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Abstract. The loss of population diversity is one of the main problems in some
applications of evolutionary algorithms. In order to maintain useful population
diversity some special techniques must be used, like niching or co-evolutionary
mechanisms. In this paper the mechanisms for maintaining population diversity
in agent-based multi-objective (co-)evolutionary algorithms are proposed. The
presentation of techniques is accompanied by the results ofexperiments and com-
parisons to “classical” evolutionary multi-objective algorithms.
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1 Introduction

Evolutionary Algorithms (EAs)are techniques inspired by Darwinian model of evo-
lutionary processes observed in nature. They have demonstrated in practice efficiency
and robustness as global optimization techniques. However, sometimes the loss of use-
ful population diversity limits the possibilities of theirapplication in some areas (like,
for example, multi-modal optimization, multi-criteria optimization, dynamic problems,
etc.)

In the case of multi-objective optimization problems loss of population diversity
may cause that the population locates in the areas far from Pareto frontier or that individ-
uals are located only in selected areas of Pareto frontier. In the case of multi-objective
problems with many local Pareto frontiers (defined by Deb in [5]) the loss of popula-
tion diversity may result in locating only local Pareto frontier instead of a global one.
In order to avoid such negative tendencies special mechanisms are used, like niching
techniques, co-evolutionary algorithms and sexual selection.

Evolutionary multi-agent systems (EMAS)are multi-agent systems, in which there
are three basic mechanisms needed in order to start and maintain evolutionary pro-
cesses: limited resources that agents need for all activities and for which they compete,
and agents’ abilities to reproduce and die. Basic EMAS modelalso suffers from the
negative tendency to loss the population diversity, however, as we will show in the fol-
lowing sections, it can be equipped with additional mechanisms and operators which



improve the quality of obtained results. The general model of co-evolutionary multi-
agent system (CoEMAS)[6] introduces additionally the notions of species, sexes,and
interactions between them. CoEMAS allows modeling and simulation of different co-
evolutionary interactions, which can serve as the basis forconstructing the techniques
of maintaining population diversity and improving adaptive capabilities of such systems
(for example see [7]).

In the following sections mechanisms for maintaining useful population diversity
in “classical” evolutionary multi-objective algorithms are presented. Next, new tech-
niques for (co-)evolutionary multi agent systems for multi-objective optimization are
proposed. The presentation of proposed techniques is accompanied with the examples
of selected experimental results and comparisons to “classical” multi-objective evolu-
tionary algorithms.

2 Previous Research on Maintaining Population Diversity in
Evolutionary Multi-Objective Algorithms

In order to maintain useful population diversity and introduce speciation (process of
forming species—subpopulations—located in different areas of solutions’ space) spe-
cial techniques are used like niching mechanisms and co-evolutionary models. Nich-
ing techniques are primarily applied in multi-modal optimization problems, but they
are also used in evolutionary multi-objective algorithms.During the years of research
various niching techniques have been proposed [16], which allow niche formation via
the modification of mechanism of selecting individuals for new generation (crowding
model), the modification of the parent selection mechanism (fitness sharing technique
or sexual selection mechanism), or restricted application of selection and/or recombi-
nation mechanisms (bygroupingindividuals into subpopulations or by introducing the
environment with some topography in which the individuals are located).

Fitness sharing technique in objective space was used in Hajela and Lin genetic
algorithm for multi-objective optimization based on weighting method [10], by Fon-
seca and Fleming in their multi-objective genetic algorithm using Pareto-based ranking
procedure [8], and in the niched Pareto genetic algorithm (NPGA) (during the tourna-
ment selection in order to decide which individual wins the tournament) [11]. In non-
dominated sorting genetic algorithm (NSGA) the fitness sharing is performed in deci-
sion space, within each set of non-dominated individuals separately, in order to maintain
high population diversity [17]. In strength Pareto evolutionary algorithm (SPEA) [19]
special type of fitness sharing (based on Pareto domination relation) is used in order to
maintain diversity.

In co-evolutionary algorithmsthe fitness of each individual depends not only on
the quality of solution to the given problem but also (or solely) on other individuals’
fitness. This makes such techniques applicable in the cases where the fitness function
formulation is difficult (or even impossible). Co-evolutionary algorithms arealso appli-
cable in the cases when we want to maintain population diversity. Generally, each of the
co-evolutionary technique belongs to one of two classes: competitive or co-operative.

Laumanns, Rudolph and Schwefel proposed co-evolutionary algorithm with spatial
graph-like structure and predator-prey model for multi-objective optimization [13]. Deb



introduced modified algorithm in which predators eliminated preys not only on the basis
of one criteria but on the basis of the weighted sum of all criteria [5]. Li proposed other
modifications to this algorithm [14]. The main difference was that not only predators
were allowed to migrate within the graph but also preys coulddo it. The model of
co-operative co-evolution was also applied to multi-objective optimization ([12]).

Sexual selection results from co-evolution of female mate choice and male dis-
played trait where females evolve to reduce direct costs associated with mating and keep
them on optimal level and males evolve to attract females to mating (sexual conflict) [9].
Sexual selection is considered to be one of the ecological mechanisms responsible for
biodiversity and sympatric speciation [9].

All the works on sexual selection mechanism for multi-objective evolutionary al-
gorithms were focused on using this mechanism for maintaining population diversity.
Allenson proposed genetic algorithm with sexual selectionfor multi-objective optimiza-
tion in which the number of sexes was the same as the number of criteria of the given
problem [1]. Lis and Eiben proposed multi-sexual genetic algorithm (MSGA) for multi-
objective optimization [15] in which also one sex for each criterion was used. They
used special multi-parent crossover operator and child hadthe same sex as the parent
that provided most of genes. Bonissone and Subbu continued work on Lis and Eiben’s
algorithm. They proposed additional mechanisms for determining the sex of offspring
(random and phenotype-based) [3].

Co-evolution of species and sexes is the biological mechanism responsible for bio-
diversity and sympatric speciation. However the application of such mechanisms in
evolutionary multi-objective algorithms is still the subject of ongoing research and an
open issue.

3 Introducing Flock-Based Operators Into Evolutionary
Multi-Agent System

Assuming the classical structure of evolutionary multi-agent system, one of the way for
maintaining population diversity and, in the context of multi-objective optimization, for
improving the quality of the Pareto frontier approximationconsists in introducing to the
system so-called flock operators i.e. (in the simplest case)creating new flock/dividing
flock into two (n) flocks and merging two (n) flocks into one flock. Taking into ac-
count multi-objective optimization goals—such operatorscan be realized as follows.
During meetings with agents located in the same flock agent gathers (partial) knowl-
edge about its distance (in the decision variable space or inthe objective space) from
another agents. Then, if such (partial) average distance toanother agents is greater than
configured parameter(s) (to be precise, in realized system this parameter is changing
adaptively)—agent can make a decision about creating new flock (i.e. dividing partic-
ular flock into two flocks). After making such a decision agentcreates a new flock,
migrates to this new flock from the “old” one and then initializes its new flock. “Ini-
tialization” process consists in cloning itself and mutating (with small range e.g. by
mutating the least significant genes) cloned descendants. The small range of mutation
ensures—or increases the probability of—sampling the agent’s neighborhood—what
is very desirable since agent creating new flock stands out inits “original” flock as



“strange” agent—i.e. agent representing poorly sampled (at least by this very flock)
area of search space. Decision about the number of new cloneddescendants created by
agent is an autonomous agent’s decision of course but it should ensure that flock does
not become extinct too early and on the other hand that there do not exist in the system
too many similar agents1. In the simplest case eliminating/merging flocks operator can
be realized as follows: two flocks are being merged if their centers of gravity are located
closer than configured value and the difference between their radiuses is smaller than
given parameter2 (both of these parameters can change adaptively).
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Fig. 1. Selected characteristics: objective dispersion (a,d), decision dispersion (b,e), number of
non-dominated individuals (c,f) obtained during solving ZDT-1 (a,b,c) and ZDT-2 (d,e,f) prob-
lems.

To present the influence of proposed mechanism(s)—during experiments presented
in fig. 1 and in fig. 2 operator of creating new flocks was performed in 100th and 400th
step. Presented in mentioned figures measures should be interpreted as follows: ob-
jective dispersion represents the average—measured in theobjective space—distance
among individuals, decision dispersion represents the average—measured in the space
of decision variable—distance among individuals. As one may notice, introducing flock
operators influences very positively on maintaining population diversity (see fig. 1a, b,
d, e and fig. 2a, b, d, e) and in the consequence on the quality ofobtained Pareto frontier
approximation (see fig. 1c, f and fig. 2c, f). Because of the space limitation there are pre-
sented in fig. 1 and in fig. 2 only characteristics related to the number of non-dominated
solutions found by flock-based and “classical” EMAS for confirming (to some extent)
that—at least during solving Zitzler problems ([19])—flockbased approach allows for
obtaining much more numerous Pareto set in the comparison tothe classical EMAS
approach.

1 In tests presented below this value varies from twelve to eighteen.
2 In presented results below the center of gravity is measuredas the arithmetic mean of objective

function values of all flock members.
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Fig. 2. Selected characteristics: objective dispersion (a, d), decision dispersion (b, e), number of
non-dominated individuals (c, f) obtained during solving ZDT-3 (a, b, c) and ZDT-4 (d, e, f)
problems.
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Fig. 3. CoEMAS with co-evolving sexes

4 Sexual Selection as a Technique for Maintaining Population
Diversity in CoEMAS for Multi-Objective Optimization

In order to maintain population diversity in systems based on model of co-evolution in
multi-agent system (CoEMAS), mechanisms based on co-evolutionary interactions of
species and sexes may be used. Such mechanisms include, for example, host-parasite,
predator-prey, or co-operative co-evolution of species. Another way to maintain useful
diversity is to apply sexual selection mechanism—resulting system is the CoEMAS
with sexual selection (SCoEMAS, see fig. 3).

The mechanisms used in this system include: co-evolution ofsexes, and sexual se-
lection based on Pareto domination. All agents live within the environment, which has
the graph-like structure. The number of sexes corresponds with the number of criteria
(each sex has the criteria assigned to it and agents that belong to that sex are evaluated
with the assigned criteria). There is one resource defined inthe system. The resource
can be possessed by the agents and the environment (there is closed circulation of re-



source in the system). This resource is distributed (proportionally to the fitness values
of the agents) by each node of the graph among the agents that are located in that node.

a)

Population size 500 

Chromosome length 10 

External set size 256 

Crossover probability 0,3 

Mutation probability 0,2 
b)

Population size 100 

Chromosome length 8 

External set size 64 

Crossover probability 0,1 

Mutation probability 0,1 

c)

SPEA NSGA CoEMAS 
 

σ  
Metrics Obayashi 

problem 
Tamaki 
problem 

Obayashi 
problem 

Tamaki 
problem 

Obayashi 
problem 

Tamaki 
problem 

1M  0.08 0.001 0.003 0.10 0.011 0.15 
 

3M  1.69 1.50 1.81 0.64 2.01 0.83 

0,05 2M  1.75 1.49 1.84 0.41 1.37 0.39 

0,2 2M  3.47 5.80 1.58 5.20 1.64 5.98 

0,6 2M  2.38 18.67 4.38 1.09 4.03 2.24 
 

d)

SPEA NSGA CoEMAS 
 

σ  
Metrics Obayashi 

problem 
Tamaki 
problem 

Obayashi 
problem 

Tamaki 
problem 

Obayashi 
problem 

Tamaki 
problem 

1M  0.13 0.32 0.44 0.0 0.56 0.32 
 

3M  0.74 1.13 1.96 0.39 2.00 0.62 

0,05 2M  0.55 1.28 2.55 0.15 2.79 0.29 

0,2 2M  4.38 7.17 3.95 2.98 3.88 3.14 

0,6 2M  0.54 14.29 7.63 2.11 8.21 2.87 
 

Fig. 4. Comparison of the proposed CoEMAS with sexual selection, SPEA and NSGA algorithms
according to theM1, M2 andM3 metrics (table a includes selected configuration parameters for
results presented in table c, and table b includes parameters for results presented in table d)

Each time step, the agents can migrate within the environment (they lose some re-
source during the migration). The agent can migrate only to the node connected with
the one within which it is located. The agent chooses the nodeto which it will mi-
grate on the basis of the amount of resource of that node. Whenthe agent is ready for
reproduction (i.e. the amount of its resource is above the given level) it sends the in-
formation to the agents of other sexes located within the same node. The other agents
can response to this information when they are also ready forreproduction. Next, the
agent which initiated the reproduction process chooses one(or more—it depends on
the number of sexes in the system) of the agents of opposite sex on the basis of the
amounts of their resources (the probability of choosing theagent is proportional to the
amount of its resource). The offspring is created with the use of intermediate recombi-
nation and Gaussian mutation [2]. Next, the child is compared to the individuals from
the non-dominated individuals set of the node in which parents and child are located. If
none of the individuals from this set is dominating the childthen the child is copied to
the set (all individuals dominated by the child are removed from the set).

First experiments, which results are presented in this section, were aimed at in-
vestigating if SCoEMAS can be applied to multi-objective optimization problems and
whether it works properly (agents do not die off). Proposedco-evolutionary multi-agent
system with sexual selection mechanism for multi-objective optimizationhas been tested
using, inter alia,TamakiandObayashitest functions [18]. Additionally, results obtained
with the use of SCoEMAS was compared to those obtained by “classical” evolutionary
algorithms for multi-objective optimization:niched-pareto genetic algorithm (NPGA)
[5] andstrength pareto evolutionary algorithm (SPEA)[19].

To compare proposed approach with implemented classical algorithms three met-
rics M1, M2, andM3 ([19]) were used. These metrics are defined as follows. IfA⊆ X
denotes a non-dominated set,σ ≥ 0 denotes appropriately chosen neighborhood pa-



rameter and‖· ‖ denotes the given distance metric—then three functionsM1(A), M2(A)
and M3(A) can be introduced to asses the quality ofA regarding the decision space:
M1(A) = 1

|A|

∑

a∈Amin{‖a− x‖ | x ∈ Xp} (the average distance to the Pareto optimal set

Xp), M2(A) = 1
|A−1|

∑

a∈A |{b∈ A | ‖ a−b ‖ > σ}| (the distribution in combination with the

number of non-dominated solutions found), andM3(A)=
√

∑N
i=1max{‖ai −bi‖ | a,b ∈ A}

(the spread of non-dominated solutions over the setA, N is the number of objectives).
Presented results (fig. 4) show that SPEA is the best of all compared algorithms. It

turned out that proposed SCoEMAS with sexual selection mechanism can be used for
multi-objective problems however more research is needed to obtain better results. The
fact that results were worse than in the case of classical evolutionary multi-objective
algorithms results from the tendency to maintain high population diversity what could
be very useful in the case of hard dynamic and multi-modal multi-objective problems
(as defined by Deb [4]).

5 Conclusions

Maintaining population diversity is one of the main problems in some applications of
EAs—especially in multi-modal optimization, multi-objective optimization and adap-
tation in dynamic environments. In the case of multi-objective optimization problems
the loss of population diversity may result in locating onlysome parts of Pareto frontier
or locating a local Pareto frontier instead of the global onein the case of multi-modal
multi-objective problems.

In this paper overview of selected techniques and algorithms for maintaining pop-
ulation diversity in (co-)evolutionary multi-agent systems for multi-objective optimiza-
tion were presented. Proposed mechanisms worked very well from maintaining pop-
ulation diversity (and in the consequence improving the quality of the Pareto frontier
approximation) point of view. It is worth to mention in this place that presented flock-
based operators as well as co-evolutionary approach with sexual selection are only se-
lected examples of the whole range of mechanisms that can be easily introduced into
(co-)evolutionary multi-agent system and that can significantly improve the quality of
obtained solutions. Other mechanisms and models such as: semi-elitist evolutionary
multi-agent system, distributed frontier crowding, co-evolutionary multi-agent system
with host-parasite model, co-evolutionary multi-agent system with predator-prey model
should be mentioned, but because of the space limitation they are omitted in this pa-
per. Of course, further research is needed in order to improve proposed mechanisms. It
seems that full potential abilities of these systems could be fully observed in the case of
hard multi-modal multi-objective problems in which many local Pareto frontiers exist.
The future research will also include the application of other co-evolutionary mecha-
nisms like, for example, co-operative co-evolution.
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