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Abstract. Vehicle routing problems with time windows are NP-hard
problems. Additional difficulties are introduced by dynamic client re-
quests and crisis situations. One of the techniques used in order to
solve such problems are evolutionary algorithms. In this paper a co-
evolutionary algorithm with spatial population structure is presented.
The system is verified with the use of dynamic vehicle routing problems
with time windows and crisis situations.

1 Introduction

In the current economic climate, transportation of cargo and delivering services
to the homes of clients is playing a very important and ever-increasing role. One
of the most widely researched transport problems today is the Vehicle Routing
Problem with Time Windows (VRPTW). The idea of the problem is to realize a
given set of transport requests while maintaining the lowest possible costs with
the number of used vehicles and the total distance travelled. Each vehicle is de-
scribed by: a location which has to be visited, a period of time when this location
should be visited (called time window), a capacity needed for transporting the
parcel picked-up/delivered from/to a given location. The vehicles are described
by their total capacity (the total size of parcels that may be transported at the
same time) and a speed. The formal model of VRPTW problem may be found,
for example, in [14].

VRPTW is a NP-hard problem [9]. It means, that the time needed to solve
it using algorithms finding strict solutions grows exponentially with the size of
the problem. For problems like this approximate solutions which could be found
fast enough and would be strict enough need to be searched. NP-hard problems
can be solved with the application of various heuristics and meta-heuristics—the
point is that they make use of problem internal properties.

It is possible to distinguish two kinds of VRPTW: static and dynamic. In
static, all transport requests are known before starting the process of assigning
them to the vehicles, while in the dynamic case, requests arrive continuously dur-
ing the simulation process. In such case the modeling of the respective vehicle’s
location and the status of realizing requests is necessary.



For the analysis of the practical problems associated with the planning and
realization of transport requests an important element is taken into considera-
tion, namely, the occurrence of different crisis situations and an attempt trying to
limit their consequences. Crisis situations analyzed in this paper, are the follow-
ing: traffic jams appearing on the routes of vehicles, vehicle breakdowns, delays
of starting the request realization, prolonging the time of request realization in
a given customer location and premature time windows closing.

2 Previous Research on Dynamic VRPTW Problems and

Crisis Situations

The VRPTW has been the focus of analysis by many researchers because of its
far-reaching and wide range of practical application. Especially, a particularly
high number of solutions of its static version have been worked out. To verify
the quality of algorithms, sets of transport requests tests, prepared by Solomon
and extended by Gehring and Homberger [1], are used.

The heuristic methods used are usually made up of two stages. In the first one,
the initial solutions are generated using different kinds of construction heuristics
(for example route first cluster second, saving method, I1 heuristic, parallel I1
heuristic, sweep heuristic). Then, optimization heuristics are used to improve
the initial solutions. Different approaches are used, e.g. tabu search, simulated
annealing, evolutionary algorithms or ant colony approach. The algorithm pro-
posed by Gehring and Homberger [7], based on evolutionary strategies, obtained
especially good results. The overview of best VRPTW solving metaheuristic is
presented in [4].

The dynamic versions of VRPTW were also studied [8, 3], but less work was
done than for static version. In [3] an analysis of problem having mixed static-
dynamic features and methods of request generation for such problem as well as
measures of its dynamic degree is described.

When modeling crisis situations the the most often researched are the ap-
pearance of traffic jams, for this case a multi-agent approach was applied [6].

The analysis of the consequences of critical situations is also the subject of
this work. The paper [5] contains an overview of various systems for solving
VRPTW and PDPTW (Pickup and Delivery Problem with Time Windows—
this problem is similar to the mentioned VRPTW, it is characterized by the
fact that with each transport request two locations are associated: the location
of pickup and the location of delivery, and these locations are assigned separate
time windows) developed in our research group. The pilot version of the platform
presented in this paper and the preliminary results of experiments (without crisis
situations) obtained with the use of the platform were also described in [5].



3 Algorithms for Solving dynamic VRPTW Problems

In the system presented in this paper, co-operative co-evolutionary algorithm
(CCA) [11] is used to solve dynamic VRPTW problem. The basic CCA algorithm
may be described by the following pseudo-code:

For each subpopulation S Do:

Initialise population Ps(0)

Evaluate all individuals from Ps(0) (by forming groups

composed of the given individual from S and the chosen

representants of all other subpopulations)

End_For

While termination condition not met Repeat:

For each subpopulation S Do:

Select a set of parents Xs(t) for next generation

Apply genetic operators to the individuals of Xs(t)

obtaining a set of descendants Ds(t)

Evaluate individuals from Ds(t) (in the same way

as in the case of Ps(0))

Combine Ps(t) and Ds(t) obtaining Ps(t+1)

End_For

End_While

The algorithm is based on the co-evolutionary algorithm for VRPTW prob-
lems proposed in [10]. In such an approach two subpopulations (species) are
used. Individuals from the first subpopulation represent the number of clients
in each route. Information encoded in the genotypes of individuals from the sec-
ond subpopulation controls which clients, and in what order, appear in every
single route. An individual from the first subpopulation is correct if the sum of
all his genes’ values is greater or equal to the number of clients. An individual
from the second subpopulation is correct if it contains permutation of all clients.
Combination of two individuals coming from opposite subpopulations results in
a complete solution. The reverse of this process is a separation of a complete
solution, which results in two individuals from the opposite subpopulations.

Figure 1 illustrates two individuals from the opposite subpopulations. A value
of the first gene of individual from the first subpopulation is the number of clients
of first vehicle’s route. As we can see, the route of the first vehicle consists of three
clients and the first three genes of the individual from the second subpopulation
strictly describe the shape of the route: {0, 3, 2, 7, 0}. The other routes are created
in the analogical way. The data contained in the genotype of the individual from
the second subpopulation is used to create three routes only. However this is not
a problem, because a complete solution is created. Genes which are not used in
the complete solution are considered being redundant and they are ignored.

Because it is not possible to predict the number of routes in advance, it is
assumed, that the number of genes of individuals from the first subpopulation is
half of the number of clients. A maximum length of a route is also limited to this



Fig. 1. The individuals from the first (left) and the second (top) subpopulation. Graph
illustrates the solution, which is the result of combining given individuals [10]

value. With these assumptions, it is possible, that a shortage of clients during
the process of complete solution constructing will occur. In this case the strategy
of filling up missing genes with random numbers from the range 〈2; n/2〉 (where
n is the number of clients) is used.

The co-evolutionary algorithm described above was used together with an
island model parallel evolutionary algorithm [2]. In such a model the whole
population of individuals is divided into subpopulations living on different islands
(computation nodes). The individuals can migrate between islands. In our case
also different fitness function on each island is used.

4 Prediction Techniques for Preventing and Avoiding

Crisis Situations

The function approximation approach is used as the main prediction technique
in the presented system. The goal of approximation is finding dependence be-
tween the analyzed continuous attributes and other continuous attributes of the
analyzed phenomenon. After computing such a dependence we are able to pre-
dict a value of interesting attributes for new sets of attributes of the analyzed
phenomenon. The application of this method is based on the assumption that
the occurrence and length of crisis situations probably depends on a well formed
set of continuous parameters. The key issue in obtaining a good quality of predic-
tion with the use of approximation techniques is the selection of an appropriate
set of parameters. Both ignoring important parameters and taking into account
unimportant parameters often results in a slow learning process and the decrease
in prediction quality. In real conditions, correlation should be analyzed to define
which parameters are significant.



We tested two function approximators:

– Multilayer perceptron with a backpropagation algorithm [12]. The number
of artificial neurons in the input layer is equal to the number of continuous
parameters, on which a crisis depends. Single hidden layer consists of 15
neurons with sigmoid activation function. The output layer consists of a
single neuron with a sigmoid activation function—the output is a predicted
crisis length. Learning rate decreases while the learning process progresses.

– Tile Coding [13]. The number of tile dimensions is equal to the number of
continuous parameters, on which the crisis depends. The size of tiles and
number of tilings depend on the type of crisis—both the requirement of
strict predictions and memory limitations are taken into consideration. In
order to update function values for tiles the delta rule is used [15]:

wi(x) = wi(x) + β(value − wi(x)) (1)

where wi(x) is the function value for tile, β is the learning rate, and the
value is the value returned by environment.

5 System for Solving Dynamic VRPTW Problems with

Crisis Situations

The system presented in this paper was implemented with the use of more gen-
eral, Java based component platform for solving VRP problems. The platform
consists of several components, of which the most important are:

– Static problems component.
– Dynamic problems simulation component.
– Soft time windows component—soft time windows allows us to expand time

windows for clients and depot. Expanding time windows results in penalties
during solutions evaluation.

– Crisis situations simulation component.
– Computational component—algorithms for solving VRP problems are loaded

as plugins. Although for this platform there were mostly implemented evo-
lutionary algorithms, the component architecture of the platform allows us
to add also non-evolutionary algorithms, like tabu search, etc.

– Operators loaded as plugins—operators are all processes, which input and
output is an individual (or a set of individuals). These include all genetic
operators like recombination, mutation, etc.

In all experiments presented in this paper the CCA algorithm with the island
model—as described in section 3—was used as the computational component
(see fig. 2). In order to exchange the best individuals between islands the set
of individuals from each island was copied to repository. Individuals from the
repository were then sent to other islands, where they replaced the worst indi-
viduals. Computations on distinct islands can take place on a single machine or
on several network connected machines. Distributed computing uses Java RMI
technology.



Fig. 2. Computational component: co-evolutionary algorithm and island model

5.1 Dynamic Problems Simulation

The component for dynamic problem simulation realizes an event-driven simula-
tion model with discrete time. Dynamic problems are generated on the basis of
static Solomon’s test problems. Part of the clients’ service requests are declared
before the beginning of the simulation—the remaining requests are declared
during simulation in two sets of requests. First one arrives when the 1/3 of the
simulation has passed and the second when 2/3 of the simulation has passed.

The way of solving the dynamic problem is performing alternate simulations
of vehicle movement and the static problem planning algorithm for the set of
unserved clients. During the simulation of vehicle movement, vehicle locations
and cargo amounts are updated. This updated information is then taken into
account during the planning of the next static solution. Clients already served
are removed from the set of unserved clients during the simulation of vehicle
movement.

The solution of dynamic problem can also be described by the following
pseudo-code:

Schedule requests declarations

The unserved clients set is empty

While(there are undeclared requests in the schedule)

Declare requests

Add clients declaring requests to the unserved clients set

Run the static problem planning algorithm for

the set of unserved clients

Simulate vehicles movement

End_while



5.2 Simulation of Crisis Situations

Five types of crisis situations were implemented within the component responsi-
ble for simulating such situations. These situations differ from each other in the
following ways:

– Place where crisis situations appear—clients or sections of routes between
clients.

– Parameters, on which probability of the occurrence of crisis situations and
its length depends. Dependence between particular types of crisis situations
and their parameters is essential to predict the crisis situations properly.
Selecting a set of parameters for the given type of crisis situation means,
that there is a high probability, that the crisis situation of a particular type
depends on every parameter of the chosen set;

– Time of the crisis situation occurring.

Implemented crisis situations, include (only selected are described in more
details):

– Occurrence of traffic jams within some sections of the route, between two
clients—depends on two discrete parameters: clients, which identify the par-
ticular section of route and one continuous parameter: occurrence time (we
assume that the occurrence of traffic jams depends on the time of the day).

– Vehicle breakdowns.
– Delayed readiness of the client (time window opening delayed).
– Prolongation of the service time—depends on one discrete parameter: a par-

ticular client, and two continuous parameters: the cargo weight to unload
and the occurrence time.

– Premature time window closure.

For each set of values of discrete parameters of crisis, separate crisis length
generators were created and used. For each generator and for each continuous
parameter a random function was selected and used to compute the probability
of crisis situation occurrence and its length. Several types of functions can be
used, for example trigonometric, linear, or power with random parameters. The
random parameters of the function were selected in such a manner that the
function had values from the range 〈0, 1〉 in the whole domain (possible values of
crisis’ continuous parameter). We assume that the probability of a crisis situation
occurring is equal to the geometric mean of crisis’ continuous parameters’ values.
The length of the crisis is equal to the geometric mean of the crisis’ continuous
parameters’ values multiplied by the absolute value of a random number from
the normal distribution and some chosen factor.

For each set of values of crisis discrete parameters separate approximators
were created and used. Attributes of approximation are continuous parameters of
crisis and the crisis length. The latter one is attributed to the prediction. During
the phase of vehicles movement simulation, each time when a crisis situation
occurring is possible, the crisis length is computed in the manner described in the
previous paragraph. When a crisis does not occur it is set to zero. A crisis length



is used to correct the parameters of simulation (eg. traffic jam—time of passing
the road is made longer). Then the approximator responsible for predicting the
crisis length for the crisis type and the set of values of discrete parameters is
determined. The chosen approximator is trained: training attributes are the set
of values of continuous parameters of crisis and computed crisis length.

The use of separate approximators for each set of values of discrete param-
eters of a crisis disqualifies the trivial assumption that there is a straight road
between every pair of clients. When considering traffic jams, it would mean that
we have to create squared clients number of approximators. Thus we provide
the possibility of limiting the number of roads in such a way that the road net
is the connected graph (accessibility of all clients from the depot is assured).
The crisis situations component includes the algorithm for generating the set of
roads between clients in such a way that the distance between any particular
two clients is close to a straight road length. The predicted delay caused by the
traffic jams between two particular clients is the sum of predicted delays caused
by traffic jams on all roads between the mentioned clients.

Two methods of avoiding crisis situations with the application of predictors
were implemented:

– Correction of routes with the use of predicted crises’ lengths during the
stage of combining two individuals from opposite populations into a single
solution—clients, where a successful service is doubtful because of the high
risk of crisis situations occurring are moved to another position in the route
or even to another route.

– Correction of fitness function values with the use of predicted crises’ lengths—
fitness value for a solution, where the risk of the crisis situation occurring is
high, is decreased.

6 Experimental Results

The most significant consequence of the crisis situations occurring is the appear-
ance of vehicle delays. Because of these, vehicles arrive at the client later than
the planned algorithm assumed, often after closing the clients’ time windows. In
the last case the client is not served and it greatly decreases the solution quality.
For this reason the number of unserved clients is considered as a main opti-
mization parameter—apart from the number of routes. Experiments have been
carried out on the set of dynamic problem tests with the diversified dynamism
level, generated on the basis of Solomon’s static problems set.

Results for R2 Solomon’s problem class are listed in fig. 6. Very good results
have been achieved with Tile Coding predictor (TC). The number of unserved
clients has been reduced by more then half (when compared to algorithm without
any predictor—“Basic”) and only the small increase of the route numbers has
been observed. Good results have also been achieved with the use of soft time
windows (SW). In this case, time windows are expanded by 50% (SW = 0.5) of
its initial width. The best results however can be observed in the case of using
Tile Coding predictor and soft time windows simultaneously (TC+SW) with SW
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Fig. 3. Average results of 33 experiments carried out on every configuration, for R2
Solomon’s problem class: unserved clients (a), and routes (b) for different prediction
techniques

= 0.5. This results in over three times reduced values of the unserved number of
clients parameter.

Worse results than in the case of using Tile Coding predictor have been
achieved with the use of the neural network predictor (NN). The number of
unserved clients was reduced by about 30%. This is a result of the fact that
the crisis situations generators generate very dispersed crises lengths (values of
approximators target functions). If most of these lengths are zeros then the crisis
situations do not appear. The neural network often learns incorrectly in the case
of such an input data and then it approximates target functions erroneously. The
neural network learns much better when input data is less dispersed. In order to
verify this thesis the set of experiments was carried out. Crisis generators were
simplified in such a manner that crisis situations always appear, but factors used
to compute crisis length were reduced by 50%. Results of such experiments are
presented in fig. 6.

Results show that Tile Coding and neural network approximation qualities
are similar. Although neural network appears to be a considerably less versa-
tile approximator than Tile Coding, it has an important advantage—it does
not demand as much memory as the Tile Coding, which is the property that
could be decisively significant when function with many continuous parameters
is approximated.

Results for other Solomon classes are listed in the table 1. It appears that
the most efficient and the most versatile method of avoiding crisis situations is
the application of Tile Coding approximation to predict crisis’ lengths in order
to correct routes and fitness function values. This technique has achieved best
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Fig. 4. Average results of 33 experiments carried out on every configuration, for R2
Solomon’s problem class: unserved clients (a), and routes (b) for different prediction
techniques. Crisis situation always appears

effects for each experiment configuration, resulting in 46%–60% (it depends on
Solomon’s problem class) reduction of the number of unserved clients and the
insignificant increase of the number of routes.

Good results have been also achieved with the use of soft time windows, re-
sulting in 46%–60% reduction of the number of unserved clients (when the time
window was expanded by half of its initial width—SW = 0.5) and 25%–47%
(when the time window initial width was doubled—SW = 1). Additionally, de-
scribed method results in the route number reduction, because it expands the
interval of time in which the client can be served and thus relaxes the constraints
of the problem. It is worth paying attention to the worse results achieved in the
case of experiments with Solomon’s class 1 problems in comparison to corre-
sponding Solomon’s class 2 problems. The reasons of such behavior are narrower
time windows in Solomon’s class 1 problems. Because of the assumption that the
possibility of expanding time window depends on its initial width, narrow time
windows are less extensible. Despite the good results being achieved, it is worth
remembering, that expanding time windows is the simplification of the problem
conditions and it is harmful for clients. That is the reason why these results are
considered inferior to others.

7 Concluding Remarks

In the paper the system for solving dynamic vehicle routing problems with time
windows and crisis situations was presented. The results of experiments, carried
out on test sets for dynamic problems (generated by implemented algorithm on



Table 1. Average results of 30 experiments carried out on every configuration, classified
by Solomon’s problem classes

Class Basic TC SW = 0.5 SW = 1

C1 Number of routes 15.3 19.9 13.9 13

Number of unserved clients 32.1 14.3 26.5 23.8

C2 Number of routes 9.9 11.6 9.7 9.8

Number of unserved clients 30 12.1 22.7 18.6

R1 Number of routes 23.6 27.4 17.8 15.6

Number of unserved clients 39.7 20.6 32.2 29.5

RC1 Number of routes 23.9 26.9 19.1 16.2

Number of unserved clients 35.8 16.9 29.4 26.9

RC2 Number of routes 10.4 11.4 9.6 9.3

Number of unserved clients 31.5 17 20.3 16.6

the basis of the well-known and frequently used Solomon’s static problems set)
have proved that methods of avoiding crisis situations can limit the negative in-
fluence on the quality of the VRPTW dynamic problem solution. The main goal
of experiments was to verify the quality of implemented techniques of predicting
and avoiding crisis situations. The presented results clearly show, which one of
the methods is the best and the most versatile. Additionally they determine, in
what conditions other methods, less successful in a general case, could be used.

Of course these are only preliminary results and further research and ex-
periments are needed in order to additionally verify proposed mechanisms and
compare them to other prediction techniques. Also the agent-based realization
of the presented system is included in the future plans. It seems that such decen-
tralized co-evolutionary multi-agent system would have even stronger adaptive
capabilities what could be the great advantage—especially in the case of hard
dynamic real-life problems.
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