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Abstract. The loss of population diversity is one of the main problemsdame
applications of evolutionary algorithms. In order to maintuseful population
diversity some special techniques must be used, like rgcbirco-evolutionary
mechanisms. In this paper the mechanisms for maintainipglption diversity
in agent-based multi-objective (co-)evolutionary alguoris are proposed. The
presentation of techniques is accompanied by the resudtgpefriments and com-
parisons to “classical” evolutionary multi-objective afghms.
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1 Introduction

Evolutionary Algorithms (EAsare techniques inspired by Darwinian model of evo-
lutionary processes observed in nature. They have denadedtin practice ficiency
and robustness as global optimization techniques. Howswaretimes the loss of use-
ful population diversity limits the possibilities of theapplication in some areas (like,
for example, multi-modal optimization, multi-criteria tipization, dynamic problems,
etc.)

In the case of multi-objective optimization problems lo$gpopulation diversity
may cause that the population locates in the areas far froetdaontier or that individ-
uals are located only in selected areas of Pareto frontiehd case of multi-objective
problems with many local Pareto frontiers (defined by Delbi) {he loss of popula-
tion diversity may result in locating only local Pareto ftigm instead of a global one.
In order to avoid such negative tendencies special meaharase used, like niching
techniques, co-evolutionary algorithms and sexual select

Evolutionary multi-agent systems (EMASE multi-agent systems, in which there
are three basic mechanisms needed in order to start andaima@volutionary pro-
cesses: limited resources that agents need for all aes\atind for which they compete,
and agents’ abilities to reproduce and die. Basic EMAS matsal siffers from the
negative tendency to loss the population diversity, howeswe will show in the fol-
lowing sections, it can be equipped with additional meck@si and operators which



improve the quality of obtained results. The general modlelosevolutionary multi-
agent system (CoEMA$)] introduces additionally the notions of species, seres|
interactions between them. CoEMAS allows modeling and kitian of different co-
evolutionary interactions, which can serve as the basisdastructing the techniques
of maintaining population diversity and improving adaptéapabilities of such systems
(for example see [7]).

In the following sections mechanisms for maintaining ukpfypulation diversity
in “classical” evolutionary multi-objective algorithmseapresented. Next, new tech-
niques for (co-)evolutionary multi agent systems for malijective optimization are
proposed. The presentation of proposed techniques is gented with the examples
of selected experimental results and comparisons to ‘ic5snulti-objective evolu-
tionary algorithms.

2 Previous Research on Maintaining Population Diversity in
Evolutionary Multi-Objective Algorithms

In order to maintain useful population diversity and intnod speciation (process of
forming species—subpopulations—located iffefient areas of solutions’ space) spe-
cial techniques are used like niching mechanisms and chHiweary models. Nich-
ing techniques are primarily applied in multi-modal optzation problems, but they
are also used in evolutionary multi-objective algorithi@sring the years of research
various niching techniques have been proposed [16], wHiotv aiche formation via
the modification of mechanism of selecting individuals femngenerationdrowding
mode}, the modification of the parent selection mechanifingss sharing technique
or sexual selection mechanignor restricted application of selection godrecombi-
nation mechanisms (byroupingindividuals into subpopulations or by introducing the
environment with some topography in which the individuaislacated).

Fitness sharing technique in objective space was used ielddand Lin genetic
algorithm for multi-objective optimization based on weligly method [10], by Fon-
seca and Fleming in their multi-objective genetic algaritising Pareto-based ranking
procedure [8], and in the niched Pareto genetic algorithPGK) (during the tourna-
ment selection in order to decide which individual wins therhament) [11]. In non-
dominated sorting genetic algorithm (NSGA) the fitnessislgas performed in deci-
sion space, within each set of non-dominated individugdarsely, in order to maintain
high population diversity [17]. In strength Pareto evaatiry algorithm (SPEA) [19]
special type of fithess sharing (based on Pareto dominaglatian) is used in order to
maintain diversity.

In co-evolutionary algorithmshe fithess of each individual depends not only on
the quality of solution to the given problem but also (or §glen other individuals’
fithess. This makes such techniques applicable in the cdsexeuhe fithess function
formulation is dificult (or even impossible). Co-evolutionary algorithmsals® appli-
cable in the cases when we want to maintain population diye@enerally, each of the
co-evolutionary technique belongs to one of two classaspatitive or co-operative.

Laumanns, Rudolph and Schwefel proposed co-evolutiodgoyithm with spatial
graph-like structure and predator-prey model for mulfiective optimization [13]. Deb



introduced modified algorithm in which predators elimirtgpeeys not only on the basis
of one criteria but on the basis of the weighted sum of aledat[5]. Li proposed other
modifications to this algorithm [14]. The mainfilirence was that not only predators
were allowed to migrate within the graph but also preys calddt. The model of
co-operative co-evolution was also applied to multi-obyecoptimization ([12]).

Sexual selection results from co-evolution of female mdteice and male dis-
played trait where females evolve to reduce direct costecéaed with mating and keep
them on optimal level and males evolve to attract femalesating sexual confligt[9].
Sexual selection is considered to be one of the ecologiceharésms responsible for
biodiversity and sympatric speciation [9].

All the works on sexual selection mechanism for multi-objecevolutionary al-
gorithms were focused on using this mechanism for maintgipiopulation diversity.
Allenson proposed genetic algorithm with sexual seledomulti-objective optimiza-
tion in which the number of sexes was the same as the numbeitaria of the given
problem [1]. Lis and Eiben proposed multi-sexual genetioathm (MSGA) for multi-
objective optimization [15] in which also one sex for eachiecion was used. They
used special multi-parent crossover operator and childiadame sex as the parent
that provided most of genes. Bonissone and Subbu continoddam Lis and Eiben’s
algorithm. They proposed additional mechanisms for dateng the sex of fspring
(random and phenotype-based) [3].

Co-evolution of species and sexes is the biological meshanésponsible for bio-
diversity and sympatric speciation. However the appl@anf such mechanisms in
evolutionary multi-objective algorithms is still the sebj of ongoing research and an
open issue.

3 Introducing Flock-Based Operators Into Evolutionary
Multi-Agent System

Assuming the classical structure of evolutionary multeaisystem, one of the way for
maintaining population diversity and, in the context of tirobjective optimization, for
improving the quality of the Pareto frontier approximat@mmsists in introducing to the
system so-called flock operators i.e. (in the simplest casagting new flocidividing
flock into two (n) flocks and merging two (n) flocks into one flodkking into ac-
count multi-objective optimization goals—such operatoas be realized as follows.
During meetings with agents located in the same flock agehega (partial) knowl-
edge about its distance (in the decision variable space theimbjective space) from
another agents. Then, if such (partial) average distanaedther agents is greater than
configured parameter(s) (to be precise, in realized systésrparameter is changing
adaptively)—agent can make a decision about creating nek fle. dividing partic-
ular flock into two flocks). After making such a decision agerdgates a new flock,
migrates to this new flock from the “old” one and then initzals its new flock. “Ini-
tialization” process consists in cloning itself and mutgt{with small range e.g. by
mutating the least significant genes) cloned descendanéssimall range of mutation
ensures—or increases the probability of—sampling the tsyarighborhood—what
is very desirable since agent creating new flock stands oits iforiginal” flock as



“strange” agent—i.e. agent representing poorly samplédeéest by this very flock)
area of search space. Decision about the number of new cttesegndants created by
agent is an autonomous agent’s decision of course but ildlemsure that flock does
not become extinct too early and on the other hand that treeretexist in the system
too many similar agentsin the simplest case eliminatifrgerging flocks operator can
be realized as follows: two flocks are being merged if thaitees of gravity are located
closer than configured value and théfelience between their radiuses is smaller than
given parametér(both of these parameters can change adaptively).
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Fig. 1. Selected characteristics: objective dispersion (a,distm dispersion (b,e), number of
non-dominated individuals (c,f) obtained during solvinQ®Z1 (a,b,c) and ZDT-2 (d,e,f) prob-
lems.

To present the influence of proposed mechanism(s)—duripgrérents presented
in fig. 1 and in fig. 2 operator of creating new flocks was perfedrim 100th and 400th
step. Presented in mentioned figures measures should bpréteel as follows: ob-
jective dispersion represents the average—measured iobjkeetive space—distance
among individuals, decision dispersion represents theagee—measured in the space
of decision variable—distance among individuals. As ong nwice, introducing flock
operators influences very positively on maintaining popaitediversity (see fig. 1a, b,
d, e andfig. 2a, b, d, €) and in the consequence on the quabtitytained Pareto frontier
approximation (see fig. 1c, f and fig. 2c, f). Because of thesjimitation there are pre-
sented in fig. 1 and in fig. 2 only characteristics related éothmber of non-dominated
solutions found by flock-based and “classical” EMAS for comfng (to some extent)
that—at least during solving Zitzler problems ([19])—fldeksed approach allows for
obtaining much more numerous Pareto set in the comparistiretalassical EMAS
approach.

1 n tests presented below this value varies from twelve thteign.

2 In presented results below the center of gravity is measaséde arithmetic mean of objective
function values of all flock members.



3
0 50 100 150 200 250 300 350 400 450 500 S5
Stop b

a)

038

Fiock based approach — x -
EMAS based approach +—e—

Fiock based approach — x -
EMAS based approach +—e—

036

034 |y

032 B

03

028
026

-
.

02
0 50 100 150 200 250 300 30 400 40 50 550
Steprmter e

7
0 50 100 150 200 250 300 350 400 450 500 550 f)
Stop number

Fig. 2. Selected characteristics: objective dispersion (a, djisém dispersion (b, €), number of
non-dominated individuals (c, f) obtained during solvinB %3 (a, b, ¢) and ZDT-4 (d, e, f)
problems.
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Fig. 3. COEMAS with co-evolving sexes

4 Sexual Selection as a Technique for Maintaining Population
Diversity in CoEMAS for M ulti-Objective Optimization

In order to maintain population diversity in systems basedhodel of co-evolution in
multi-agent system (CoEMAS), mechanisms based on co-#enhry interactions of
species and sexes may be used. Such mechanisms includearfaple, host-parasite,
predator-prey, or co-operative co-evolution of speciesothAer way to maintain useful
diversity is to apply sexual selection mechanism—resglsgstem is the CoOEMAS
with sexual selectionSCoEMASsee fig. 3).

The mechanisms used in this system include: co-evolutiaexés, and sexual se-
lection based on Pareto domination. All agents live withia énvironment, which has
the graph-like structure. The number of sexes correspoittisthe number of criteria
(each sex has the criteria assigned to it and agents thatd&ldhat sex are evaluated
with the assigned criteria). There is one resource definglersystem. The resource
can be possessed by the agents and the environment (théweed circulation of re-



source in the system). This resource is distributed (ptapmally to the fitness values
of the agents) by each node of the graph among the agentsétatated in that node.

Population size 500 Population size 100
Chromosome length 10 Chromosome length 8
External set size 256 External set size 64
Crossover probability 0,3 Crossover probability 0,1
Mutation probability 0,2 Mutation probability 0,1
a b)
SPEA NSGA CoEMAS SPEA NSGA CoEMAS
- Metrics | Obayashi Tamaki | Obayashj Tamaki | Obayashi Tamaki . Metrics | Obayashi Tamaki | Obayashi Tamaki | Obayashi Tamaki
problem | problem | problem | problem | problem | problem problem | problem | problem | problem | problem | problem
M, 0.08 0.001 0.003 0.10 0.011 0.15 M, 0.13 0.32 0.44 0.0 0.56 0.32
M, 1.69 1.50 1.81 0.64 2.01 0.83 M, 0.74 113 1.96 0.39 2.00 0.62
0,05 M, | 1.75 1.49 1.84 0.41 1.37 0.39 0,05 | M, 0.55 1.28 | 2.55 0.15 2.79 0.29
0,2 M, 3.47 5.80 1.58 5.20 1.64 5.98 0,2 M, 4.38 717 3.95 2.98 3.88 3.14
C) 0,6 M, 238 | 1867 | 438 1.09 4.03 224 d) 0,6 M, 054 | 1429 | 7.63 211 8.21 287

Fig. 4. Comparison of the proposed COEMAS with sexual selectio/S#d NSGA algorithms
according to theM;, M> and M3 metrics (table a includes selected configuration paraméoer
results presented in table ¢, and table b includes parasetaresults presented in table d)

Each time step, the agents can migrate within the enviroh(tieey lose some re-
source during the migration). The agent can migrate onlyhéoniode connected with
the one within which it is located. The agent chooses the nodehich it will mi-
grate on the basis of the amount of resource of that node. \Wigeagent is ready for
reproduction (i.e. the amount of its resource is above thergievel) it sends the in-
formation to the agents of other sexes located within theesaodle. The other agents
can response to this information when they are also readsefooduction. Next, the
agent which initiated the reproduction process chooseq@nmore—it depends on
the number of sexes in the system) of the agents of oppositers¢he basis of the
amounts of their resources (the probability of choosingatent is proportional to the
amount of its resource). Thefepring is created with the use of intermediate recombi-
nation and Gaussian mutation [2]. Next, the child is comgpdoethe individuals from
the non-dominated individuals set of the node in which prand child are located. If
none of the individuals from this set is dominating the chiildn the child is copied to
the set (all individuals dominated by the child are removedifthe set).

First experiments, which results are presented in this@ecivere aimed at in-
vestigating if SCOEMAS can be applied to multi-objectiveiopzation problems and
whether it works properly (agents do not di€)oProposedo-evolutionary multi-agent
system with sexual selection mechanism for multi-objecitimizatiorhas been tested
using, inter aliaTamakiandObayashtest functions [18]. Additionally, results obtained
with the use of SCOEMAS was compared to those obtained bgsidal” evolutionary
algorithms for multi-objective optimizatiomiched-pareto genetic algorithm (NPGA)
[5] andstrength pareto evolutionary algorithm (SPEAD].

To compare proposed approach with implemented classigatitims three met-
rics M1, My, andM3 ([19]) were used. These metrics are defined as followA.dfX
denotes a non-dominated set> O denotes appropriately chosen neighborhood pa-



rameter and-|| denotes the given distance metric—then three functhdn@), M2 (A)
and M3(A) can be introduced to asses the qualityfofegarding the decision space:
M1(A) = ﬁ Yaeaminflla—x|| | x € Xp} (the average distance to the Pareto optimal set

Xp), M2(A) = ﬁ Sacalibe Allla-b| > o}l (the distribution in combination with the

number of non-dominated solutions found), ang(A) = \/Zi'il maxX|la; — bi|| | a,b e A}
(the spread of non-dominated solutions over thefs@t is the number of objectives).

Presented results (fig. 4) show that SPEA is the best of alpened algorithms. It
turned out that proposed SCoEMAS with sexual selection rmn@sim can be used for
multi-objective problems however more research is neealetitain better results. The
fact that results were worse than in the case of classicdligwoary multi-objective
algorithms results from the tendency to maintain high papoih diversity what could
be very useful in the case of hard dynamic and multi-modatirobljective problems
(as defined by Deb [4]).

5 Conclusions

Maintaining population diversity is one of the main probkim some applications of
EAs—especially in multi-modal optimization, multi-obja® optimization and adap-
tation in dynamic environments. In the case of multi-objecbptimization problems

the loss of population diversity may result in locating oséyne parts of Pareto frontier
or locating a local Pareto frontier instead of the global onthe case of multi-modal

multi-objective problems.

In this paper overview of selected techniques and algosgtfanmaintaining pop-
ulation diversity in (co-)evolutionary multi-agent syste for multi-objective optimiza-
tion were presented. Proposed mechanisms worked very roetl faintaining pop-
ulation diversity (and in the consequence improving theliyuaf the Pareto frontier
approximation) point of view. It is worth to mention in thitape that presented flock-
based operators as well as co-evolutionary approach withasselection are only se-
lected examples of the whole range of mechanisms that caadiy etroduced into
(co-)evolutionary multi-agent system and that can sigaifity improve the quality of
obtained solutions. Other mechanisms and models such ms$:estist evolutionary
multi-agent system, distributed frontier crowding, caleNionary multi-agent system
with host-parasite model, co-evolutionary multi-agerstsyn with predator-prey model
should be mentioned, but because of the space limitationahe omitted in this pa-
per. Of course, further research is needed in order to inggpoeposed mechanisms. It
seems that full potential abilities of these systems coalfliby observed in the case of
hard multi-modal multi-objective problems in which mangé#b Pareto frontiers exist.
The future research will also include the application ofestbo-evolutionary mecha-
nisms like, for example, co-operative co-evolution.
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