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Abstract. Co-evolutionary techniques for evolutionary algorithreprovercom-
ing limited adaptive capabilities of evolutionary algarits, and maintaining pop-
ulation diversity. In this paper the idea and formal modehgént-based realiza-
tion of predator-prey co-evolutionary algorithm is preteein The &ect of using
such approach is not only the location of Pareto frontierdist maintaining of
useful population diversity. The presented system is coetpt classical multi-
objective evolutionary algorithms with the use of Kursaesttproblem and the
problem of é€fective portfolio building.

1 Introduction

Co-evolutionary techniqudsr evolutionary algorithms (EAgre applicable in the case
of problems for which the fithess function formulation igfidult or impossible, there
is need for improving adaptive capabilities of EA or maintag useful population di-
versity and introducing speciation into EAs—Iloss of pogpiola diversity is one the
main problems in some applications of EAs (for example rmaltidal optimization,
multi-objective optimization, dynamic problems, etc.)

In the case of multi-objective optimization problems loggpopulation diversity
may cause that the population locates in the areas far froetd?@ontier or that individ-
uals are located only in selected areas of Pareto frontiehd case of multi-objective
problems with many local Pareto frontiers (defined by Del2jnthe loss of population
diversity may result in locating only local Pareto frontiestead of a global one.

One of the first attempts to apply competitive co-evolutigredgorithm to multi-
objective problems was predator-prey evolutionary sira{@PES) [6]. This algorithm
was then modified by Deb [2] in order to introduce some medmsiof maintaining
population diversity and evenly distributing individualger the Pareto frontier, but this
is still an open issue and the subject of ongoing research.

Evolutionary multi-agent systems (EMA&E multi-agent systems, in which the
population of agents evolve (agents can die, reproduce ampete for limited re-
sources). The model afo-evolutionary multi-agent system (CoEMAS])introduces
additionally the notions of species, sexes, and interastlzetween them. CoEMAS
allows modeling and simulation of fiérent co-evolutionary interactions, which can
serve as the basis for constructing the techniques of nimiimggpopulation diversity



and improving adaptive capabilities of such systems. CoBMgstems with sexual se-
lection and host-parasite mechanisms have already bediedppth good results to
multi-objective optimization problems ([4, 5]). In the faling sections the introduc-
tion to multi-objective optimization problems is presehtdlext, the co-evolutionary
multi-agent system with predator-prey mechanism is folyr@déscribed. The system
is applied to one standard multi-objective optimizatiost fgroblem and to problem of
effective portfolio building. Results from the experimentthwhe COEMAS system are
then compared to other classical evolutionary technigreesilts.

2 Multi-Objective Optimization

Multi-criteria Decision Making (MCDM)is the most natural way of making decision
for human beingsMulti-criteria means that during the decision process a lot of fac-
tors and objectives (often contradictory) are taken intestaeration. Human being is
equipped with natural gifts for multi-criteria decision kirag, however such abilities
are not séficient in more complex technical, business or scientific glens. In such
cases decision maker has to be equipped withient information systems able to sup-
port his decision making process.

MCDM process is based most frequently lghulti-objective Optimizatioriormu-
lated formally only in 19th century, but actual progressatving Multi-objective Opti-
mization Problems (MOOR3nsued after formulating by Vilfredo Pareto his optimality
theory in 1906. Following [2]-Multi-objective Optimization Problerm its general
form can be formulated as follows:

Minimize/Maximize (X), m=1,2...,M

Subject to g(x) >0, j=12...,J
h(¥) =0, k=1,2...,K
xi(L)gxigxi(U), i=1,2...,N

MOOP=

The set of constraints—both constraint functions (eqgieslitc(x)) and inequalities
gk(x)) and decision variable bounds (lower bourxﬁ% and upper boundéu))—define
all possible (feasible) decision alternative)(

The crucial concept of Pareto optimality is so called domagerelation that can be
formulated as follows: to avoid problems with convertingiimiization to maximization
problems (and vice versa of course) additional operataan be introduced. Then,
notationx; < xy indicates that solutior; is simply better than solutioxy for particular
objective. It is said that solutioxy dominates solutiong (Xa < Xg) then and only then
if:

- fi(xa) ¥ fj(xg) for j=12...,M
XA <Xg © {3Ji c {1,2,.1..,|v|}  XA<d X

A solution in the Pareto sense of the multi-objective optation problem means
determination of all non-dominated alternatives from tees3.
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Fig. 1. CoOEMAS with predator-prey mechanism

3 Co-Evolutionary Multi-Agent System with Predator-Prey
Mechanism for Multi-Objective Optimization

The system presented in this paper is based on the CoEMAS maddeh is the general
model of co-evolution in multi-agent system. In order to mtain population diversity
predator-prey co-evolutionary mechanism is used (see fidRrey represent solutions
of the multi-objective problem. The main goal of predatarta eliminate “weak” (ie.
dominated) prey.

The co-evolutionary multi-agent system with predator-prey mehanismis de-
scribed as 4-tupl€€oEMAS= (E, S, I, Q) whereS is the set of species€ S) that co-
evolve inCoEMAS T is the set of resource types that exist in the system, the amou
of typey resource will be denoted by, Q is the set of information types that exist in
the system, the information of typewill be denoted by“.

E= <TE,FE,QE> is theenvironment of theCoE MAS whereT E is the topography

of the environmen€ (directed graph with the cost function defined}; is the set
of resource types that exist in the environment—in our d&se- I", QF is the set of
information types that exist in the environment—in the it systenF = Q.

There are twanformation types (2 = {w1,w2}) and one resource typé& & {y}) in
CoEMAS Informations of typev: contain nodes to which agent can migrate, when it
is located in particular node of the graph. Informationsypitw, contain agents-prey
which are located in the particular node in tilm&here is ongesource type(l" = {y})
in COEMAS and there is closed circulation of resource within theesyst

The set of specieds given by:S = {prey, pred}. The prey species is defined as
follows: prey= (AP'®Y, S XP'eY = {sx}, ZP"Y, CP'®Y) whereAP™®Y is the set of agents that
belong to thepreyspeciesS XP®Yis the set of sexes which exist within theeyspecies,
ZP'® is the set of actions that agents of speqiesy can perform, an€P'® is the set
of relations of specieprey with other species that exist in tt@oEMAS There is
only one sexsx (sx= sX'®) within the prey species, which is defined as follows:
SX= (ASX= APrey 7sX_ zprey CsX — )y,

The set of actionsZP™Y = {die, get give acce ptseekclone rec, mut migr}, where
dieis the action of death, which is performed when prey is ouesburcesgetaction



gets some resource from anotla@f®Y agent located in the same node (this agent must
be dominated by the agent that perforgetaction or is too close to him in the criteria
space—seekaction allows to find such agentgjiveactions gives some resource to an-
other agent (which perfornggetaction),acce ptaction accepts partner for reproduction
(partner is accepted when the amount of resource possegsiee prey agent is above
the given level) seekaction also allows the prey agent to find partner for reprtidnc
when the amount of its resource is above the given leleheis the action of cloning
prey (new agent with the same genotype as parent’s one iedja&cis the recombi-
nation operator (intermediate recombination is used fh]tis the mutation operator
(mutation with self-adaptation is used [1fjgr action allows prey to migrate between
the nodes of the graph (migrating agent loses some resource)

Theset of relations ofpreyspecieswith other species that exist within the system is

. prey,get- predgive+r
defined as followsCP™®Y = { ——= {(prey, prey)}, ————= {{prey, pred)}}. The
first relation models intra species competition for limitedources (prey can decrease
(“-") the fitness of another prey with the use gét action). The second one models
predator-prey interactions: prey gives all the resouroevés to predator (which fitness
is increased:+") and then dies.

Thepredator specieq pred) is defined analogically gsreyspecies with the follow-
ing differences. The set of actiod8"d = {seekget migr}, whereseekaction seeks for
the “worst” (according to the criteria associated with tleg predator) prey located
in the same nodeget action gets all resource from chosen pneygr action is ana-
logical as in the case of prey species. Hee of relations of pred specieswith other
species is limited to one relation, which models predatespnteractionsCPred =

prey.get-
{F225~ ((pred. preyn}.

Agent a of speciesprey is given by:a = (gn?,Z2 =ZP'"¥, 13 =T, 0% = Q,PR®).
Genotypegr? is consisted of two vectors (chromosomes)f real-coded decision pa-
rameters’ values and of standard deviations’ values, which are used during rautat
Z8 = ZP'® s the set of actions which ageatcan perform.@ is the set of resource
types, and? is the set of information types, which agent can possess.

The set of profilesPR includes resource profilgp€1, which goal is to maintain
the amount of resource above the minimal level), reprodaggrofile (pr,, which goal
is agent’s reproduction), interaction profilprg, which goal is to interact with agents
from the same and another species), and migration prefike\Which goal is to migrate
to another node). Each time step agent tries to realize gbaltee profiles taking into
account their prioritiespry < prz < prz < pra (pr1 has the highest priority). In order
to realize goal of the given profile agent uses actions whigchhe realized within the
given profile. For example withipr; profile all actions connected with typeresource
(die, seekgef) can be used in order to realize the goal of this profile. Thidile uses
informations of typew,.

Agenta of speciespredis defined analogically tpreyagent. The main élierences
are genotype and the set of profiles. Genotype of agéntonsisted of the informa-
tion about the criterion associated with this agent. ThegptofilesPR? includes only
resource profilefri, which goal is to “kill” prey and collect their resourceshdami-
gration profile pr,, which goal is to migrate within the environment).



4 Test Problems

The experimental and comparative studies presented irp#per are based on well
known Kursawemulti-objective test problem (the formal definition may loaifid in
[7]) and the problem offéective portfolio building.

The Pareto set and Pareto frontier for kngsaweproblem are presented in fig. 2. In
this case optimization algorithm has to deal with discotegtwo-dimensional Pareto
frontier and disconnected three dimensional Pareto satitiadally, a specific defini-
tion of f; andf; functions causes that even very small changes in the spateeision
variables can cause bigfférences in the space of objectives. All of these causes that
Kursaweproblem is quite dficult for solving in general—and for solving using evolu-
tionary techniques in particular.

20 19 -8 17 -16 -5 -14

a) n b)

Fig. 2. Kursawe test problena) Pareto frontier and b) Pareto set

Proposed co-evolutionary agent-based approach has &sgbeliminarily assessed
using the problem offéective portfolio building. Below, there are presented emsive
steps (based on the Sharp model) during computing the eatecof the risk level and
generally speaking income expectation related to the wallp shares: 1. Computing
of arithmetic means on the basis of rate of returns; 2. Coimguhe value ofr coef-
ficient: aj = ﬁ—ﬂiR_m, whereR,; is the rate of return afth share, andR, is the rate of
return of market index; 3. Computing the valugdafodficient:8; = %,
wheren is the number of rate of returR;; is the rate of return in the péﬁadRmt is the
rate of return related to market index in peripd. Computing the share expectation:
R = a; - BiRn + &, whereg is the random component of the equation; 5. Comput-

2P (Re—ai—BiRm)?

ing the variance of random index of the th share:sq? = ==L ————"": 6. Com-
n =Y4
puting the variance of market indes;? = W; 7. Computing the risk level

of the investing walletrisk = f3sm? + Se,2, whereBp = ¥ (wii), p is the number
of shares in the wallety; is the percentage participation bth share in the wallet,
Sep? = 211 (w?se?) is the variance of the wallet; 8. Computing the investingetax-
pectationRp = Zip:l(a)i R)). The goal of optimization is to maximize the investing \eall
expectation along with minimizing the risk level. Model Efar frontiers related to two
cases taken into consideration in the course of this papegrasented in fig 3.
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Fig. 3. Building of gfective portfolio the model Pareto frontier for a) 3 and b) 17 stocks set

5 Results of Experiments

As it was mentioned in sec. 4 proposed COEMAS system withgioeeprey mechanism
has been evaluated using inter-alia Kursawe test problergive a kind of reference
point, results obtained by COEMAS are compared with resaldtained by “classical”
(i.e. non agent-based) predator-prey evolutionary giyaPES) [6] and another clas-
sical evolutionary algorithm for multi-objective optingitton: niched pareto genetic al-
gorithm (NPGA) [2]. In fig. 4 approximations of Pareto fragtbbtained by all three al-
gorithms are presented. As one may notice initially, i.eeref, 10 and partially after 20
(see fig. 4a, 4b and 4c) steps, Pareto frontiers obtained tye¢ algorithms are quite
similar if the number of found non-dominated individualsir distance to the model
Pareto frontier and their dispersing over the whole Panmetotier are considered. Af-
terwards yet, definitely higher quality of COEMAS-basedd®afrontier approximation
is more and more distinct. The NPGA-based Pareto frontrapnsai completely disap-
pears after about 30 steps, and although PPES-based Rargterfis better and better
this improving process is quite slow and not so clear as ircése of COEMAS-based
solution.

b) c)

a)

d) 9) h)

Fig. 4. Kursawe problem Pareto frontier approximations obtaine@bEMAS, PPES and NPGA
after a) 1, b) 10, c) 20, d) 30, e) 100 and f) 600 steps



Because solutions presented in fig. 4 partially overlapgnHithere are presented
separately Pareto frontiers obtained by analyzed algostafter 2000, 4000 and 6000
time steps. There is no doubt that—what can be especially isefg. 5a, d and g—
CoEMAS is definitely the best alternative since it is able Ibtain Pareto frontier that
is located very close to the model solution, that is very Wiapersed and what is also
very important—it is more numerous than PPES and NPGA-bssietions.

Table 1. The values of thélV andHVR metrics for compared systems (Kursawe problem)

HV / HVR

|Step  [COEMAS |PPES INPGA

1 54121 / 0.874 53076 / 0.857 48934 / 0.790
10 58838 / 0.950 53076 / 0.867 56355 / 0.910
20 59409 / 0.959 53141/ 0.858 40179 / 0.648
30 60166 / 0.971 53141 / 0.858 37878 / 0.611
40 60255 / 0.973 53141/ 0.858 37873/ 0.611
50 59409 / 0.959 53141/ 0.858 37877 / 0.611
100 60304 / 0.974 53142 / 0.858 37880 / 0.6117
600 60379 / 0.975 57744 / 0.932 37880 / 0.611
200 61143 / 0.987 60947 / 0.984 37880 / 0.611
4000 [61144/ 0.987 55553 / 0.897 37880 / 0.611
6000 61310/ 0.990 547.73 / 0.884 37880 / 0.611

It is of course quite diicult to compare algorithms only on the basis of qualitative
results, so in Table 1 there are presented values of HV and K¥tRics ([2]) obtained
during the experiments with Kursawe problem. The resuksgnted in this table con-
firm that in the case of Kursawe problem CoEMAS is much bettierraative than
“classical” PPES or NPGA algorithms.

In the case of optimizing investing portfolio each indivédun the prey popula-
tion is represented as@dimensional vector. Each dimension represents the percen
age participation of-th (i € 1... p) share in the whole portfolio. Because of the space
limitation in this paper only a kind of summary of two singlgperiments will be
presented. During presented experiment quotations frob3-81-01 until 2005-12-
31 were taken into consideration. Simultaneously the phlottonsists of the follow-
ing three (in experiment I) or seventeen (in experimenttibks quoted on the War-
saw Stock Exchange: in experiment I: RAFAKO, PONARFEH, PKDB experiment
Il: KREDYTB, COMPLAND, BETACOM, GRAJEWO, KRUK, COMARCH, AM,
HANDLOWY, BZWBK, HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,
GANT, PROKOM, BPHPBK. As the market index WIG20 has beenakéo consid-
eration. In fig. 6 there are presented Pareto frontiers obthiising COEMAS, NPGA
and PPES algorithm after 100, 500 and 900 steps in experim&nbne may notice in
this case COEMAS-based frontier is more numerous (espenidlally) than NPGA-
based and as numerous as PPES-based one. Unfortunatéd/daga diversity of pop-
ulation in COEMAS approach is visibly worse than in the caleRGA or PPES-based
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Fig. 5. Kursawe problem Pareto frontier approximations after 2@)0(b), (c), 4000 (d), (e),(f)
and 6000 (g), (h), (i) steps obtained by COEMAS, PPES, andAIPG

frontiers®. What is more, with time the tendency of COEMAS-based sdiwefocus-
ing solutions around small part of the whole Pareto froriianore and more distinct.
Similar situation can be also observed in fig. 7 presentingtBdrontiers obtained by
CoEMAS, NPGA and PPES—but this time portfolio that is beiptimized consists of
17 shares. Also this time CoEMAS-based frontier is quite erous and quite close to
the model Pareto frontier but the tendency for focusingtsmis around only selected
part(s) of the whole frontier is very distingt

6 Concluding Remarks

Co-evolutionary techniques for evolutionary algorithms applicable in the case of
problems for which it is dficult or impossible to formulate explicit fithess function,
there is need for maintaining useful population diverdayning species located in the
basins of attraction of ¢tierent local optima, or introducing open-ended evolutiatts
techniques are also widely used in artificial life simulatoAlthough co-evolutionary
algorithms has been recently the subject of intensive releheir application to multi-
modal and multi-objective optimization is still the operoplem and many questions
remain unanswered.

L1tis also confirmed by values of HV or HVR metrics, but becaokspace limitations these
characteristics are omitted in this paper.

2 |tis also confirmed by values of appropriate metrics but ai said those characteristics are
omitted in this paper.
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Fig. 6. Pareto frontier approximations after 100 (a), (b), (c), 500 (e),(f), and 900 (g), (h), (i)
steps obtained by CoEMAS, PPES, and NPGA for buildifigative portfolio consisting of 3
stocks

In this paper the agent-based realization of predator-pregel within the more
general framework ofo-evolutionary multi-agent systdmas been presented. The sys-
tem was run against Kursawe test problem and hard real-lifé-wbjective problem—
effective portfolio building—and then compared to two clagkimulti-objective evo-
lutionary algorithms: PPES and NPGA. In the case dialilt Kursawe test problem
CoEMAS with predator-prey mechanism properly located ®@afi@ntier, the useful
population diversity was maintained and the individualsevevenly distributed over
the whole frontier. In the case of this test problem the tesuibtained with the use of
proposed system was clearly better than in the case of tvay titlassical” algorithms.
It seems that the proposed predator-prey mechanism foutemoary multi-agent sys-
tems may be very useful in the case of hard dynamic and multaihmulti-objective
problems (as defined by Deb [2]). In the case fiéetive portfolio building problem
CoEMAS was able to form more numerous frontier, however tieggendency to lose
population diversity during the experiment was observedhis case PPES and NPGA
were able to form better dispersed Pareto frontiers. Thétsasf experiments show that
still more research is needed on co-evolutionary mechanfsmmaintaining popula-
tion diversity used in COEMAS, especially when we want tdtanaintain diversity of
solutions. Future work will include more detailed analysiproposed co-evolutionary
mechanisms, especially focused on problems of stable aiaing population diversity.
Also the comparison of COEMAS to other classical multi-alijee evolutionary algo-
rithms with the use of hard multi-modal multi-objectivettpsoblems, and the appli-
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Fig. 7. Pareto frontier approximations after 100 (a), (b), (c), 500 (e),(f), and 900 (g), (h), (i)
steps obtained by CoEMAS, PPES, and NPGA for buildifigative portfolio consisting of 17
stocks

cation of other co-evolutionary mechanisms like symbi¢sisoperative co-evolution)
are included in future plans.
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