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Abstract. Sexual selection mechanism can be used in evolutionary algorithms
in order to introduce and maintain useful population diversity. In this paper the
sexual selection mechanism for agent-based evolutionary algorithms is presented.
Proposed co-evolutionary multi-agent system with sexual selection is applied to
multi-modal optimization problems and compared to “classical” evolutionary al-
gorithms.
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1 Introduction

Evolutionary algorithms (EAs)are global optimization techniques based on principles
of Darwinian model of evolutionary processes. Although they have been widely, and
with great successes, applied to a wide variety of problems,EAs often suffer from loss
of population diversity. This limits the adaptive capabilities of EAs, may lead to locating
local optima instead of a global one, and limits the possibilities of application of EAs
in some areas (multi-modal optimization and multi-objective optimization are only two
examples). In the case of multi-modal optimization problems an EA without any special
mechanisms will inevitably locate a single solution [7]. Multiple solutions can be found
only after using some special multi-modal optimization techniques (so calledniching
techniques[7]). Niching techniques are aimed at forming and stably maintaining sub-
populations (species) that are located within the basins ofattraction of local optima of
multi-modal problems.

The understanding of species formation processes (speciation) still remains the
greatest challenge for evolutionary biology. The biological models of speciation include
allopatric models(which require geographical separation of sub-populations) andsym-
patric models(where speciation takes place within one population without physical
barriers) [5]. Sympatric speciation may be caused by different kinds of co-evolutionary
interactions includingsexual selection.

Sexual selection mechanism is the result of co-evolution ofinteracting sexes. Usu-
ally one of the sexes evolve to attract the second one to mating and the second one tries
to keep the rate of reproduction—and costs associated with it—on optimal level (sexual
conflict) [5]. The proportion of two sexes (females and males) in population is almost
always 1 : 1. This fact combined with higher females’ reproduction costs causes, that



in the majority of cases, females choose males in the reproduction process according
to some males’ features. In fact, different variants of sexual conflict are possible. For
example there can be higher females’ reproduction costs, equal reproduction costs (no
sexual conflict), equal number of females and males in population, higher number of
males in population (when the costs of producing a female arehigher than producing a
male), higher number of females in population (when the costs of producing a male are
higher than producing a female) [6].

Evolutionary multi-agent system (EMAS)is the agent-based realization of evolu-
tionary computation. In such system three basic mechanism,which are responsible for
initiating and maintaining evolutionary processes, exist: agents are able to reproduce,
die, and there exist resources in the environment for which agents compete and which
are needed for all their activities. The general model of co-evolution in multi-agent
system (CoEMAS) [2] includes additionally the notions of species, sex and relations
between species and sexes in evolutionary multi-agent system. These additional mech-
anisms can serve as a basis for creating techniques of maintaining useful population
diversity and speciation in systems based on CoEMAS model. Computational systems
based on CoEMAS model has already been applied with promising results to multi-
modal optimization [3], and multi-objective optimization[4].

In the following sections the previous work on sexual selection as a population di-
versity maintaining and speciation mechanism for evolutionary algorithms is presented.
Next, the co-evolutionary multi-agent system with sexual selection mechanism is pre-
sented. In such a system two sexes co-evolve: females and males. Female mate choice
is based on values of some important features of selected individuals. Such system is
applied to multi-modal function optimization and comparedto “classical” niching tech-
niques.

2 Previous Research on Sexual Selection as a Speciation
Mechanism

Sexual selection is considered to be one of the ecological mechanisms responsible for
sympatric speciation [5]. Gavrilets [5] presented a model,which exhibits three general
dynamic regimes. In the first one there is endless co-evolutionary chase between the
sexes where females evolve to decrease the mating rate and males evolve to increase
it. In the second regime females’ alleles split into two clusters both at the optimum
distance from the males’ alleles and males get trapped between the two female clusters
with relatively low mating success. In the third regime males answer the diversification
of females by splitting into two clusters that evolve towardthe corresponding female
clusters. As a result, the initial population splits into two species that are reproductively
isolated.

Todd and Miller [10] showed that natural selection and sexual selection play com-
plementary roles and both processes together are capable ofgenerating evolutionary
innovations and bio-diversity much more efficiently. Sexual selection allows species to
create its own optima in fitness landscapes. This aspect of sexual selection can result in
rapidly shifting adaptive niches what allows the population to explore different regions



of phenotype space and to escape from local optima. The authors also presented the
model of sympatric speciation via sexual selection.

Sánchez-Velazco and Bullinaria [9] proposedgendered selection strategies for ge-
netic algorithms. They introduced sexual selection mechanism, where males are se-
lected on the basis of their fitness value and females on the basis of the so calledindi-
rect fitness. Female’s indirect fitness is the weighted average of her fitness value, age,
and the potential to produce fit offspring (when compared to her partner). For each gen-
der different mutation rates were used. The authors applied their algorithm to Traveling
Salesman Problem and function optimization.

Sexual selection as a mechanism for multi-modal function optimization was stud-
ied by Ratford, Tuson and Thompson [8]. In their technique sexual selection is based
on the so calledseduction function. This function gives a low measure when two in-
dividuals are very similar or dissimilar and high measure for individuals fairly similar.
The Hamming distance in genotype space was used as a distancemetric for two indi-
viduals. The authors applied their mechanism alone and in combination with crowding
and spatial population model. Although in most cases their technique was successful in
locating basins of attraction of multiple local optima in multi-modal domain, the strong
tendency to lose all of them except one after several hundreds simulation steps was
observed.

As it was presented here, sexual selection is the biologicalmechanism responsible
for bio-diversity and sympatric speciation. However it wasnot widely used as maintain-
ing population diversity, speciation and multi-modal function optimization mechanism
for evolutionary algorithms. It seems that sexual selection should introduce open-ended
evolution, improve adaptive capabilities of EA (especially in dynamic environments)
and allow speciation (the formation of species located within the basins of attraction of
different local optima of multi-modal fitness landscape) but this is still an open issue
and the subject of ongoing research.

3 Sexual Selection Mechanism for Co-Evolutionary Multi-Agent
System

The system based on CoEMAS model with sexual selection mechanism (SCoEMAS)
can be seen in figure 1. The topography of the environment, in which individuals live,
is graph with every node (place) connected with its four neighbors. There exist resource
in the environment which is given to the individuals proportionally to their fitness func-
tion value. Every action (such as migration or reproduction) of individual costs some
resource.

There are two sexes within the species living in the system: females and males.
Reproduction takes place only when individuals have enoughamount of resource. The
genotypes of all individuals are real-valued vectors. Intermediate recombination and
mutation with self-adaptation [1] are used for females and males.

The female’s cost of reproduction is higher than male so their mating rate is lower.
Each time step males search for the reproduction partners (females) in their neighbor-
hood. Female chooses reproduction partner only if they are both located within the
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Fig. 1. Co-evolutionary multi-agent system with sexual selectionmechanism

basin of attraction of the same local minima of multi-modal fitness landscape. Modi-
fied version of hill-valley function [11] is used in order to check if two individuals are
located within the basin of attraction of the same local minima. Instead of three deter-
ministically selected points, ten randomly generated points are used in order to evaluate
hill-valley function value. The decision of acceptance is made on the basis of distance
between female and male in phenotype space (Euclidean metric is used). The probabil-
ity of acceptance is greater for more similar individuals. Also, the operator of grouping
individuals into reproducing pairs is introduced. If female chooses male for reproduc-
tion they move together within the environment and reproduce during some simulation
steps.

The system was applied to multi-modal function optimization and run against four
commonly used test functions.

3.1 Experimental Results

The presented system with sexual selection mechanism was, among others, tested with
the use of standard Rastrigin and Schwefel multi-modal problems (see fig. 2)1. In order
to give a kind of reference point two other algorithms—standard EMAS and determin-
istic crowding (DC) [7]—was run against the same set of test functions.

Rastrigin function used in experiments is given by:

f1(x) = 10∗n+
n
∑

i=1

(x2
i −10∗cos(2∗π ∗ xi)) xi ∈ [−2.5;2.5] for i = 1, . . . ,n (1)

wheren is the number of dimensions (n= 2 in all experiments). The function has 25
local minima forx1, x2 ∈ [−2.5;2.5].

Schwefel function is given by:

f2(x) =
n
∑

i=1

(

−xi ∗sin
(√

|xi |
))

xi ∈ [−500.0;500.0] for i = 1, . . . ,n (2)

1 The presented CoEMAS was also tested with the use of other multi-modal problems, but be-
cause of space limitations it is out of scope of this paper.
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Fig. 2. Rastrigin (a) and Schwefel (b) test functions
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Fig. 3. The number of located local minima neighborhoods of Rastrigin (a) and Schwefel (b)
functions by CoEMAS with sexual selection, EMAS, and deterministic crowding technique (av-
erage values from 20 experiments)

This is deceptive function with unevenly distributed 62 local minima forn= 2.

The figure 3 shows the average number of local minima neighborhoods located
from 20 experiments. The local minima neighborhood was classified as located when
there were at least three individuals closer thandistmax= 0.05 from local minima for
Rastrigin function anddistmax= 10.0 for Schwefel function. All the experiments were
carried out for three techniques: SCoEMAS, EMAS, and DC.

The SCoEMAS stood relatively well when compared to other techniques. In all
cases it formed and stably maintained species during the whole experiment. Although
DC quickly located even greater number of local minima neighborhoods than other
techniques, there was quite strong tendency to lose almost all of them during the rest
part of experiment. Simple EMAS, without any niching mechanisms was not able to
stably populate more than one local minima neighborhood. Itturned out that in the case
of multi-modal landscape it works just like simple EA.
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Fig. 4. The value of proportional species’ sizes indicator in experiments with Rastrigin (a) and
Schwefel (b) functions (average values from 20 experiments)

Figure 4 shows the average values of proportional species’ sizes indicatornpd(t).
Thenpd(t) indicator is defined as follows:

npd(t) =
|Dmin|
∑

i=1

g
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ni j
opt =

f ′(x+j )

∑|Dmin|
k=1 f ′(x+k )

|A(t)| (3c)

where:Dmin⊆D is the set of local minima of the goal functionf , A(t) is the set of agents
that exist in the system in timet, x+j is j-th local minima,A j(t) is the set of agents, that
are closer thandistmax to j-th local minima in the timet, f ′ = δ◦ f is the modified goal
function,δ : R→R is scaling function which assures that the values off ′ function are
greater than 0 and that local maxima of this function are located in the same places as
local minima of functionf .

In the case when all sub-populations (species) located within the neighborhoods of
local minima are of optimal sizes thennpd(t) indicator has the maximal value (equal
to the number of local minima). In the case when some subpopulations’ sizes are not
optimal then the value of this indicator falls down. The results presented in fig. 4 con-
firm that SCoEMAS stably maintains useful population diversity and that DC technique
initially properly distributes individuals over the localminima basins of attraction, but
then, as the time goes on, it loses almost all basins of attraction (species located within
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Fig. 5. The number of individuals in population in experiments withRastrigin (a) and Schwefel
(b) functions (average values from 20 experiments)

them disappear). Also, earlier observations that EMAS is not able to maintain useful
population diversity are fully acknowledged by the resultspresented in fig. 4.

The sizes of population in EMAS, DC and SCoEMAS during experiments with
Rastrigin and Schwefel functions are presented in fig. 5. EMAS and SCoEMAS used
variable size populations, while DC population size was fixed (this results from the
DC algorithm’s assumptions [7]). In the case of EMAS and SCoEMAS systems initial
population sizes are small and quickly adapts to the difficulty of the problem. It is worth
noting that SCoEMAS uses the smallest population in experiments with both functions,
what is the big advantage.

Presented results indicate that simple EMAS can not be applied to multi-modal
function optimization without introducing special mechanisms such as co-evolution.
DC technique has some limitations—it has the strong tendency to lose basins of at-
traction of “worse” local minima during the experiments (this fact was also previously
observed in [12]). CoEMAS with sexual selection is able to form and stably maintain
species but still more research is needed.

4 Summary and Conclusions

The general model of co-evolution in multi-agent system (CoEMAS) extends the basic
EMAS model from single species and sex to multiple interacting species and sexes.
On the basis of CoEMAS model computational and simulation systems may be devel-
oped. In this paper sample computational CoEMAS with sexualselection and result-
ing co-evolution of two sexes was presented. This system wasapplied to multi-modal
function optimization. As presented results clearly show it properly formed and stably
maintained species of agents located within the basins of attraction of local minima of
multi-modal problems. SCoEMAS was able to detect and stablymaintain more neigh-



borhoods of local minima than EMAS without niching mechanism and deterministic
crowding niching technique.

Future research will include the comparison of other variants of sexual conflict (dif-
ferent costs of reproduction for each sex, different costs of producing female and male
individual, resulting in different proportions of individuals of each sex in population).
Also, more detailed comparison to other “classical” niching and co-evolutionary tech-
niques and the parallel implementation of systems based on CoEMAS model with the
use of MPI are included in future research plans.
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