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Abstract:
Evolutionary algorithms have some indispensable features, which limits their
applicability in the case of selected problems. The key concept of the agent-based
evolutionary computation paradigm is the decentralization of the evolutionary
processes. Such decentralized models of evolutionary computation have some
interesting features, which are absent in “classical” evolutionary algorithms—
among them there are the possibilities of introducing in a very natural and coherent
way new mechanisms and operators. One of such operators—the aggregation—is
presented in this paper. Also, there are presented results of preliminary experi-
ments with the evolutionary multi-agent system with aggregation mechanism for
time series prediction.
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1. INTRODUCTION

Evolutionary algorithms (EAs) are computational
intelligence techniques based on principles of Dar-
winian model of evolutionary processes (Bäck et
al., 1997). They have been widely, and with great
successes, applied to a wide variety of optimiza-
tion and adaptation problems. However, there ex-
ist some indispensable features of EAs that limits
their applicability in the case of some problems. It
seems that most of these problems result from the
following assumptions on which most of the “clas-
sical” evolutionary algorithms models are based:

• The evolutionary processes are centralized
and one common algorithm (process) is used
to realize the selection and to generate off-
spring and next generation populations.

• Individuals are simplified to genotypes, what
makes it impossible for them to act in the en-
vironment, interact with it (including other
individuals), and make any decisions that
could influence the evolutionary processes.

• The set of evolutionary operators is limited
(recombination, mutation, etc.)—this seems
to limit the possibilities of modeling some of
the important features of real evolutionary
processes.

• Mechanisms like species formation, co-evo-
lutionary interactions between species and
sexes, social relations are difficult (or even
impossible in some cases) to realize.

• There are no resources that individuals could
compete for. Instead of this some mech-
anisms like fitness sharing are introduced,



which only implicitly model the competition
for limited resources.

• There are no mechanisms of adapting the
number of individuals in the population to
the difficulty level of the problem being
solved.

All the mentioned above features are the cause
of some limitations of EAs in the case of selected
problems, like for example multi-modal optimiza-
tion, multi-objective optimization, adaptation in
dynamic environments etc.

Agent-based evolutionary computation paradigm
results from the attempts to decentralize the evo-
lutionary processes and to formulate models of
evolutionary computation that are closer to the
real evolutionary processes observed in nature.
This resulted in the formulation of evolutionary
multi-agent system (EMAS) model. In the case of
such system three basic mechanism, which are re-
sponsible for initiating and maintaining evolution-
ary processes, exist: agents are able to reproduce,
die, and there exist resources in the environment
for which agents compete and which are needed
for all their activities (Cetnarowicz et al., 1996).
The research on niching and speciation techniques
for EMAS model resulted in the formulation of
the general model of co-evolution in multi-agent
system (CoEMAS) (Dreżewski, 2003). This model
includes additionally the notions of species, sex
and relations between species and sexes in evo-
lutionary multi-agent system. These mechanisms
can serve as a basis for creating techniques of
maintaining useful population diversity and speci-
ation in systems based on CoEMAS model. Com-
putational systems based on CoEMAS model has
already been applied with promising results to
multi-modal optimization (Dreżewski, 2006), and
multi-objective optimization (Dreżewski and Si-
wik, 2006).

Such decentralized models of evolutionary compu-
tation have some very interesting features which
are absent in “classical” EAs:

• Individuals (agents) are no more the passive
objects of the evolutionary processes, but
they are also involved in these processes,
thus we can easily model and introduce co-
evolutionary interactions and social relations
between agents of different types, species,
and sexes.

• Agent-oriented architecture of such systems
allows for designing hybrid systems (us-
ing many different computational intelligence
techniques within the framework of one co-
herent model), and including user preferences
in the computational systems—agents repre-
senting user preferences can be introduced
into such systems.

• The process of evolution is completely decen-
tralized (agents as the evolving individuals,
the absence of centralized selection mecha-
nism) what results in the relaxation of syn-
chronization constraints of the computations,
and, as the effect of this, decreasing the
overhead resulting from the synchronization
mechanisms.

• The possibility of introducing—in a very nat-
ural way—such mechanisms and evolution-
ary operators, which are very difficult to be
introduced and used in the case of “classical”
EAs. These include for example the aggrega-
tion operator (which is the main subject of
this paper), escape (migration) mechanism,
mechanism of resource sharing which can be
used instead of fitness sharing mechanism,
which model only in implicit way the com-
petition for limited resources in EAs.

• The possibility of modeling allopatric speci-
ation on the basis of spatial structure of the
EMAS system, and the sympatric speciation
on the basis of co-evolutionary interactions
between species and sexes in the CoEMAS
system.

• The mechanism of auto-adaptation of the
system to the type of problem being solved
and the difficulty level of the problem—for
example the population size can adapt to
the problem or to the changing environment
conditions.

In this paper the agent-based evolutionary sys-
tem with aggregation operator is presented. The
proposed operator is preliminary assessed with
the use of prediction in the changing environ-
ment problem. Presented results show that the
application of the aggregation operator leads to
the emergence of social relations between agent
and to the improvement of obtained results of the
problem being solved.

2. AGGREGATION AND ESCAPE
OPERATIONS

The agent–environment relation is the basic rea-
son that forces agents to participate in the evolu-
tion process. If state of this relation is not satisfied
for particular agent, it can choose one of following
actions:

• agent may change itself—adapting itself to
the conditions of the environment with the
use of mutation and crossover operations,

• agent may change the environment with,
among others, the use of aggregation and
escape operations.

The evolution process in which autonomous agent
take part, may be realized with the use of fol-
lowing operators that affect single agent or fixed



group of agents. In the agent environment muta-
tion, crossover and reproduction operators have
the same form as presented in (Fogel et al., 1966;
Goldberg, 1989; Michalewicz, 1996) with such an
exception that the evolution process of each agent
has its own (individual for each agent) character-
istics, it depends on agent’s decisions, and it takes
place according to its own independent cycle.

The idea of aggregation operation may be consid-
ered as a creation (by agents) of new environment
in which agents act. A group of agents (such
that conditions of actual environment do not suit
them) make an agreement, which goal is to take
over the control over the part of the existing en-
vironment. Thus agents change the parameters of
the controlled environment, which we mentioned
above, to make it better adapted to their require-
ments. After the creation of new environment
a group of agents, mentioned above, owing to
specialization and cooperation, maintain desirable
parameters in the environment created by them.
This group (when it is seen from outside) act like
a new agent with new, characteristic features that
arose owing to the aggregation operation. To sum
up, the aggregation operator makes it possible to
change the relation agents-environment with the
change of environment’s parameters.

The second operator that makes it possible to
change the relation agents-environment with the
change of environment’s parameters is the escape
operator. Let us make an assumption that the
evolution process takes place in several environ-
ments, and that agents can migrate among these
environments. The evolution processes that take
place in each of these environments differ in some
range of their parameters from each other. If in
one of the mentioned environments the agent is
created as a result of mutation, crossover or ag-
gregation operation that is not well adapted to
this environment, it may migrate toward different
environment (with different characteristic param-
eters), where it can act better than in the previ-
ous environment. Then it may start there a new
population of agents with valuable characteristic
features.

2.1 Evolution centers as a method of evolution
process control

The introduction of aggregation and escape op-
erators makes possible to control the evolution
process, among others, through the mediation of
organizing of, so called, evolution centers.

Let us consider the process of realization of ag-
gregation operator (fig. 1), which consists of the
following stages:

Fig. 1. The principle of functioning of the aggre-
gation operator

(1) Let two parameters characterize the particu-
lar environment: A and B (values of A and B

∈ {0, 1}). There are agents AgA and AgB in
this environment. Agent AgA (agent AgB)
has the ability of such influence its environ-
ment that it can maintain the value of param-
eter A (B) equal to one in its neighborhood.
Agents A and B require (prefer) the values
of both parameters (A and B) equal to one
in their neighborhood.

(2) Owing to the ability to move within the
environment agent AgA may stay near the
agent AgB (and similarly agent AgB may
stay near the agent AgA).

(3) Agents AgA and AgB make an agreement
and decide to aggregate together and create a
new environment (with values of parameters
satisfying requirements of both agents —
A = 1 and B = 1) by taking control over
the part of existing environment.

(4) As a result of aggregation the new agent Ag0
is created, which maintains the information
about the configuration of agents A and B.
The group of agents AgA, AgB, Ag0, and the
part of environment that they control (with
values of parameters A and B equal to one)
constitute the new agent. Agent Ag0 keeps
(for example encoded in its genes) informa-
tion that is required to the reproduction of
this aggregated agent.

With the use of aggregation and escape operators
we can consider the organization of “evolution
center”, in which it is possible to control the values
of environment parameters what implies that we
can supervise the course of the evolution process.
Let us consider the example presented above, in
which the realization of aggregation operator is
completed with the application of remaining evo-
lution operators and the control of environment
parameters. Let us make an assumption that there
exist such agents of type X in the environment
that they can not set the environment parameters



A and B in their neighborhood (i.e. set values
A = 1 and B = 1). At the same time agents of
type X prefer the environment which parameters
A and B are set (A = 1 and B = 1). Agent
of type X may obtain (as a result of mutation
and crossover operations) the ability to set either
the parameter A (A = 1) or B (B = 1) in its
neighborhood (but not the ability to set both of
them). Then it becomes the agent of type A or
B. Let us make an assumption that the part of
environment is selected — the evolution center.
We can control this evolution center from outside
and change the values of parameters A and B

(setting their values to 0 or 1). The example of
supervising the evolution center may be consid-
ered as following steps:

Fig. 2. The principle of functioning of the evolu-
tion center

• Parameters A and B are set (A = 1 and
B = 1) in selected areas of evolution center.
Agents of type X gather in this area (fig. 2a).

• Parameter A is turned off periodically. This
causes that some agents of type X obtain
(as a result of mutation and crossover op-
erations) the ability to set the parameter A

(A = 1) in their neighborhood. Thus they
became type A agents (fig. 2b).

• After some time the parameter A is turned
on (A = 1), and parameter B is turned
off (B = 0) periodically. This causes that

some agents of type X obtain (as a result
of mutation and crossover operations) the
ability to set the parameter B (B = 1) in
their neighborhood. Thus they became type
B agents (fig. 2c).

• After some time parameters A and B are
both turned off (A = 0 and B = 0). Owing
to the fact that agents of type A and agents
of type B remain within the same area and
they neighbor each other they can form the
aggregates AB (as a result of aggregation
operation). These aggregates do not depend
on the fact that parameters A and B are
turned on or off, what implies that they can
live in any environment described above (fig.
2d).

Owing to the application of the idea of evolution
centers (and the introduction of aggregation and
escape operators) we may obtain the possibility
of supervising the evolution process by changing
the values of environment parameters, or rather,
to say it more precise, by selecting the local sets
of parameters.

3. EVOLUTIONARY MULTI-AGENT
SYSTEM WITH AGGREGATION OPERATOR

Fig. 3. EMAS with aggregation mechanism

The evolutionary multi-agent system with ag-
gregation operator is presented in fig. 3. The
system is based on the general model of evo-
lution in multi-agent system—see (Cetnarowicz
et al., 1996; Dreżewski, 2003). In such systems
evolving agents are located within the environ-
ment and can reproduce and die. There exists
resource within the system which is possessed by
agents and the environment. Each time step the
environment gives agents some of the resource in
such a way that better fitted agents are given more
resource than the others.



In the particular system described in this paper
the agents try to predict the next value of the
pseudo-random time series consisted of zeros and
ones. The current fitness of the agent is the
result of the latest prediction. The agents which
predicted correctly are given some of the resource
(which is renewable) and those which did not are
not given the resource at all. Each time step the
agents lose some of their resources. When the
agent runs out of resources it dies and is removed
from the system.

Each gene of the agent’s genotype is responsible
for making prediction. The actual prediction of
the agent is the value proposed by the majority of
its genes. The i-th gene takes the i-th value (let
us denote this p) from the history of values that
appeared in the time series and on its basis tries
to predict the value that will appear in the next
time step. There are ten types of genes that utilize
different mechanisms in order to predict the next
value:

(1) returns NOT p;
(2) returns p;
(3) returns alternately 0 and 1;
(4) always returns 1;
(5) always returns 0;
(6) returns pseudo-random number (0 or 1);
(7) returns the values from the series consisted

of k zeros and k ones alternately;
(8) returns the values from the series consisted

of k zeros and m ones alternately;
(9) returns the values from the series like: 010011

00011100001111 . . . , the number of zeros and
ones in sub-series is increased until it reaches
n and then the number of zeros and ones in
sub-series is decreased.

(10) returns the values from the series like above
but after the number of elements in sub-
series reaches the maximal value n it is not
decreased but starts again from one.

When the agent has enough resources to perform
reproduction it tries to find the partner for re-
production. When it succeeds the new agent is
created with the use of clone, recombination (one
point crossover is used) and mutation (in which
the worst gene is mutated—replaced by different
type of gene selected randomly) operators. Each
parent gives the child some of its resources.

When the agent predictions are not good enough,
the amount of its resource decreases and it tries
to aggregate with another agent. The agent which
initiates the aggregation process takes genes from
another agent and all its resources. These genes
are then connected with the genotype of the agent
which initiates the process of aggregation. Also
the opposite process is allowed—agent may decide
to split into two agents. All these operations are

performed with some probability and require the
appropriate amount of resource.

4. EXPERIMENTAL RESULTS

In this section some results of preliminary exper-
iments with aggregation operator are presented.
Because of space limitations only selected results
are shown. In the fig. 4 results of typical exper-
iment are presented. The values of parameters
in this experiment were as follows: the length
of history buffer was set to 16, the time series
had finite length and was cyclically repeated, the
maximal number of genes was set to 16, the prob-
ability of mutation was 0.01, the probability of
recombination was 0.001, the probability of repro-
duction was 0.01, the probability of aggregation
was set to 0.01, the probability of splitting the
aggregate was 0.001. The decisions within the
aggregate were made via voting of agents (within
each agent being part of aggregate the decisions
were made on the basis of the predictions made
by individual genes—the final prediction was the
prediction generated by majority of genes). It can
be seen in the fig. 4 that with such configuration
the application of the aggregation operator led to
the increasing of the correct prediction probability
from 66% to over 90%.

Table 1. Average results for different
types of pseudo-random time series

Type of

pseudo-

random

time series

Av. number

of correct

predictions

Av. number

of correct

predictions

for best

aggregates

Av. number

of correct

predictions

for single

agents

Cyclic 78.3% 81% 60.33%

Non-cyclic 59.12% 60.8% 49.2%

In the table 1 average results from experiments
with different types of pseudo-random time series
are presented. These are average results from five
(in the case of non-cyclic time series) and three (in
the case of cyclic time series) experiments carried
out with the different values of the mentioned
above parameters. Here it can also be seen that
the aggregates had generally higher rate of correct
predictions than single agents. These advantages
of aggregates are more distinct in the case of cyclic
time series, but they also appear in the case of
non-cyclic time series.

5. CONCLUSIONS

In this paper the aggregation operator for agent-
based evolutionary computation was presented.
The aggregation operator is one the examples of
new operators which can be easily introduced in



Fig. 4. Results of typical experiment. X axis shows the number of agents within the aggregate, the left
bar shows the number of aggregates with the given number of agents, and the right one shows the
amount of resources possessed by the given group of aggregates. The lower line shows the average
percent of correct prediction made by single agents, and the upper one shows the average percent
of correct predictions made by aggregates with the given number of agents

the evolutionary multi-agent systems. The aggre-
gation processes lead to the emergence of social
relations between agents and can be be very useful
especially in the case of dynamic environments
and problems.

The system presented was applied to the predic-
tion of time series values problem. As the pre-
sented preliminary results show, the aggregation
operator caused that agents were cooperating in
the process of predicting, teams (aggregates) were
formed and the results obtained were generally
better than in the case of single predicting agents.

Future research will be focused on the application
of evolutionary multi-agent systems with aggre-
gation operator to dynamic problems. The future
plans also include the artificial life simulations
focused on the emergence of complex social re-
lations resulting from simple interactions between
agents, and the formation of new species through
aggregation and co-evolutionary interactions.
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Bäck, T., Fogel, D. and Michalewicz, Z., Eds.
(1997). Handbook of Evolutionary Computa-
tion. IOP Publishing and Oxford University
Press.

Cetnarowicz, K., M. Kisiel-Dorohinicki and
E. Nawarecki (1996). The application of evo-
lution process in multi-agent world to the pre-
diction system. In: Proceedings of the 2nd In-

ternational Conference on Multi-Agent Sys-
tems (ICMAS 1996) (M. Tokoro, Ed.). AAAI
Press. Menlo Park, CA.
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Dreżewski, R. (2006). Co-evolutionary multi-
agent system with speciation and resource
sharing mechanisms. Computing and Infor-
matics 25(4), 305–331.
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