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Abstract. Sexual selection mechanism can be used in evolutionaryitigws
in order to introduce and maintain useful population diitgr$n this paper the
sexual selection mechanism for agent-based evolutiohgoyitoms is presented.
Proposed co-evolutionary multi-agent system with sexakgcsion is applied to
multi-modal optimization problems and compared to “cleaBievolutionary al-
gorithms.
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1 Introduction

Evolutionary algorithms (EAsyre global optimization techniques based on principles
of Darwinian model of evolutionary processes. Althoughythave been widely, and
with great successes, applied to a wide variety of probl&#s,often sifer from loss
of population diversity. This limits the adaptive capai®k of EAs, may lead to locating
local optima instead of a global one, and limits the possidl of application of EAs
in some areas (multi-modal optimization and multi-objeetptimization are only two
examples). In the case of multi-modal optimization proldem EA without any special
mechanisms will inevitably locate a single solution [7]. khle solutions can be found
only after using some special multi-modal optimizatiorhigiques (so callediching
techniqueg7]). Niching techniques are aimed at forming and stablyntzning sub-
populations (species) that are located within the basiradtcdction of local optima of
multi-modal problems.

The understanding of species formation processpedation still remains the
greatest challenge for evolutionary biology. The biolaginodels of speciation include
allopatric modelgwhich require geographical separation of sub-populajiandsym-
patric models(where speciation takes place within one population withghysical
barriers) [5]. Sympatric speciation may be caused Ifigdint kinds of co-evolutionary
interactions includingexual selection

Sexual selection mechanism is the result of co-evolutiantefacting sexes. Usu-
ally one of the sexes evolve to attract the second one to gratid the second one tries
to keep the rate of reproduction—and costs associated taitbn optimal level §exual
conflich) [5]. The proportion of two sexes (females and males) in fetn is almost
always 1 : 1. This fact combined with higher females’ repmithn costs causes, that



in the majority of cases, females choose males in the reptmauprocess according
to some males’ features. In fact fiirent variants of sexual conflict are possible. For
example there can be higher females’ reproduction costslegproduction costs (no
sexual conflict), equal number of females and males in pdpulghigher number of
males in population (when the costs of producing a femaldigteer than producing a
male), higher number of females in population (when thescoSproducing a male are
higher than producing a female) [6].

Evolutionary multi-agent system (EMAS)the agent-based realization of evolu-
tionary computation. In such system three basic mechanignch are responsible for
initiating and maintaining evolutionary processes, exagents are able to reproduce,
die, and there exist resources in the environment for whighnts compete and which
are needed for all their activities. The general model okeolution in multi-agent
system (CoEMAS) [2] includes additionally the notions oésjes, sex and relations
between species and sexes in evolutionary multi-agergrsythese additional mech-
anisms can serve as a basis for creating techniques of nmamgtaiseful population
diversity and speciation in systems based on COEMAS modghplitational systems
based on CoEMAS model has already been applied with progiigisults to multi-
modal optimization [3], and multi-objective optimizatif4i.

In the following sections the previous work on sexual sébecas a population di-
versity maintaining and speciation mechanism for evohary algorithms is presented.
Next, the co-evolutionary multi-agent system with sexehéstion mechanism is pre-
sented. In such a system two sexes co-evolve: females amd .nk@male mate choice
is based on values of some important features of selectéddndls. Such system is
applied to multi-modal function optimization and compateticlassical” niching tech-
niques.

2 Previous Research on Sexual Selection as a Speciation
M echanism

Sexual selection is considered to be one of the ecologicehar@sms responsible for
sympatric speciation [5]. Gavrilets [5] presented a mogeich exhibits three general
dynamic regimes. In the first one there is endless co-ewnlaty chase between the
sexes where females evolve to decrease the mating rate dad evalve to increase
it. In the second regime females’ alleles split into two tdus both at the optimum
distance from the males’ alleles and males get trapped leetihe two female clusters
with relatively low mating success. In the third regime nsad@swer the diversification
of females by splitting into two clusters that evolve towénd corresponding female
clusters. As a result, the initial population splits intmtepecies that are reproductively
isolated.

Todd and Miller [10] showed that natural selection and segakection play com-
plementary roles and both processes together are capalkenefating evolutionary
innovations and bio-diversity much morffieiently. Sexual selection allows species to
create its own optima in fitness landscapes. This aspeckoébselection can result in
rapidly shifting adaptive niches what allows the populatio explore diferent regions



of phenotype space and to escape from local optima. The i@uéthen presented the
model of sympatric speciation via sexual selection.

Sanchez-Velazco and Bullinaria [9] proposgehdered selection strategies for ge-
netic algorithms They introduced sexual selection mechanism, where maéese
lected on the basis of their fithess value and females on thie bhthe so callethdi-
rect fithessFemale’s indirect fitness is the weighted average of hezd#trvalue, age,
and the potential to produce fiffspring (when compared to her partner). For each gen-
der diferent mutation rates were used. The authors applied tlyairitdm to Traveling
Salesman Problem and function optimization.

Sexual selection as a mechanism for multi-modal functiaim@pation was stud-
ied by Ratford, Tuson and Thompson [8]. In their techniquaiakselection is based
on the so callededuction functionThis function gives a low measure when two in-
dividuals are very similar or dissimilar and high measureridividuals fairly similar.
The Hamming distance in genotype space was used as a distetige for two indi-
viduals. The authors applied their mechanism alone andritbamation with crowding
and spatial population model. Although in most cases teelmique was successful in
locating basins of attraction of multiple local optima inlttmodal domain, the strong
tendency to lose all of them except one after several husdsigdulation steps was
observed.

As it was presented here, sexual selection is the biologieghanism responsible
for bio-diversity and sympatric speciation. However it was widely used as maintain-
ing population diversity, speciation and multi-modal ftinn optimization mechanism
for evolutionary algorithms. It seems that sexual selecstoould introduce open-ended
evolution, improve adaptive capabilities of EA (espegiatl dynamic environments)
and allow speciation (the formation of species locatediwithe basins of attraction of
different local optima of multi-modal fithess landscape) bug thistill an open issue
and the subject of ongoing research.

3 Sexual Selection Mechanism for Co-Evolutionary Multi-Agent
System

The system based on CoOEMAS model with sexual selection mérha SCoEMAS)
can be seen in figure 1. The topography of the environmenthiolwindividuals live,
is graph with every node (place) connected with its four hkeas. There exist resource
in the environment which is given to the individuals propmmally to their fitness func-
tion value. Every action (such as migration or reprodudtmfrindividual costs some
resource.

There are two sexes within the species living in the systemmales and males.
Reproduction takes place only when individuals have enaumgbunt of resource. The
genotypes of all individuals are real-valued vectors. rimediate recombination and
mutation with self-adaptation [1] are used for females aadbm

The female’s cost of reproduction is higher than male sa theiing rate is lower.
Each time step males search for the reproduction partnemsa{és) in their neighbor-
hood. Female chooses reproduction partner only if they atk located within the
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Fig. 1. Co-evolutionary multi-agent system with sexual selectimthanism

basin of attraction of the same local minima of multi-modaidss landscape. Modi-
fied version of hill-valley function [11] is used in order theck if two individuals are
located within the basin of attraction of the same local mii Instead of three deter-
ministically selected points, ten randomly generatedfsanre used in order to evaluate
hill-valley function value. The decision of acceptance sd® on the basis of distance
between female and male in phenotype space (Euclidearcrigetrsed). The probabil-
ity of acceptance is greater for more similar individuallsd the operator of grouping
individuals into reproducing pairs is introduced. If femahooses male for reproduc-
tion they move together within the environment and repredliring some simulation
steps.

The system was applied to multi-modal function optimizatmd run against four
commonly used test functions.

3.1 Experimental Results

The presented system with sexual selection mechanism was\gaothers, tested with
the use of standard Rastrigin and Schwefel multi-modallprob (see fig. 2) In order
to give a kind of reference point two other algorithms—stmcEMAS and determin-
istic crowding (DC) [7]—was run against the same set of testfions.

Rastrigin function used in experiments is given by:

n
f2(X) = 10*n+Z(xi2— 10« cos(2«m* X)) X €[-2.5;25]fori=1,....n (1)
i=1
wheren is the number of dimensions € 2 in all experiments). The function has 25
local minima forxy, xo € [-2.5; 2.5].
Schwefel function is given by:

fo(X) = zn:(_m «sin(+ixl)) % €[-5000;5000]fori=1,....n (2)
i=1

1 The presented CoEMAS was also tested with the use of othei-matial problems, but be-
cause of space limitations it is out of scope of this paper.



a)

Fig. 2. Rastrigin (a) and Schwefel (b) test functions
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Fig. 3. The number of located local minima neighborhoods of Rastrig) and Schwefel (b)
functions by CoEMAS with sexual selection, EMAS, and deiaistic crowding technique (av-
erage values from 20 experiments)

This is deceptive function with unevenly distributed 62dbminima forn = 2.

The figure 3 shows the average number of local minima neidtdmats located
from 20 experiments. The local minima neighborhood wassdiad as located when
there were at least three individuals closer th#stnax = 0.05 from local minima for
Rastrigin function andlistyax= 10.0 for Schwefel function. All the experiments were
carried out for three techniques: SCOEMAS, EMAS, and DC.

The SCoEMAS stood relatively well when compared to othehnégues. In all
cases it formed and stably maintained species during théevexperiment. Although
DC quickly located even greater number of local minima neahoods than other
techniques, there was quite strong tendency to lose alniastthem during the rest
part of experiment. Simple EMAS, without any niching meadkars was not able to

stably populate more than one local minima neighborhoddriied out that in the case
of multi-modal landscape it works just like simple EA.
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Fig. 4. The value of proportional species’ sizes indicator in ekpents with Rastrigin (a) and
Schwefel (b) functions (average values from 20 experim)ents

Figure 4 shows the average values of proportional spedess $ndicatompd(t).
Thenpd(t) indicator is defined as follows:
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where:D™"C D is the set of local minima of the goal functidnA(t) is the set of agents
that exist in the system in tirrt(ex}r is j-th local minima,Al(t) is the set of agents, that
are closer thadistyaxto j-th local minima in the time, f’ = 6o f is the modified goal
function,s : R — R is scaling function which assures that the value§’dfinction are
greater than 0 and that local maxima of this function aretkt&n the same places as
local minima of functionf .

In the case when all sub-populations (species) locatedmiitle neighborhoods of
local minima are of optimal sizes therpd(t) indicator has the maximal value (equal
to the number of local minima). In the case when some subptipnk’ sizes are not
optimal then the value of this indicator falls down. The tespresented in fig. 4 con-
firm that SCOEMAS stably maintains useful population diitgrand that DC technique
initially properly distributes individuals over the localinima basins of attraction, but
then, as the time goes on, it loses almost all basins of &tira(species located within
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Fig.5. The number of individuals in population in experiments wRastrigin (a) and Schwefel
(b) functions (average values from 20 experiments)

them disappear). Also, earlier observations that EMAS tsafsbe to maintain useful
population diversity are fully acknowledged by the resphssented in fig. 4.

The sizes of population in EMAS, DC and SCoEMAS during experits with
Rastrigin and Schwefel functions are presented in fig. 5. EM#d SCoEMAS used
variable size populations, while DC population size wasdigis results from the
DC algorithm’s assumptions [7]). In the case of EMAS and SKIAES systems initial
population sizes are small and quickly adapts to tifecdity of the problem. It is worth
noting that SCOEMAS uses the smallest population in expantswith both functions,
what is the big advantage.

Presented results indicate that simple EMAS can not be egppdi multi-modal
function optimization without introducing special meckamns such as co-evolution.
DC technique has some limitations—it has the strong tendéméose basins of at-
traction of “worse” local minima during the experimentsigtfact was also previously
observed in [12]). CoOEMAS with sexual selection is able torfand stably maintain
species but still more research is needed.

4 Summary and Conclusions

The general model of co-evolution in multi-agent systemEM®&S) extends the basic
EMAS model from single species and sex to multiple interecspecies and sexes.
On the basis of COEMAS model computational and simulaticstesys may be devel-
oped. In this paper sample computational COEMAS with sexakdction and result-
ing co-evolution of two sexes was presented. This systemappbed to multi-modal
function optimization. As presented results clearly shbproperly formed and stably
maintained species of agents located within the basingmictibn of local minima of
multi-modal problems. SCOEMAS was able to detect and stadalintain more neigh-



borhoods of local minima than EMAS without niching mechamiznd deterministic
crowding niching technique.

Future research will include the comparison of other vasiafsexual conflict (dif-

ferent costs of reproduction for each sexfeatient costs of producing female and male
individual, resulting in diferent proportions of individuals of each sex in population)
Also, more detailed comparison to other “classical” nichand co-evolutionary tech-
niques and the parallel implementation of systems based&MaAS model with the
use of MPI are included in future research plans.
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