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Abstract— The realization of co-evolutionary interactions in
evolutionary algorithms results in increased population diver-
sity and speciation. General model of co-evolution in multi-agent
system allows for modeling and realization of agent-based co-
evolutionary systems in which many species and sexes may exist
and interact. In this paper one exemplary agent-based system
with predator-prey mechanism is presented. The results from
experiments with various multi-objective test problems conclude
the paper.

I. M

In evolutionary algorithms (EAs) techniques based on
models of co-operative or competitive interactions between
species are primarily used when there arises difficulties with
explicit formulation of fitness function—such cases include
for example games. Such co-evolutionary techniques also
help to improve adaptive capabilities of EAs, introducing
open-ended evolution and maintaining useful population
diversity through speciation (formation of species—sub-
populations—within the search space).

In the case of multi-objective optimization the loss of
population diversity in EA (which limits the applicability
of EAs in the case of some problems) can result not only
in the stagnation of evolutionary process and locating the
population in areas located faraway from the ideal Pareto
frontier but also in locating only selected parts of Pareto
frontier or locating local Pareto frontier instead of a global
one when we have to deal with multi-modal multi-objective
problems ([1]).

The basic model of evolutionary multi-agent system
(EMAS) results from the attempts to decentralize the process
of simulated evolution and to formulate evolutionary compu-
tation models which are closer to real evolutionary processes
[2]. Such systems are consisted of environment, agents which
are able to reproduce and die and resources for which agents
compete. The research on speciation mechanisms for such
systems resulted in the formulation of general model of co-
evolution in multi agent system (CoEMAS) [3], [4], [5]. This
model includes also the possibility of co-existing of several
species and sexes and to define co-evolutionary relations
between them.

The paper is organized as follows. First the short introduc-
tion to multi-criteria decision making processes followed by
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the previous work on the application of co-evolutionary al-
gorithms to such problems are presented. Then the proposed
system is presented. Results of experiments with different
kinds of multi-criteria optimization problems conclude the
paper.

II. M-O O

The most natural process of decision making for human
being consists in analyzing many—often contradictory—
factors and searching for peculiar compromise among them.
Such decisive process is known as a multi-criteria decision
making (MCDM). Obviously, human being is equipped with
natural abilities for making multi-criteria decisions. If such
natural gifts are—as the matter of fact—sufficient in everyday
life they are not sufficient in more complex technical, busi-
ness or scientific decisive processes. In such cases decision
maker—to make a proper decision has to be supported with
appropriate mathematical apparatus and efficient computing
units and algorithm built on the basis of this very apparatus.
The most frequently, MCDM process is based on appropri-
ately defined multi-objective optimization problem (MOOP).
Following [1]—multi-objective optimization problem in its
general form is being defined as minimizing/maximizing the
set of objectives fm(x̄), where m = 1,2 . . . ,M.

The set of constraints—both constraint functions (equal-
ities hk(x̄)) defined as hk(x̄) = 0, where k = 1,2 . . . ,K, in-
equalities g j(x̄)) defined as g j(x̄) ≥ 0, where j = 1,2 . . . , J
and decision variable bounds (lower bounds x(L)

i and upper
bounds x(U)

i ) defined as x(L)
i ≤ xi ≤ x(U)

i , where i = 1,2 . . . ,N—
define all possible (feasible) decision alternatives (D).

Because there are many criteria—to indicate which solu-
tion is better than the other—specialized ordering relation
has to be introduced. To avoid problems with converting
minimization to maximization problems (and vice versa of
course) additional operator C can be defined. Then, notation
x̄1 C x̄2 indicates that solution x̄1 is simply better than
solution x̄2 for particular objective. Now, the crucial concept
of Pareto optimality i.e. so called dominance relation can
be defined. It is said that solution x̄A dominates solution x̄B
(x̄A ≺ x̄B) if and only if:

x̄A ≺ x̄B⇔
{

f j(x̄A) 7 f j(x̄B) f or j = 1,2 . . . ,M
∃i ∈ {1,2, . . . ,M} : fi(x̄A) C fi(x̄B)

A solution in the Pareto sense of the multi-objective opti-
mization problem means determination of all non-dominated
alternatives from the set D. The Pareto-optimal set consists



of globally optimal solutions, however there may also ex-
ist locally optimal solutions, which constitute locally non-
dominated set (local Pareto-optimal set) [1]. The set Plocal ⊆
D is local Pareto-optimal set if [6]:

∀~xa ∈ Plocal : @~xb ∈ D such that
~xb � ~xa∧

∥∥∥~xb− ~xa
∥∥∥ < ε∧

∥∥∥F(~xb)−F(~xa)
∥∥∥ < δ

where ‖·‖ is a distance metric and ε > 0, δ > 0.
The set P ⊆ D is global Pareto-optimal set if [6]:

∀~xa ∈ P : @~xb ∈ D such that ~xb � ~xa (1)

These locally or globally non-dominated solutions create
(in the criteria space) so-called local (PF local) or global
(PF ) Pareto frontiers that can be defined as follows:

PF local =
{
~y = F

(
~x
) ∈ IRM | ~x ∈ Plocal

}
(2a)

PF =
{
~y = F

(
~x
) ∈ IRM | ~x ∈ P

}
(2b)

Multi-objective problems with one global and many local
Pareto frontiers are called multi-modal multi-objective prob-
lems [1].

During over 20 years of research on evolutionary multi-
objective algorithms (EMOAs) quite many techniques have
been proposed. Generally all of these techniques and al-
gorithms can be classified as elitist (which give the best
individuals the opportunity to be directly carried over to the
next generation) or non-elitist ones [1].

III. C-E M-O A

Co-evolution is the biological process responsible for spe-
ciation, maintaining population diversity, introducing arms
races and open-ended evolution. In co-evolutionary algo-
rithms (CoEAs) the fitness of each individual depends not
only on the quality of solution to the given problem (like in
EAs) but also (or solely) on other individuals’ fitness [7]. As
the result of ongoing research quite many co-evolutionary
techniques have been proposed. Generally, each of these
techniques belongs to one of two classes: competitive or
cooperative.

There were also some attempts of applying co-
evolutionary algorithms to multi-objective problems. Lau-
manns, Rudolph and Schwefel proposed predator-prey evo-
lutionary strategy (PPES) (i.e. competitive co-evolutionary
algorithm with predator-prey model and spatial graph-like
structure) for multi-objective optimization [8]. In their model
prey were placed in the nodes of graph (they could not
migrate) and predators could migrate from node to node
killing the “weakest” prey (each predator had one criteria
assigned to it and evaluated prey on the basis of that criteria).

Deb introduced modified algorithm in which predators
eliminated prey not only on the basis of one criteria but on the
basis of the weighted sum of all criteria [1]. Li proposed other
modifications to Deb’s algorithm [9]. The main difference
was that not only predators were allowed to migrate within
the graph but also prey could do it. The model of cooperative
co-evolution was also applied to multi-objective optimization

Fig. 1. CoEMAS with predator-prey mechanism

([10]). In this technique each sub-population was responsible
for one variable xi. The complete solution was the group
of individuals, each of them chosen from different sub-
population. The reproduction and recombination processes
took place independently within sub-populations (individuals
from different sub-populations interacted with each other
only during fitness evaluation).

It seems that co-evolution applied to multi-objective prob-
lems should introduce open-ended evolution, improve adap-
tive capabilities of EA (especially in the case of dynamic
environments) and allow speciation (the formation of species
located in different areas of Pareto frontier or at different
local Pareto frontiers in case of multi-modal multi-objective
problems [1]) but this is still an open issue and the subject
of ongoing research.

IV. A-B C-E S 

M-O O

In this section the agent-based co-evolutionary system
used in experiments is presented. The system is composed
of the following elements: the environment with graph-like
structure, resources, and two interacting species of agents
(predators and prey) (see fig. 1). All types of agents live
within the environment, can migrate between nodes, and try
to get resources which are used for all kinds of activities,
like reproduction and migration. Agents which amount of
resource is below the minimal level die and are removed
from system. Agents of prey species—which represent solu-
tions of the multi-objective problem—can reproduce when
the amount of the possessed resource is above the given
level. When two such agents meet within the same node
of the environment the new agent is created with the use of
recombination and mutation operators. Parents also give to
the newly created offspring some of their resources.

The role of predators is to remove from the system
dominated prey. Each of the predators is associated with one
criteria and seeks for the worst prey—located within the same



node as the given predator—according to its criteria. Then
such a prey is killed and all of its resources are transferred
to the predator. Below, more formal definition of the system
is presented.

A. CoEMAS

The co-evolutionary multi-agent system with predator-prey
interactions (CoEMAS) is defined as follows [3]:

CoEMAS = 〈E,S ,Γ,Ω〉 (3)

E is the environment of the CoEMAS system, S is the set of
species (s ∈ S ) that exist and co-evolve in CoEMAS , Γ is the
set of resource types (the amount of type γ resource which is
possessed by the given element of the system will be denoted
by rγ), Ω is the set of information types (the information
of type ω, which can be used or possessed by the given
element of the system is denoted by iω). Two information
types (Ω = {ω1,ω2}) and one resource type (Γ = {γ}) are used.
Informations of type ω1 denote nodes to which agent can
migrate. Informations of type ω2 denote such prey that are
located within the particular node in time t.

The selection mechanism is based on the closed circulation
of resource within the system. The whole amount of resource
is constant, the resource can be possessed by the agents, and
is transferred from dominated prey to dominating prey, and
from prey to predators during killing prey.

The environment E is defined in the following way:

E =
〈
T E ,ΓE = ∅,ΩE = Ω

〉
(4)

T E is the topography of the environment E. ΓE is the set of
resource types that exist within the environment. ΩE is the
set of information types that exist within the environment.
The topography of the environment T E = 〈H, l〉, where H is
directed graph with the cost function c defined (H = 〈V,B,c〉,
V is the set of vertices, B is the set of arches). In the case of
the presented system every node is connected with its four
neighbors, which results in the torus-like environment. The
l : A→V (A is the set of agents) function makes it possible
to locate particular agent in the environment space.

Vertice v is given by:

v =
〈
Av,Γv = ΓE ,Ωv = ΩE ,ϕ

〉
(5)

Av is the set of agents that are located within the vertice v.
There are two types of informations in the vertice. The first
one includes all vertices that are connected with the vertice
v:

iω1,v = {u : u ∈ V ∧〈v,u〉 ∈ B} (6)

The second one includes all agents of species prey that are
located within the vertice v:

iω2,v =
{
aprey : aprey ∈ Av} (7)

B. Species

The set of species S = {prey, pred}. The prey species
(prey) is defined as follows:

prey =
〈
Aprey,S Xprey = {sx} ,Zprey,Cprey〉 (8)

where S Xprey is the set of sexes which exist within the prey
species, Zprey is the set of actions that agents of species prey
can perform, and Cprey is the set of relations of prey species
with other species that exist in the CoEMAS .

The set of actions Zprey is defined as follows:

Zprey = {die,get,give,accept, seek,clone,rec,mut,migr} (9)

die is the action of death (prey dies when it is out of
resources). get action gets some resource from another aprey

agent located within the same node, which is dominated
by the agent that performs get action or is too close to
it in the criteria space, give action gives some resource to
another agent (which performs get action), accept action
accepts partner for reproduction when the amount of resource
possessed by the prey agent is above the given level, seek
action seeks for another prey agent that is dominated by the
prey performing this action or is too close to it in criteria
space. This action is also used in order to find the partner
for reproduction when the amount of resource is above the
given level and agent can reproduce. clone is the action of
producing offspring (parents give some of their resources to
the offspring during this action), rec is the recombination
operator (intermediate recombination is used [11]), mut is
the mutation operator (mutation with self-adaptation is used
[11]). The migr is the action of migrating from one node to
another. During this action agent loses some of its resource.

The set of relations of prey species with other species that
exist within the system is defined as follows:

Cprey =

{
prey,get−−−−−−−−→, pred,give+−−−−−−−−→

}
(10a)

The first relation models intra species competition for limited
resources (“-” denotes that as a result of performing get
action the fitness of another prey is decreased):

prey,get−−−−−−−−→= {〈prey, prey〉} (10b)

The second one models predator-prey interactions (“+” de-
notes that when prey gives all its resources to the predator,
the predator fitness is increased):

pred,give+−−−−−−−−→= {〈prey, pred〉} (10c)

The predator species (pred) is defined as follows:

pred =
〈
Apred,S Xpred = {sx} ,Zpred,Cpred

〉
(11)

All the symbols used have analogical meaning as in the case
of prey species—see eq. (8). The set of actions Zpred is
defined as follows:

Zpred = {seek,get,migr} (12)

The seek action allows finding the “worst” (according to
the criteria associated with the given predator) prey located



within the same node as the predator, get action gets all
resources from the chosen prey, migr action allows predator
to migrate between nodes of the graph H—this results in
losing some of the resources.

The set of relations of pred species with other species that
exist within the system are defined as follows:

Cpred =

{ prey,get−−−−−−−−→
}

(13a)

This relation models predator-prey interactions:
prey,get−−−−−−−−→= {〈pred, prey〉} (13b)

As a result of performing get action and taking all resources
from selected prey, it dies.

C. Agents

Agent a of species prey (a ≡ aprey) is defined as follows:

a =
〈
gna,Za = Zprey,Γa = Γ,Ωa = Ω,PRa〉 (14)

Genotype of agent a is consisted of two vectors (chromo-
somes): ~x of real-coded decision parameters’ values and ~σ of
standard deviations’ values, which are used during mutation
with self-adaptation. Za = Zprey (see eq. (9)) is the set of
actions which agent a can perform. Γa is the set of resource
types used by the agent, and Ωa is the set of information
types.

The partially ordered set of profiles includes resource
profile (pr1), reproduction profile (pr2), interaction profile
(pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (15a)
pr1 E pr2 E pr3 E pr4 (15b)

Each profile pr is defined as follows:

pr =
〈
Γpr,Ωpr,Mpr,S T pr,GLpr〉 (16)

Γpr is the set of resource types used in the pr profile (Γpr ⊆
Γa). Ωpr is the set of information types (Ωpr ⊆Ωa). Mpr is the
set of informations (the model) which represent the agent’s
knowledge about the environment and other agents. S T pr is
the partially ordered set of strategies which agent can use in
order to realize the active goal of the given profile. GLpr is
the partially ordered set of goals.

Each time step agent tries to realize active goals (goals
which should be realized) of the profiles taking into account
the priorities of the profiles (pr1 has the highest priority—
see eq. (15)) and also the priorities of the active goals. In
order to realize goals of the given profile agent uses strategies
(consisted of simple actions) which can be realized within
this profile. In this process also the priorities of strategies are
considered.

The goal of the pr1 profile is to keep the amount of
resources above the minimal level or to die. In order to
realize such goal agent can use the following strategies: 〈die〉,
〈seek,get〉. This profile uses the model Mpr1 = {iω2 } (see
eq. (7).) The only goal of the pr2 profile is to reproduce.
In order to realize this goal agent can use strategy of

reproduction: 〈seek,clone,rec,mut〉. The model is defined in
the following way: Mpr2 = {iω2 }. The goal of the pr3 profile is
to interact with predators with the use of strategy 〈give〉. The
goal of the pr4 profile is to migrate within the environment.
In order to realize such goal the migration strategy is used:〈
migr

〉
. The model used is defined as follows: Mpr4 = {iω1 }

(see eq. (6).) As a result of migrating prey loses some
resource.

Agent a of species pred is defined analogically to prey
agent (see eq. (14)). There exist two main differences.
Genotype of predator agent is consisted of the information
about the criterion associated with the given agent. The set
of profiles is consisted only of two profiles, resource profile
(pr1), and migration profile (pr2): PRa = {pr1, pr2}, where
pr1 E pr2.

The goal of the pr1 profile is to keep the amount of
resource above the minimal level with the use of strategy
〈seek,get〉. The model used within this profile is defined
as follows: Mpr1 = {iω2 }. The goal of pr2 profile is to
migrate within the environment. In order to realize this goal
the migration strategy

〈
migr

〉
) is used. The model of the

environment is defined in the following way: Mpr2 = {iω1 }.
The realization of the migration strategy results in losing
some of the resource possessed by the agent.

V. M-O T P

In order to investigate whether the proposed system prop-
erly solves the multi-objective problems and to compare it
to “classical” evolutionary multi-objective algorithms, two
standard test problems and one hard, real-life problem were
used.

Firstly, slightly modified so-called Laumanns multi-
objective problem was used, which is defined as follows ([8],
[12]):

Laumanns =


f1(x) = x2

1 + x2
2

f2(x) = (x1 + 2)2 + x2
2−5 ≤ x1, x2 ≤ 5

It is a test problem with convex and coherent Pareto frontier,
which has some interesting properties and in consequence be-
comes a suitable candidate for initial testing and comparative
studies. Visualization of the Pareto frontier for this problem
is presented in fig. 2.
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Fig. 2. Laumanns test problem: visualization of the Pareto frontier

Secondly the so-called Kursawe problem was used. Its



definition is as follows ([12]):

Kursawe =



f1(x) =
∑n−1

i=0

(
−10exp

(
−0.2

√
x2

i + x2
i+1

))

f2(x) =
∑n

i=1 |xi|0.8 + 5sin x3
i

n = 3 −5 ≤ x1, x2, x3 ≤ 5

Visualization of the Pareto set and Pareto frontier for the
Kursawe problem is here omitted because of space limitation.
This is quite difficult multi-objective problem. Its character-
istic features include: disconnected two-dimensional Pareto
frontier, disconnected three dimensional Pareto set, and the
fact that very small changes in the space of decision variables
can seriously affect the results in the space of objectives.

Proposed co-evolutionary agent-based approach has also
been preliminarily assessed using the problem of effective
portfolio building. The meaning of symbols used in the
definitions below, are as follows:

p - the number of shares in the wallet;
n - the number of rate of return;
αi,βi - coefficients of the equations;
ωi - percentage participation of i-th share in the wallet;
ei - random component of the equation;
Rit - the rate of return in the period t;
Rmt - the rate of return related to market index in period

t;
Rm - the rate of return of market index;
Ri - the rate of return of the i-th share;
Rp - the rate of return of the wallet;
sep

2 - the variance of the i-th share;
sei

2 - the variance of the random index of the i-th share;
sep

2 - the variance of the wallet;
Ri - arithmetic mean of rate of return of the i-th share;
Rm - arithmetic mean of rate of return of market index;
The algorithm (based on the Sharpe model) of computing

the expectation of the risk level and, generally speaking,
income expectation related to the wallet of p shares is as
follows:

1) Compute the arithmetic means on the basis of rate of
returns;

2) Compute the value of α coefficient:

αi = Ri−βiRm (17)

3) Compute the value of β coefficient:

βi =

∑n
t=1(Rit −Ri)(Rmt −Rm)
∑n

t=1(Rmt −Rm)2
(18)

4) Compute the share expectation:

Ri = αi−βiRm + ei (19)

5) Compute the variance of random index:

sei
2 =

∑n
t=1(Rit −αi−βiRm)2

n−1
(20)

6) Compute the variance of market index:

sm
2 =

∑n
t=1(Rmt −Rm)2

n−1
(21)

7) Compute the risk level of the investing wallet:

βp =

p∑

i=1

(ωiβi) (22)

sep
2 =

p∑

i=1

(ω2
i sei

2) (23)

risk = β2
psm

2 + sep
2 (24)

8) Compute the investing wallet expectation:

Rp =

p∑

i=1

(ωiRi) (25)

The goal of the optimization is to maximize the investing
wallet expectation and minimize the risk level. Model Pareto
frontiers for two cases (three and seventeen stocks set), which
are analyzed in the following section, are presented in fig. 3.
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Fig. 3. Building of effective portfolio: visualization of the model Pareto
frontier obtained using utter review method for a) three and b) seventeen
stocks set

VI. R  E

In this section the results of experiments with different
types of multi-objective test problems are presented. Also,
the results obtained by proposed system are compared with
results obtained by “classical” (i.e. non agent-based) predator
prey evolutionary strategy (PPES) [8] and another “classi-
cal” evolutionary algorithm for multi-objective optimization:
niched pareto genetic algorithm (NPGA) [6]. In order to
deeper analyze the results obtained by compared algorithms
values of HV and HVR metrics (which can be found in [1])
are also presented.

In the very first experiments with CoEMAS system rel-
atively simple Laumanns test problem was used. In fig. 4
there are presented Pareto frontier approximations obtained
by CoEMAS and PPES algorithms and in table I there
are presented values of HV and HVR metrics for all three
algorithms being compared. As it can be seen the differ-
ences between algorithms being analyzed are not so distinct,
however proposed CoEMAS system seems to be the best
alternative.

The second problem used is quite demanding multi-
objective Kursawe problem with disconnected both Pareto
set and Pareto frontier. In fig. 5 there are presented ap-
proximations of Pareto frontier obtained by CoEMAS and
by reference algorithms after 10, 600 and 6000 time steps.
As one may notice initially, i.e. after 10 (see fig. 5a,b,c)
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Fig. 4. Pareto frontier approximations in selected consecutive steps obtained
by CoEMAS and PPES algorithms for Laumanns problem

steps, Pareto frontiers obtained by all three algorithms are—
in fact—quite similar if the number of found non-dominated
individuals, their distance to the model Pareto frontier and
their dispersing over the whole Pareto frontier are considered.
Afterwards yet, definitely higher quality of CoEMAS-based
Pareto frontier approximation is more and more distinct (it
is enough to compare results obtained by CoEMAS, NPGA
and PPES algorithms after 600 and 6000 time steps—see
fig. 5d,e,f and fig. 5g,h,i). Generally, there is no doubt that
CoEMAS is definitely the best alternative since it is able to
obtain Pareto frontier that is located very close to the model
solution, that is very well dispersed and what is also very
important—it is more numerous than PPES and NPGA-based
solutions. The above observations are fully confirmed by the
values of HV and HVR metrics presented in table II.

In the case of optimizing investing portfolio each individ-
ual in the prey population has p-dimensional vector encoded
in its genotype. Each dimension represents the percentage

TABLE I
C   CEMAS    

EMOA    HV  HVR    

L 

HV / HVR
Step CoEMAS PPES NPGA
1 59.24 / 0.982 58.45 / 0.969 58.41 / 0.968
10 59.57 / 0.987 58.45 / 0.969 59.72 / 0.990
20 59.78 / 0.991 58.45 / 0.969 53.30 / 0.883
30 59.81 / 0.991 58.45 / 0.969 51.02 / 0.846
40 59.79 / 0.991 58.45 / 0.969 49.37 / 0.818
50 59.81 / 0.991 58.45 / 0.969 48.62 / 0.806
100 59.77 / 0.991 58.45 / 0.969 47.25 / 0.783
600 59.79 / 0.991 59.11 / 0.980 47.04 / 0.780
200 59.73 / 0.990 59.59 / 0.988 47.04 / 0.780
4000 59.76 / 0.991 59.64 / 0.988 47.04 / 0.780
6000 59.75 / 0.990 59.34 / 0.983 47.04 / 0.780

TABLE II
C   CEMAS    

EMOA    HV  HVR    

K 

HV / HVR
Step CoEMAS PPES NPGA
1 541.21 / 0.874 530.76 / 0.857 489.34 / 0.790
10 588.38 / 0.950 530.76 / 0.867 563.55 / 0.910
20 594.09 / 0.959 531.41 / 0.858 401.79 / 0.648
30 601.66 / 0.971 531.41 / 0.858 378.78 / 0.611
40 602.55 / 0.973 531.41 / 0.858 378.73 / 0.611
50 594.09 / 0.959 531.41 / 0.858 378.77 / 0.611
100 603.04 / 0.974 531.42 / 0.858 378.80 / 0.6117
600 603.79 / 0.975 577.44 / 0.932 378.80 / 0.611
200 611.43 / 0.987 609.47 / 0.984 378.80 / 0.611
4000 611.44 / 0.987 555.53 / 0.897 378.80 / 0.611
6000 613.10 / 0.990 547.73 / 0.884 378.80 / 0.611

participation of i-th (i ∈ 1 . . . p) share in the whole portfolio.
Because of the space limitation in this paper only a kind
of summary of two single experiments will be presented
(of course during our research a lot of experiments have
been conducted and—moreover—we are still working on
this demanding problem.) During presented experiment quo-
tations from 2003-01-01 until 2005-12-31 were taken into
consideration. Simultaneously the portfolio consists of the
following three (in experiment I) or seventeen (in experiment
II) stocks quoted on the Warsaw Stock Exchange. In exper-
iment I portfolio is consisted of: RAFAKO, PONARFEH,
and PKOBP stocks. In the case of experiment II portfolio is
consisted of: KREDYTB, COMPLAND, BETACOM, GRA-
JEWO, KRUK, COMARCH, ATM, HANDLOWY, BZWBK,
HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,
GANT, PROKOM, and BPHPBK stocks. As the market
index WIG20 has been taken into consideration.

In fig. 3 there are presented model Pareto frontiers ob-
tained for effective portfolio building problem for three
and seventeen stocks obtained using utter review method.
Consecutive Pareto frontiers obtained by both—system that
is being analyzed and by reference algorithms as well are
presented in details in [13]. In this paper authors decided to
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Fig. 5. Pareto frontier approximations for Kursawe problem in selected
consecutive steps obtained by CoEMAS, PPES and NPGA

present rather in details portfolio composition. It is of course
impossible in the course of this paper to present consecutive
portfolios proposed by all non-dominated solutions—that is
why we decided to choose average non-dominated solution
in first step and then to follow during consecutive steps
solutions proposed by this very solution (or its descen-
dant(s)). Such hypothetical non-dominated average portfolios
for experiment I and II are presented in fig. 6 and in fig. 7
respectively (in fig. 7 shares are presented from left to right in
the order in which they were mentioned above). Generally,
it can be said that during experiment I—average solution
proposed by CoEMAS system is a kind of balanced portfolio
(percentage share of all three stocks are quite similar),
whereas during experiment II there are more important stocks
(with given assumptions and parameters of course)—i.e.
HANDLOWY, HYDROBUD, ARKSTEEL.

In fig 8 there are presented Pareto frontiers obtained
by CoEMAS, NPGA and PPES algorithms after 900 time
steps for both experiments. In both cases CoEMAS-based
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Fig. 6. Effective portfolio in consecutive steps consisting of three stocks
proposed by CoEMAS

frontier is quite numerous and quite close to the model Pareto
frontier—unfortunately diversity of population in CoEMAS
system is visibly worse than in the case of NPGA or
PPES-based frontiers (it is also confirmed by values of HV
and HVR metrics, but because of space limitations these
characteristics are omitted in this paper). What is more, with
time the tendency of CoEMAS-based solver for focusing
solutions around small part of the whole Pareto frontier is
more and more distinct (see [13]).

VII. S  C

Growing interest in co-evolutionary algorithms and their
application in the area of multi-objective optimization results
from the ability of CoEAs to promote the useful population
diversity and their improved adaptive capabilities as com-
pared to evolutionary algorithms.

The system presented in this paper is based on the idea
of realization of co-evolutionary processes in the multi-
agent system what results in the decentralization of evolu-
tionary processes and co-evolutionary interactions. Presented
results of experiments with Laumanns and Kursawe problems
clearly show that CoEMAS not only properly located Pareto
frontiers of these two test problems but also the results
of this system were better than in the case of two other
“classical” algorithms. The population of CoEMAS was
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Fig. 7. Effective portfolio in consecutive steps consisting of seventeen
stocks proposed by CoEMAS

located very close to the “ideal” Pareto frontier. Also, the
Pareto frontier was very well “covered” by individuals, and
solutions were more numerous than in the case of PPES and
NPGA algorithms. This was the result of the tendency to
maintain high useful population diversity.

The results of experiments with the effective portfolio
building problem shows however that in the case of some
problems the proposed co-evolutionary mechanism is not
fully sufficient. It turned out that, in spite of the fact that
the Pareto frontier formed by the proposed system was more
numerous than in the case of “classical” multi-objective
evolutionary algorithms, the tendency to lose population
diversity appeared. This resulted in the fact that in the case
of this problem PPES and NPGA algorithms were able to
form frontiers better “covered” with individuals.

The results of experiments show that still more research
is needed on the proposed co-evolutionary mechanism—
especially when we consider the stable maintaining of useful
population diversity.
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