform — a kind of
Java-based infrastructure supplying basic mechanisms such as communication, paral-
lelization etc. required during implementation systems according to bothEMASand
CoEMASmodel.

Realization of presented system required implementation of two kinds of agents:
host-agents(representing solutions of problem that is being solved) and parasite-agents
(representing ”tests” forhost-agentsor rather for solutions represented byhost-agents).
The behavior ofhost-agentis similar to the behavior of ”standard” agents characteristic
for EMAS-basedsystems. So,host-agent”lives” in a place, it can move between places,
and in every step it consumes resources needed for its life-activity. The fitness value is
not directly assigned to thehost-agentbut it depends indirectly on interactions with
population ofparasites(host-agentsrepresenting worse solutions are more likely to be
infectedbyparasite-agents). Eachparasite-agent, similarly to thehost-agent, consumes
resources needed for living in the system in every step of simulation, but these agents do
not receive resources from the environment, as it takes place in the case ofhost-agents
but it takes resources from infectedhost.

The most distinguishing feature ofparasite-agentis its possibility to infectinghost-
agents. In every step eachparasite-agentthat does not infect anyhost-agenttries to
infect non-infectedhost. To infect ahost-agenttheparasite-agentperforms specific test
consisting in comparing objectives values represented by its genotype with objectives



Table 1.Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to theCoverage of two setsmetrics

Coverage of two setsδ(A,B)
SPEA VEGA NPGA CoEMAS

SPEA X 0.08 0.00 0.04
VEGA 0.92 X 0.30 0.32
NPGA 1.00 0.62 X 0.40
CoEMAS 0.96 0.70 0.58 X

values ofhost-agentthat is being infected. The probability of infection is higher or
lower depending on performed test.

Both host-agentsandparasite-agentscan reproduce if they posses enough amount
of resources.Host’s reproduction consists in creating one descendant from two ready-
for-reproduction individuals using crossover operator and then mutation operator is ap-
plied to created descendant. Parental individuals survivereproduction process but they
loss some of their resources in aid of their offsprings.Parasite’sreproduction consists in
creating two descendants from one parental individual using mutation operator. Parental
parasite-agenttransfers half of its life-energy to each of its descendantsand then dies.

At last, mentioned above test that is being performed byparasite-agenton host-
agentbefore infection consists in comparing — in the sense of domination relation (see
eq. (3)) — solutions represented by assaultingparasite-agentandhost-agentsthat is
being assaulted. The more solution represented byhost-agentis dominated byparasite-
agentthe higher is the probability of infection.

3.2 Simulation Experiments — Preliminary Qualitative Results

After implementation some experiments have been performed, but because of space
limitations only some qualitative conclusions (not quantitative results) will be here pre-
sented. Namely, proposedco-evolutionary multi-agent system for multi-objective op-
timization with host-parasite mechanismhas been tested using, inter alia,Binh and
slightly modifiedSchaffer test functions that are defined as follows:

F1(Binh) =



















f1(x,y) = x2
+y2

f2(x,y) = (x−5)2+ (y−5)2

where −5≤ x,y≤ 10

F2(Modi f ied S cha f f er) =



















f1(x) = x2

f2(x) = (x−2)2

where −32≤ x≤ 32

Additionally, on the sameJagWorldplatform there have been implemented also
some ”classical” evolutionary algorithms for multi-objective optimization i.e.Vector
Evaluated Genetic Algorithm (VEGA)[9, 10],Niched-Pareto Genetic Algorithm (NPGA)
[5] andStrength Pareto Evolutionary Algorithm (SPEA)[13].



Table 2.Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to theCoverage difference of two setsmetrics

Coverage difference of two setsξ(A,B)
SPEA VEGA NPGA CoEMAS

SPEA X 8 0 6
VEGA 116 X 3 13
NPGA 154 42 X 25
CoEMAS 197 27 7 X

Table 3.Comparison of proposed CoEMAS approach with selected classical EMOA’s according
to another four metrics

Size of dominated
space (℘)

Average distance
to the model
Pareto set (M1)

Distribution ( M2) Spread (M3)

SPEA 39521 0.8 0.21 10.2
VEGA 39405 2.3 0.11 10.3
NPGA 39368 3.2 0.18 10.1
CoEMAS 39324 3.7 0.15 9.9

To compare proposed approach with implemented classical algorithms also some
metrics have been used. Obtained values of these metrics arepresented in Table 1,
Table 2 and Table 3.

Assuming the following meaning of used below symbols:P—Pareto set defined
in eq. (5),A,B⊆ D—two sets of decision vectors,σ ≥ 0—appropriately chosen neigh-
borhood parameter and‖·‖—the given distance metric, then the measures presented in
these tables are defined as follows [13]:

– δ(A,B)—the coverage of two sets maps the ordered pair (A,B) to the interval [0,1]
in the following way:

δ(A,B) =
|{b ∈ B | ∃a ∈ A : a� b}|

|B|
(7)

– ξ(A,B)—the coverage difference of two sets (℘ denotes value of thesize of domi-
nated spacemeasure):

ξ(A,B) = ℘(A+B)−℘(B) (8)

– M1—the average distance to the Pareto-optimal setP:

M1(P) =
1
|P|

∑

p∈P

min{‖p− x‖ | x ∈ P} (9)

– M2—the distribution in combination with the number of non-dominated solutions
found:

M2(P) =
1

|P−1|

∑

p∈P

|{r ∈ P | ‖p− r‖ > σ}| (10)



– M3—the spread of non-dominated solutions over the setA:

M3(P) =

√

√

√ N
∑

i=1

max{‖pi − r i‖ | p, r ∈ P} (11)

Basing on defined above test functions and measures, some comparative studies of
proposed co-evolutionary agent-based system and mentioned above very well known,
and commonly used algorithms (i.e.VEGA, NPGAandSPEA) could be performed and
conclusions from such experiments can be formulated as follows:

– Within the group of implemented algorithmsSPEAhas turned out to be definitely
the best one;

– NPGAhas turned out to be slightly worse thanSPEAif the distance to the model
Pareto frontier has been considered, and they have been verysimilar if distribution
non-dominated individuals over the whole Pareto frontier has been considered;

– VEGA-based solutions have been almost as close to the model Pareto frontier as
they have been in case ofSPEA— however these solutions have been focused
around some parts of Pareto set — what confirms the tendency ofVEGAfor prefer-
ring chosen objective(s);

– proposedCoEMASsystem withhost-parasitemechanism has turned out to be com-
parable to theclassical algorithmsaccording almost all considered metrics except
for Average distance to the model Pareto set(see. Table 3);

It has to be mentioned here that preliminary experiments have been performed using
very simple test functions and some potential advantages ofproposed co-evolutionary
system could not be here observed — but of course further experiments especially
with very difficult multi-dimensional and dynamic testing problems will be conducted
and proposed approach should turn out especially useful in case of multi-modal multi-
objective problems such as Zitzler’st4 test function [13].

4 Concluding Remarks

Evolutionary algorithms often suffer from premature loss of population diversity what
limits their adaptive capabilities and possible application to hard problems like multi-
modal and multi-objective optimization. To avoid such problems niching and co-evo-
lutionary techniques for evolutionary algorithms are proposed and applied. However,
co-evolutionary techniques are rather rarely used as mechanisms of maintaining useful
population diversity.

The model ofco-evolutionary multi-agent systemallows co-evolution of several
species and sexes. This results in maintaining population diversity and improves adap-
tive capabilities of systems based onCoEMASmodel. In this paper theco-evolutionary
multi-agent system with host-parasite mechanism for multi-objective optimizationhas
been presented. The system was run against commonly used test problems and com-
pared to classical VEGA, SPEA, and NPGA algorithms. Presented results show that
SPEA is the best of all compared algorithms. Proposed CoEMASwith host-parasite



mechanism was comparable to the other classical algorithms, except foraverage dis-
tance to the model Pareto setmetric. This fact results from the tendency to maintain
high population diversity what could be very useful in the case of hard dynamic and
multi-modal multi-objective problems.

Future work will include more detailed comparison to other classical algorithms
with the use of hard multi-dimensional, dynamic, and multi-modal multi-objective test
problems. Also the application of other co-evolutionary mechanisms like sexual selec-
tion and predator-prey are included in future plans.
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Handbook of Evolutionary Computation, 1st supplement. IOP Publishing and Oxford Uni-
versity Press, 1998.

9. J. D. Schaffer. Some experiments in machine learning using vector evaluated genetic algo-
rithms. PhD thesis, Vanderbilt University, 1984.

10. J. D. Schaffer. Multiple objective optimization with vector evaluatedgenetic algorithms.
In Proceedings of the First International Conference on Genetic Algorithms, pages 93–100,
1985.

11. L. Siwik and M. Kisiel-Dorohinicki. Balancing of production lines: evolutionary, agent-
based approach. InProceedings of Conference on Management and Control of Production
and Logistics, pages 319–324, 2004.

12. K. Socha and M. Kisiel-Dorohinicki. Agent-based evolutionary multiobjective optimization.
In Proceedings of the Congress on Evolutionary Computation, pages 109–114, 2002.

13. E. Zitzler. Evolutionary algorithms for multiobjective optimization: methods and applica-
tions. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999.


