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Abstract. Co-evolutionary techniques for evolutionary algorithretovercom-
ing limited adaptive capabilities of evolutionary algbrits, and maintaining pop-
ulation diversity. In this paper the idea and formal modebgént-based real-
ization of predator-prey co-evolutionary algorithm is ggeted. The presented
system is applied to the problem dfective portfolio building and compared to
classical multi-objective evolutionary algorithms.

1 Introduction

Evolutionary Algorithms (EAsjre the global search and optimization techniques based
on analogies to Darwinian model of natural evolution [3]okionary algorithms have
demonstrated in practicdfeiency and robustness as global optimization techniques.
However, in the case of some problems (for example multi-ahogdtimization, multi-
objective optimization, dynamic problems, etc.) they sim@gative tendency to loss the
diversity of population. Both the experiments and formaldlgsis show that for multi-
modal problem landscapes (and such are most of the engigesrd economic prob-
lems) a simple EA will locate a single solution [27]. If we anterested in localizing
multiple solutions (like in the case of so called “multi-na@ptimization problems”),
some special techniques should be udédhing and speciation methodtsr EAs [27]
are aimed at forming and stably maintaining subpopulat{spscies) throughout the
search process, thereby allowing to locate all or most ob#®éns of attraction of local
minima. The loss of population diversity also limits the ptilee capabilities of EAs in
dynamic environments.

In the evolutionary biology the process of co-evolutionédided as the prolonged
mutual interactions between two (or more) species leadintyé appearing of some
features of the individuals coming from these species tiegufrom the interactions
with other species. The examples of co-evolutionary imt@was include competition
for limited resources, predator-prey interactions, hagstsite interactions, mutualism,
commensalism etc. Also sexual selection results from adugion of female mate
choice and male displayed trait, where females evolve taaedlirect costs associ-
ated with mating and keep them on optimal level and malesvevol attract females
to mating éexual confligt[15]. It is acknowledged that co-evolution is responsiole
bio-diversity, and may lead to speciation (the new spedeasdtion processes).

In co-evolutionary algorithmgwhich are, generally speaking, evolutionary algo-
rithms with co-evolutionary mechanisms) the fitness of eadlvidual depends not



only on the quality of solution to the given problem (like lmetcase of EAs) but also

(or solely) on other individuals’ fithess. Such techniquesapplicable in the case of
problems for which the fitness function formulation ighdiult or impossible (like game

strategies), there is need for improving adaptive capaslof EA or maintaining use-

ful population diversity and introducing speciation intAd€—as it was stated above the
loss of population diversity is one of the main problems ime@pplications of EAs.

Because many financial and economic decision and optiraizptoblems are multi-
modal (there exist many comparable solutiongied multi-objective (there exist many
objective functions) so dierent techniques for maintaining population diversity A&sE
may be found useful and applicable. In the case of such prabietelligent computer
system provides alternative solutions to the decision makéd he makes the final deci-
sion based on his experience. In order to do so evolutiorigoyithm must keep rather
high level of population diversity—otherwise it simply Wilot be able to provide many
different solutions to the given problem.

Besides the positivefkect of maintaining population diversity, co-evolutionaty
gorithms provides us also other useful analogies betweesvalution, financial mar-
kets, and generally speaking market-oriented economtesgs These include for ex-
ample “arms races” between capitalist enterprises anddiakinstitutions (compara-
ble to predator-prey or host-parasite interactions). Saoms races” lead to avoiding
the economic stagnation like in evolutionary systems tleayl lto avoiding stagnation
in evolutionary sense. Also “Red Queeffieet” (“It takes all the running you can do,
to keep in the same place.”—what in the case of co-evolutiosgstems means that
in order to keep the fitness of the given species relative heratpecies at the same
level, continuing development is needed) can be observigimarket-economic pro-
cesses. Capitalist enterprises and commodities must bi@aously developed in order
to “keep in the same place”.

Co-evolutionary mechanisms can also be found useful wheareénterested in
socio-economic modeling and simulations, for example &tan of antagonistic and
non-antagonistic interactions betweeffelient classes and groups in society (generally
speaking problems of social stratification).

In the case of multi-objective optimization problems, whare the main subject of
this paper, the loss of population diversity may cause tieapbpulation locates in the
areas faraway from the Pareto frontier or that individuaéslacated only in selected
areas of Pareto frontier. In the case of multi-objectivebfgms with many local Pareto
frontiers (defined by Deb in [7]) the loss of population disigr may result in locating
only local Pareto frontier instead of a global one.

The notion “agent” is now very well established in the areaafial science (psy-
chology, sociology, and economy), artificial intelligenae@d computer modeling and
simulation. According to J. Ferber ([13]) the agent can andd as the physical or vir-
tual entity which can act within the environment, can comivate with other agents,
tries to realize some goals or optimize its fitness functimssesses some resources,
may observe the environment (but only in a restricted way3spsses restricted knowl-
edge about the environment, has some abilities and rffay some services to other
agents, may reproduce, acts in the way that leads to thea#ah of its own goals



taking into account the possessed resources, abilitiesk@aowledge acquired during
the observation of the environment and communication witleicagents.

Multi-agent system is composed of the following element8]]: the environment,
the set of objects situated within the system which can berobd, created, destroyed
and modified by agents (which are active entities), the sagehts, the set of relations
between objects (including agents), the set of operatidrichnallow agents to observe,
create, destroy, “consume”, and modify objects, and fintiléy operators which rep-
resent the operations performed by agents and the readtitive @nvironment. The
above features of multi-agent systems makes them ideafdosbcial and economic
simulations. We have here all tools necessary for modelmigsimulation of diferent
kinds of societies, social structures, modes of producttompeting or co-operating
enterprises, social mechanisms of conflict and co-operadiad so on.

Evolutionary multi-agent systems (EMA&E multi-agent systems, in which the
population of agents evolves (agents can die, reproduceamgpete for limited re-
sources). The model afo-evolutionary multi-agent system (CoEMA&])introduces
additionally the notions of species, sexes, and interastlmetween them. CoEMAS
allows modeling and simulation of fiérent co-evolutionary interactions, which can
serve as the basis for constructing the techniques of nimimggpopulation diversity
and improving adaptive capabilities of such systems. CoBMjstems with sexual se-
lection and host-parasite mechanisms have already bedindpjith promising results
to multi-objective optimization problems ([9, 10]).

Co-evolutionary multi-agent systems have of course allttivantages and mech-
anisms of multi-agent systems, which can be used in artifitgeamodeling and sim-
ulations (especially in the area of psychology, sociologgt aconomy). Additionally,
we can utilize the evolutionary optimization of agents aaekgolutionary interactions
between them. The very promising area for future interglswary research include
psychological, social and economic simulations, considefior example all kinds of
the emergent phenomena in society and economy, the problesosial stratification,
the role of conflict in the society, antagonistic and noragohistic conflicts between
classes and groups, thffects of particular economic policy, the role of the state and
institutions in economy and society, the role of ideolotg/role in the reproduction of
relations of production, social power, and stratificatietc,

In the following sections the introduction to multi-objeet optimization problems
is presented. Then, we concentrate on the previous researtdchniques for main-
taining population diversity in multi-objective evolutiary algorithms. Next, the co-
evolutionary multi-agent system with population diversitaintaining technique based
on predator-prey interactions is formally described. Trespnted system is applied to
problem of éfective portfolio building. Results from the experimentdwhe CoOEMAS
system are then compared to other classical evolutionentgues’ results.

2 Multi-Objective Optimization

The most natural process of decision making for human beowsists in analyz-
ing many—often contradictory—factors and searching faytiar compromise among
them. Such decisive process is known amdti-criteria decision making (MCDM)



Obviously, human being is equipped with natural abilities fnaking multi-criteria
decisions. As far as such natural gifts are—as the mattesictffsuficient in every-
day life they are not diicient in more complex technical, business or scientific de-
cisive processes. In such caskstision maker-to make a proper decision has to be
equipped with appropriate mathematical apparatus dmclemt computing units and
algorithms built on the basis of this very apparatus. Thetrireguently, MCDM pro-
cess is based on appropriately defimegdlti-objective optimization problem (MOOP)
Following [7]—multi-objective optimization problein its general form is being de-
fined as follows:

Minimize/Maximize f(X), m=1,2...,M

Subject to @x) =0, j=12..J
h(X) =0, k=1,2...,K

O ox<x¥, i=12..,N

MOOP=
X

The set of constraints—both constraint functions (edjeali(x)), inequalitiesy;(X))

and decision variable bounds (lower bounﬁﬁ and upper bound);(u))—define all
possible (feasible) decision alternative)(

Because there are many criteria—to indicate which solugibetter than the other—
specialized ordering relation has to be introduced. Tochpodblems with converting
minimization to maximization problems (and vice versa afirse) additional operator
< can be defined. Then, notatian < X, indicates that solutior; is simply better than
solutionx; for particular objective. Now, the crucial concept of Pargptimality i.e. so
called dominance relation can be defined. It is said thatisolx, dominates solution
Xg (Xa < Xg) if and only if:

< X fi(xa) # fj(xg) for j=1,2....M
XA”B‘:’{aie{l,z,...,M}: (%) < (B

A solution in the Pareto sense of the multi-objective optattion problem means
determination of all non-dominated alternatives from thes3. The Pareto-optimal set
consists of globally optimal solutions, however there mksp a&xist locally optimal
solutions, which constitute locally non-dominated det#l Pareto-optimal s@t[7].
The setPiocal € D is local Pareto-optimal set if ([41]):

VX € Piocal - AXP € D such that
X020 AXP =5 < e A |[F(X) - FOR)|| < 6

where|||| is a distance metric and> 0,6 > 0.
The setP C D is global Pareto-optimal set if [41]:

Vx@e P AxP e D such that® > x@ (1)

These locally or globally non-dominated solutions createHe criteria space) so-
called local PFocar) Or global (PF) Pareto frontiers that can be defined as follows:

PF local = {y =F(x) e IRM | xe PIocal} (2a)



PF ={y=F()eR" | xep)| (2b)

Multi-objective problems with one global and many local &arfrontiers are called
multi-modal multi-objective problenjg].

During over twenty years of research on evolutionary mafijective algorithms
(EMOAS) quite many techniques have been proposed. Gepathdif these techniques
and algorithms can be classified as elitist (which give thst belividuals the opportu-
nity to be directly carried over to the next generation) on+aditist ones [7].

3 Selected Issues of Maintaining Population Diversity in
Evolutionary Multi-Objective Algorithms

In order to maintain useful population diversity and intnod speciation (processes of
forming species—subpopulations—located iffetient areas of solutions’ space) spe-
cial techniques—Ilike niching mechanisms and co-evolatigmodels—are used.

Niching techniques are primarily applied in problems of tinolodal optimization,
but they are also used in evolutionary multi-objective alpons. Such techniques pro-
mote useful population diversity and make possible crgatpecies located within the
basins of attraction of local minima or infterent parts of Pareto frontier. During the
years of research various niching techniques have beemgedpAll these techniques
promote niche formation via the modification of mechanisreadécting individuals for
new generationagfowding mode]26]), the modification of the parent selection mecha-
nism fitness sharing techniqyé6] or sexual selection mechanigB8]), or restricted
application of selection aror recombination mechanisms (lgyouping individuals
into subpopulations [20] or by introducing the environmeith some topography, in
which the individuals are located [1, 5]).

Fitness sharing technique was used in Hajela and Lin gealgiicithms for multi-
objective optimization based on weighting method [17]. Weights were encoded in
genotype and the fitness sharing was used in objective spawéeér to introduce the
diversity of the weights. Fitness sharing in the objectpace was also used by Fonseca
and Fleming in their multi-objective genetic algorithmnggiPareto-based ranking pro-
cedure [14]. In the niched Pareto genetic algorithm (NPQR] fithess sharing mecha-
nism is used in objective space during the tournament seteict order to decide which
individual wins (when the mechanism based on dominaticatiaai fails to choose the
winner). In non-dominated sorting genetic algorithm (NSGE3Y] the fitness sharing is
performed in decision space, within each set of non-dorathatdividuals separately,
in order to maintain high population diversity. In streng#reto evolutionary algorithm
(SPEA) [41] special type of fitness sharing is used in orden&intain diversity. The
fithess sharing in SPEA forms niches not on the basis of distént on the basis of
Pareto dominance.

As it was said, co-evolutionary techniques for EAs are aablie in the cases where
the fitness function formulation isfliicult (or even impossible). Co-evolutionary algo-
rithms are also applicable in the cases when We want to niaiptgpulation diver-
sity, introduce speciation, open-ended evolution, “arates”, and improve adaptive



capabilities of EAs—especially in dynamic environments.the result of ongoing re-
search quite many co-evolutionary models and techniquesiiien proposed. Gener-
ally, each of theme belongs to one of two classes: compet{fR0]) or co-operative
([32]). In competitive co-evolution based systems two (@re) individuals compete in
a game and their “competitive fithess functions” are catealdased on their relative
performance in that game [6]. In co-operative co-evolwigralgorithms a problem is
decomposed into sub-problems and each of them is then sojwgieterent subpopula-
tion [32]. Each individual from the given subpopulation iskiated within a group of
randomly chosen individuals coming fromfiidirent sub-populations. Its fithess value
depends on how well the group solved the problem and on howthelindividual
assisted in the solution.

Laumanns, Rudolph and Schwefel ([22]) proposed co-ewadatiy algorithm with
predator-prey model and spatial graph-like structure faltirnbjective optimization.
Deb introduced modified algorithm in which predators eliated preys not only on
the basis of one criteria but on the basis of the weighted stail @riteria [7]. Li
proposed other modifications to this algorithm [23]. The mdifference was that not
only predators were allowed to migrate within the graph Bsib @reys could do it.
The model of cooperative co-evolution was also applied ttiirobjective optimization
([19)).

Sexual selection resulting from female-male co-evoluisaronsidered to be one of
the ecological mechanisms responsible for biodiversity sympatric speciation [39,
15]. All the works on sexual selection mechanism for mulijective evolutionary al-
gorithms were focused on using this mechanism for maintgipiopulation diversity,
which causes that individuals are evenly distributed okerRareto frontier. Allenson
proposed genetic algorithm with sexual selection for rralifiective optimization [2].
In his technique the number of sexes was the same as the nofdoigeria of the given
problem and individuals of the given sex were evaluated aotprding to one criterion
(associated with their sex). Sex of the child was determmedomly and it replaced
the worst individual from its sex. Allenson also introduceaual selection mechanism.
For each individual the partner for reproduction was selon the basis of individual's
preferences coded within its genotype. Lis and Eiben preghasulti-sexual genetic al-
gorithm (MSGA) for multi-objective optimization [25]. Tlyaalso used one sex for each
criterion. If recombination operator was used during theraduction (this was decided
randomly) then partners for reproduction were chosen frach sex separately with the
use of ranking mechanism and th&spring was created with the use of special multi-
parent crossover operator. The sex of generaftsphong was the same as the sex of
the parent that provided most of genes. After the populatfarext generation was cre-
ated the group of Pareto-optimal individuals was selectetlthis group was merged
with the group of Pareto-optimal individuals from previogesnerations. During this
phase dominated individuals were removed from the set @t@aptimal individuals.
Bonissone and Subbu [4] continued work on Lis and Eiben'sritlym. They proposed
additional mechanisms for determining the sex$jpring: random and based on phe-
notype (child had the sex associated with the criterion floictvit had the best fitness).

Co-evolution of species and sexes is the biological meshanésponsible for bio-
diversity and sympatric speciation. However it was not Widesed as a mechanism of



maintaining useful genetic diversity of population for eut@nary algorithms. It seems
that co-evolution and sexual selection can be used as afoasienstructing niching
and speciation mechanisms (which promote the formatiorpeties located within
basins of attraction of ¢ierent local optima or in dierent areas of Pareto frontier) but
this is still an open issue and the subject of ongoing rekearc

4 Co-Evolutionary Multi-Agent System with Population Diversity
Maintaining Mechanism
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Fig. 1. CoOEMAS with predator-prey mechanism

The system presented in this section is based on the CoEMAeImdhe general
model of co-evolution in multi-agent system [8]. The mospartant component of the
population diversity maintaining mechanism are predates co-evolutionary interac-
tions (see fig. 1). The spatial structure of EMAS systemslisgs the role of diversity
maintaining mechanism but it is rather the mechanism ofrsd@xy importance. First
prototypes of the CoEMAS with predator-prey interactiorssevpresented also in [11,
12]. In the following sections the system used in experiméntdescribed with the
use of ideas, notions, and relations introduced in the génsvdel for co-evolution in
multi-agent system.



4.1 CoEMAS

The co-evolutionary multi-agent system with predatorygrgeractions COEMAS is
defined as follows [8]:
CoEMAS=(E,S,I,Q) 3)

E is the environment of th€oEMASsystem S is the set of species€ S) that exist
and co-evolve ICOEMAS I' is the set of resource types (the amount of typesource
which is possessed by the given element of the system wilebeteéd byr?), Q is the
set of information types (the information of type which can be used or possessed by
the given element of the system is denoted4t)y Two information types® = {w1, w2})
and one resource typ€ € {y}) are used. Information of type; denote nodes to which
agent can migrate. Information of type denote such prey that are located within the
particular node in time.

The selection mechanism is based on the closed circulatimsource within the
system. The whole amount of resource is constant, the res@an be possessed by
the agents, and is transferred from dominated prey to dam@arey, and from prey
to predators during killing prey.

The environmenkE is defined in the following way:

E=(TE.rf=0,0%=0) (4)

TE is the topography of the environmet I'F is the set of resource types that exist
within the environmentQF is the set of information types that exist within the environ
ment. The topography of the environmdrtt = (H, 1), whereH is directed graph with
the cost functiort defined H = (V, B,c), V is the set of verticesB is the set of arches).
In the case of the presented system every node is connediedtsvfour neighbors,
which results in the torus-like environment. The A — V (A is the set of agents)
function makes it possible to locate particular agent ingindronment space.
Verticev is given by:

v= (A1 =TF Q"= QF) (5)
A" is the set of agents that are located within the verticEhere are two types of
information in the vertice. The first one includes all vezidhat are connected with the
verticev:

iV ={u:ueVA(,uU)e B} (6)

The second one includes all agents of spepieythat are located within the vertice

j“2V = [aP'®Y; gP'®Y ¢ AY) )

4.2 Species
The set of specieS = {prey, pred}. The prey specieptey) is defined as follows:

prey= (AP'®Y, S XP'®Y = (sx}, ZP"eY,CP"®Y) ®)

whereS XP'® is the set of sexes which exist within tipeey speciesZP™ is the set of
actions that agents of specipseycan perform, an€P™® is the set of relations grey
species with other species that exist in @@E MAS



The set of actionZP"™® is defined as follows:
ZP'® = (die, get give acce ptseekclong rec, mut migr} 9)
where:

— dieis the action of death (prey dies when it is out of resources);

— getaction gets some resource from anoth®€Y agent located within the same
node, which is dominated by the agent that perfogeisaction or is too close to it
in the criteria space;

— giveaction gives some resource to another agent (which perfgetetion);

— acceptaction accepts partner for reproduction when the amoungsgurce pos-
sessed by the prey agent is above the given level,

— seekaction seeks for another prey agent that is dominated byrtheperforming
this action or is too close to it in criteria space. This ati®also used in order to
find the partner for reproduction when the amount of resoigedove the given
level and agent can reproduce;

— cloneis the action of producingftspring (parents give some of their resources to
the dfspring during this action);

— recis the recombination operator (intermediate recombinadaised [3]);

— mutis the mutation operator (mutation with self-adaptationsed [3]);

— The migr is the action of migrating from one node to another. Durinig Httion
agent loses some of its resource.

The set of relations oprey species with other species that exist within the system
is defined as follows:

b}

CPrey — { preyget- predgive+ }

(10a)

The first relation models intra species competition for tediresources (“-” denotes
that as a result of performirgetaction the fitness of another prey is decreased):

PIYO%T = ((prey. prey) (10b)

The second one models predator-prey interactiom$ ¢enotes that when prey gives
all its resources to the predator, the predator fitness ie@sed):

predgivet+

= {(prey, predy} (10c)
The predator speciepied) is defined as follows:
pred= <Apred, g xpred _ (X, Zpred, Cpred> (11)

All the symbols used have analogical meaning as in the capeegfspecies—see eq.
(8). The set of actiongP® s defined as follows:

ZPred — (seekget migr) (12)

where:



— Theseelaction allows finding the “worst” (according to the critesissociated with
the given predator) prey located within the same node asréuafor;

— getaction gets all resources from the chosen prey,

— migr action allows predator to migrate between nodes of the girhpithis results
in losing some of the resources.

The set of relations opred species with other species that exist within the system
are defined as follows:

cPred _ {EEY_QQZ} (13a)

This relation models predator-prey interactions:

prey,get-
—_—

= {(pred, prey)} (13b)

As aresult of performingetaction and taking all resources from selected prey, it dies.

4.3 Prey Agents
Agenta of speciegrey(a= aP'™) is defined as follows:
a=(gr*,Z2=ZP"%, 3 =r,Q0% = Q,PR) (14)

Genotype of agerd is consisted of two vectors (chromosomespf real-coded de-
cision parameters’ values andof standard deviations’ values, which are used during
mutation with self-adaptatioZ? = ZP'™Y (see eq. (9)) is the set of actions which agent
a can performI? is the set of resource types used by the agent i the set of
information types.

The partially ordered set of profiles includes resource lerdfir1), reproduction
profile (pry), interaction profile pr3), and migration profilera):

PR = {pry, pra, pra, pra} (15a)
pri < pro < pr3 < pra (15b)

Each profilepr is defined as follows:
pr={(Ir", Q" MP' ST GLP") (16)

I'P" is the set of resource types used in fhreprofile ("P" c I'%). QP' is the set of in-
formation typesQF' C ©Q?). MP" is the set of informations (the model) which represent
the agent’s knowledge about the environment and other sgent

S TP is the partially ordered seS(TP" = (ST, <)) of strategies which agent can
use in order to realize the active goal of the given profilee Télation= is defined as
follows:

<={(st,st})) e ST x ST : strategyst has equal or higher

17
priority than strategyt; } (7



The single strateggte S TP" is composed of actions, which performing (in the given
order) leads to the realization ofpa profile’s active goal:

st=(z1,2,...,%), steST", zeZz? (18)

GLP" is the partially orderedGLP" = (GL"", <)) set of goals. The relatiox is de-
fined in the following way:

<={(gli,glj) e GLP" xGLP": the goalgli has equal or higher

19
priority, than the goagl;} (19)
Now we can define the relation (see eq. (15)):
d= {(pri, prj> € PR*x PR : the realization of active goals of the profilg has
the equal or higher priority than the realization of theaetjoals of (20)

profile pr;}

By “active goal” (denoted bgl*) we mean the goajl which should be realized in the
given time step.

The Process of Realizing Goals and Choosing the StrategieEhe defined above
partially ordered sets of profile®R?), goals GLP") and strategiesyTP") are used
by agent for selecting the goal and strategy for its reatimafThe whole process of
decision making is realized in the following way:

1) Agenta activates the profile with highest prioritpK; € PR?), which has the active
goalgl; GLP,

2) If there are more than one active goals in the@ER" then the goal which has the
highest priority is chosen for realization (let us assunat this is the goadjl?).

3) Next, such strategy for the realization of the ggkilis chosen from the s& T"i
that it has the highest priority, it is possible to realize ithe given time, and it does
not contradict with the goals of profiles with the lower pitpthan profilepr; (let
us assume that this is the stratesyye S TP").

4) If the realization of the chosen strategy is accomplisiid success then thgl;
becomes non-active goal.

5) Next, again activities from 1) are realized.

The Profiles The processes of realizing goals and choosing the stratbgierey agent
are illustrated in the figure 2. The goal of thg (resource) profile is to keep the amount
of resources above the minimal level or to die. In order tdizeasuch goal agent can
use the following strategiegdie), (seekgeb. This profile uses the mod#P™ = {i“2}
(see eq. (7).

The only goal of thepr, (reproduction) profile is to reproduce. In order to realize
this goal agent can use strategy of reproductiseekclongrec, mut. The model is
defined in the following wayMP" = {i®2},
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[Choose profile with the highest priority and with active goal)%

W

[Check the amount of resourcej Reproductjeh profile

[Execute <seek, clone, rec, mut> strategyj [Execute <migr> strategyj

Interagtion profile

Resourcé = 0

[Execute <give> strategyj
Resource > 0

Execute <die> strategy]

[Execute <seek,get> strategy]

Fig. 2. The process of realizing goals and choosing the strategipsdy agent

The goal of theprs (interaction) profile is to interact with predators with tinge of
strategygive).

The goal of thears (migration) profile is to migrate within the environmentdrder
to realize such goal the migration strategy is ugedgr). The model used is defined as
follows: MP™4 = {i“1} (see eq. (6).) As a result of migrating prey loses some resour

4.4 Predator Agents

Agenta of speciegredis defined analogically tpreyagent (see eq. (14)). There exist
two main diferences. Genotype of predator agent is consisted of themateon about
the criterion associated with the given agent. The set dfilpsois consisted only of
two profiles, resource profile1), and migration profilefr,): PR? = {pr1, prz}, where
pri < pra.

The processes of realizing goals and choosing the stratbgipredator agent are
illustrated in the figure 3. The goal of the; (resource) profile is to keep the amount
of resource above the minimal level with the use of stratespekget. The model
used within this profile is defined as followstP™ = {i“2}. The goal ofpr, (migration)
profile is to migrate within the environment. In order to iealthis goal the migration
strategymigr)) is used. The model of the environment is defined in the faligway:
MP'2 = {i#1}. The realization of the migration strategy results in lgsgome of the
resource possessed by the agent.
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Choose profile with the highest priority and with active goal)%

Execute <seek,get> strategy] [Execute <migr> strategyj

Fig. 3. The process of realizing goals and choosing the strategipsdolator agent

5 Building effective investing portfolio

Proposed co-evolutionary agent-based system has beessedgareliminary [11, 12]
using well known benchmark problems such as: Kursawe pnofjgl], Laumanns
problem [22], and—recently also—the set of Zitzler testigpeons ZDT1—ZDT6 [41]
where solving each next problem algorithm which is beingeg$as to deal with the
more and more dicult and challenging characteristics starting from camtins and
convex Pareto frontier, through concave or disconnectebl@ms until multi-objective
multi-modal problem (discussion about consequences ofaty, discontinuity or
multimodality of the Pareto frontier can be found for instarn [7]).

Analyzing the behavior and characteristics of co-evohaiy computation tech-
niques in general, and agent-based co-evolutionary tqakgiin particular (especially
such approaches as predator-prey, or host parasite apps)aeit is natural that one of
the first associations to such techniques (and obviouslybpessible applications of
such computational techniques) is the situation in econamayket economy and in the
financial and investments markets in particular. Entrepuesy SMES, corporations—
all of them all the time have to be better, more innovativeagier, more féective etc.
than the others. That is why, free market is so dynamic, alltihe some enterprises
introduce some organizational, financial or technologieabvations and the rest of
market-game participants has to respond to such changeduing another innova-
tions, products etc—so, all the time we are eye witnessegetaliar arms race. The
range of dependencies that can be seen on the market canttyenpde—from coop-
eration, through competition until antagonism. As it camdmed in [31]—such situation
is not the best one for all the market players (the situatibamall participants of mar-
ket game are the "winners” is not possible—always some ahthave to lose). There
is no doubt however, that (only) thanks to such strong mhatiips, influences and
interactions—the common organizational, technologioal aconomical development
and progress are possible—and in that way, extremely désighenomenon called
"invisible hand of market” by Adam Smith is realized. Of cear the most desirable



situation is the perfect competition—but even the most igex] markets only bring
nearer and nearer to such a situation—mainly because oftmored(third condition
in particular) required by "perfect competition”. Mentieththree conditions of perfect
competition are:

1. There are many buyers and many sellers in particular branc

2. There are mainly small enterprises in the market.

3. The buyers and the sellers possess the full and perfeat&dge about the market
(uncertainty and information asymmetry do not take place).

Fulfilling especially the third condition is veryfiicult (if possible at all), and if so, it is
no wonder that both, competitive situation as well as pdssitberactions and relation-
ships among market-players can vary in a (mentioned abodg) iange. It is obvious
however, that in the Darwin’s world—all activities of eachrficipant of the market
game are conformed to one overriding goal—to survive andafo giore and more
wealth. From the interactions with another enterprisesatpdfi view it can be realized
by: eliminating from the market as many weak rivals as pdsshd taking over their
customers, products, delivery channels etc. (so by beiregdator”), by sucking out of
another (stronger) enterprises’ customers, technolpgiieducts etc. (so by being "par-
asite”), by supplementing partners’ portfolio with addlital products, technologies,
customers etc.—and vice versa (so by living in symbiosis) . It is seen clearly,
that one of the most important activity of all market-gametipgants is co-existence
with co-development—and from the computational intellige point of view we would
say—co-evolution. Because (generally speaking of coundeuader additional condi-
tions) participants of the market game are autonomouses{from the computational
intelligence point of view we would say—agents), they argributed, they act asyn-
chronously, and they interact with another entities to@shtommon goal—prosperity
and wealth—in natural way applying co-evolutionary mugieat systems seems to be
the perfect approach for modeling such phenomenons andoenvénts. This is the
first motivation of our experiments. But why "buildindfective portfolio”. Well, we
are working and perceiving co-evolutionary multi agentegss not only as modeling
techniques but also as computational techniques. When vgldith preliminary tests
with benchmark problems—we wanted to run such systems stgaal—because of
above stated motivation market-oriented—problems. Aatdkitlly, our goal was run-
ning one of proposed approaches against challenging, catdsial, well defined and
well-known multi-objective optimization problem whererarace interactions can be
observed to test our predator-prey co-evolutionary mageént system. Buildingfiec-
tive portfolio seems to be the perfect candidate test prolfigfilling all above men-
tioned requirements.

We know now why building ffective portfolio problem has been selected as a test
problem. Unfortunately, the next problem arises. How sughnadblem should be for-
mally defined or which well-known definition should be choseractically, there are
some well known models describing building dfextive portfolio i.e. Modern Port-
folio Theory (MPT), one-factor Sharpe model, CAPM—Cap#aket Pricing Model,
APT—Arbitrage Pricing Theory, Post Modern Portfolio The¢PMPT) etc. The start-
ing point for modern considerations about buildiffiaent portfolio is the Nobel prize



winner Harry Markowitz’ Modern Portfolio Theory (MPT)(12%[28, 29], or its exten-
sion proposed in 1958 by James Tobin [38]—consisting iroghicing risk-free assets
to the model. Those research resulted in defining for thetfire formal foundations
of risk—rate of returrinvesting decision making and defining so-called Capitatkda
Line (CML) with the following equation:

Rv — R

R=Rs +( Su

)% S (21)

where:

R - rate of return;

S - standard deviation;

Rw - rate of return of market portfolio;

Sy - standard deviation of market portfolio.

It turned out, after introducing to the model the risk-fresets thatfBective portfolio(s)
belong(s) to the segment of the above defined line. Markopiztfolio analysis (and
its expanded by J.Tobin with risk-free assets version)sakene strong and important
assumptions. The most significant are:

— The goal of investor is to maximize of his wealth;

Investors are characterized by risk aversion (their gdalisinimize the risk level);

— Investing horizon is the same for all investors;

Suitable measure of risk level is standard deviation okrafeeturn from "average”
rate of return of market portfolio;

Investors make a decision on the basis of only rates of ratudrstandard deviation;
— No taxes and transaction costs are assumed.

Although, described briefly above theory lays the foundegiof modern capital invest-
ments. Practically it is nowadays rather only historicafhportant method of assets
pricing.

Capital Asset Pricing Model (CAPM) was proposed by J.Trayd0], J.Lintner
[24], J.Mossin and formalized by W.Sharpe [36]—and it wasdubof course on previ-
ous work of Markowitz and his MPT theory. This time, in this ded, not only Capital
Market Line but also so-called Security Market Line is calicEML is defined as fol-
lows:

Ri =R + i * (Rm = Ry) (22)
whereRy — Ry - it is so-called prize for risk. CAPM is the most populdfeetive-
portfolio building model. One may ask why this very model was used during our
tests. Well, mainly because of its complexity and shortemsi On the basis of the
critique of CAPM (e.g. so called Roll's Critique)—ArbitragPricing Theory (APT)
was proposed by Stephen A. Ross in mid-1970s [35]. Agaimgoegry general, APT
can be described using the following equation:

R =& +bj1F1+bioF2+--- +bmFm+g (23)

So, APT assumes that rates of return dependmdactors. Coéiicientbjj indicates
how sensible i} asset on changes &j factor. There are also another assumptions,
the most important are the following:



— The number of F factors used in the model can not be highertttenumber of
assets and—more importantly

— In the market we have the perfect competition (hoficlilt for fulfilling is that
assumption it was mentioned earlier).

In 1990s so-called Post Modern Portfolio Theory was progo3ée notion of
PMPT was used for the first time probably by B.M. Rom and K.Wgkeon in 1993
[34]. Generally, PMPT model is based on three main assumptod observations:

1. Used in MPT (and in next theories) risk measure was synicaétri.e. returns
above average or target rates of returns are as risky asisdiefow this value—
whereas from investor’s point of view—really risky are metsi below the target
(minimum or average) value, and the return above those saleperceived rather
as prize for risk. It was observed and stated already by Meitkpconfirmed by
Sharpe and another researchers—but mainly because of tatiopal dificulties
PMT was based on symmetrical measure.

2. Much better measure of risk (downside risk in this casejoistinuous formula
rather than its discrete version.

3. Much better index of rate of return is Sortino ratio ratthem Sharpe ratio.

Taking all the pros and cons into consideration—becausasttive first attempt of
applying proposed algorithm to buildingfective portfolio—we decided to use during
our experiments, and during preliminary assessing ounvobasgonary agent-based ap-
proach against buildingkective portfolio problem—one-factor Sharpe model, and thi
very model will be discussed below more precisely.

The meaning of symbols used in the definitions below, are l&ss:

p -the number of assets in the portfolio;

n - the number of periods taken into consideration (the nurobeates of return taken
to the model);

a;,Bi - codiicients of the equations;

w; - percentage participation oth asset in the portfolio;

g -random component of the equation;

Rt -the rate of return in the peridd

Rnt - the rate of return of market index in peritid

Rm - the rate of return of market index;

R - the rate of return of thieth asset;

Ry - the rate of return of the portfolio;

s2 - the variance of theth asset;

S 2 - the variance of the random index of thth asset;

s.ep2 - the variance of the portfolio;

ﬁ_-— arithmetic mean of rate of return of tivh asset;
Ry - arithmetic mean of rate of return of market index;

The algorithm (based on the one-factor Sharpe model) of atimpthe expected
risk level and, generally speaking, income expectaticateelto the portfolio op assets
is as follows:



1. Compute the arithmetic means on the basis of rate of return
2. Compute the value af codficient:

@i =R -BiRn (24)
3. Compute the value ¢f codficient:
B > (Rt — R)(Rnt— Rm)
Y4 (Rmt— Rm)?
4. Compute the expected rate of return of agset
R =ai+piRn+& (26)
5. Compute the variance of random index:

N (B a2
5322 Zt:j_(thnjlll IBIRm) (27)

6. Compute the variance of market index:

&nz _ 2?:1(Rmt—R_m)2

Bi (25)

-] (28)
7. Compute the risk level of the investing portfolio:
P
Bo= ) (wiB) (29)
i=1
p
Sep? = ) (wPs?) (30)
i=1
risk = f2sm? + Se, (31)
8. Compute the portfolio rate of return:
p
Rp= ) (wiR) (32)
i=1

The goal of the optimization is to maximize the portfoliograf return and minimize
the portfolio risk level. The task consists in determiniradues of decision variables
w1...wp forming the vector

Q=[wi,...,wp)" (33)

where 0%< wj < 100% andzip:lwi =100% and = 1... p and which is the subject
of minimization with respect of two criteria:
F = [Rp(@)  (-1), risk(2)] (34)

Model Pareto frontiers for two cases (portfolios consgstiri three and seventeen
stocks set), which are the subject of analysis in the folhgusection, are presented in
fig. 4.
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utter review method for a) three and b) seventeen stocks set

6 Results of Experiments

In this section the results of experiments are presentezd3ults obtained by proposed
system are also compared with the results obtained by fck$§.e. non agent-based)
predator-prey evolutionary strategy (PPES) [22] and asrottlassical” evolutionary
algorithm for multi-objective optimization: niched pasegenetic algorithm (NPGA)
[41]. In order to deeper analyze the results obtained by ewatpalgorithms—values
of HV and HVR metrics (their definitions can be found in [7]easo presented.

In the case of optimizing investing portfolio each indivadin the prey population
is represented as prdimensional vector. Each dimension represents the pegen
participation ofi-th (i € 1...p) share in the whole portfolio. In this paper a kind of
summary of two single experiments will be presented.

During presented experiments Warsaw Stock Exchange duaderom 2003-01-
01 until 2005-12-31 were taken into consideration. Sirmétausly, the portfolio con-
sists of the following three (experiment ) or seventeerpéginent Il) stocks quoted
on the Warsaw Stock Exchange: in experiment I: RAFAKO, PORER, PKOBP,
in experiment Il: KREDYTB, COMPLAND, BETACOM, GRAJEWO, KRK, CO-
MARCH, ATM, HANDLOWY, BZWBK, HYDROBUD, BORYSZEW, ARKSTEEL,
BRE, KGHM, GANT, PROKOM, BPHPBK. As the market index WIG20shbeen
taken into consideration. In fig. 5 and fig. 6 there are preskPareto frontiers ob-
tained using CoEMAS, NPGA and PPES algorithm after 1, 300, 300, 900 and
1000 steps in experiment I. As one may notice in this case Ch&Mased frontier
is more numerous (especially initially) than NPGA-based as numerous as PPES-
based one. Unfortunately in this case diversity of popoitath COEMAS approach
is visibly worse than in the case of NPGA or PPES-based ®ontiwhat is more,
with time the tendency of COEMAS-based solver for focusialyiions around small
part of the whole Pareto frontier is more and more distingnil@r situation can be
also observed in fig. 7 and fig. 8 presenting Pareto frontibtaimed by COEMAS,
NPGA and PPES—Dbut this time portfolio that is being optirdizensists of 17 shares.
Also this time CoEMAS-based frontier is quite numerous anitegclose to the model
Pareto frontier but the tendency for focusing solutionsuatbonly selected part(s) of
the whole frontier is very distinct. In section 1 it was menid that proposed approach



has been tested using such non-combinatorial test prolalendsrsawe problem, Lau-
manns problem or the set of Zitzler problems. And it has to heeudined that using
those problems Co-EMAS was definitely the better alteredtian NPGA or PPES and
the question appears why in the case of buildiffgaive portfolio the situation is the
different one. Well, the explanation is as follows. With times gopulation of agents
consists mainly of mutually non-dominated agents and thetson that during the
meetings agent dominates the opponent is more and morelynlikso, also gathering
additional units of resources is more and more unlikely.8Bse agents pays in each
step with resource for its life—with time the level of its egg falls below the death
level and in the consequence it has to be removed from theray3the solution of such
a situation is introducing to the system mechanisms sirtol#ire elitism—where elitist
agents for instance can migrate to the special island anaiatlbe removed from the
system as long as they are non-dominated. As it can be olasertkis paper, men-
tioned phenomenon is much more dangerous during solvindgiratorial problems,
since meeting dominated agents is more unlikely (as simonlime passes) than in the
case of continuous problems like Kursawe, Laumanns orefifaloblems.

In this paper authors decided to present not only Paretdiérsrbut also portfolio
composition. It is of course impossible in the course of fia@iper to present consecutive
portfolios proposed by all non-dominated solutions—tkatiy we decided to choose
average non-dominated solution in first step and then tovodluring consecutive steps
solutions proposed by this very solution (or its descen@antSuch hypothetical non-
dominated average portfolios for experiment | and Il arsenéed in fig. 9 and in fig. 10
respectively (in fig. 10 shares are presented from left tiotiigthe order in which they
were mentioned above). Generally, it can be said that desipgriment |—average so-
lution proposed by COEMAS system is a kind of balanced pbot{percentage share of
all three stocks are quite similar, but the percentagegiatiion in the whole portfolio
of PONAR is the lowest one and finally PKOBP became the mosbitapt "ingre-
dient” of analyzed portfolio), whereas during experimdrthere are more important
stocks (with given assumptions and parameters of course)-HANDLOWY, HY-
DROBUD, ARKSTEEL.

7 Conclusions and Future Work

Co-evolutionary techniques for evolutionary algorithms applicable in the case of
problems for which it is dficult or impossible to formulate explicit fithess function,
there is need for maintaining useful population diverdayning species located in the
basins of attraction of éfierent local optima, or introducing open-ended evolutioth an
“arms races”. Such techniques are also widely used in datifife simulations. Al-
though co-evolutionary algorithms have been recently tiingest of intensive research
their application to multi-modal and multi-objective apization is still the open prob-
lem and many questions remain unanswered.

In this paper the agent-based realization of predator-pregel within the more
general framework ofo-evolutionary multi-agent systemas been presented. The sys-
tem was run against hard real-life multi-objective probleffective portfolio building)
and then compared to two classical multi-objective evohary algorithms: PPES and



NPGA. CoEMAS was able to form more numerous frontier, howeegative tendency
to lose the population diversity during the experiment wlaseoved. PPES and NPGA
were able to form better dispersed Pareto frontiers. Wherpttfolio composition
is considered the average solution proposed by CoEMASmaysfes rather a kind of
balanced portfolio when it was composed of three stocks antdgtio with dominat-
ing elements when it was composed of seventeen stocks. Shisref experiments
with effective portfolio building problem show that still more raseh is needed on co-
evolutionary mechanisms for maintaining population déitgrused in COEMAS, espe-
cially when we want to stably maintain diversity of solutioft seems that the proposed
predator-prey mechanism for evolutionary multi-agentesys may be very useful in
the case of hard dynamic and multi-modal multi-objectivegiems (as defined by Deb
[7]).

Future work will include more detailed analysis of the pre@od co-evolutionary
mechanisms, especially focused on problems of stable aiaing population diversity.
The most important part of this research will be introduciid the elitism mechanism
for decentralized agent-based evolutionary computafdso the comparison of Co-
EMAS to other classical multi-objective evolutionary algioms with the use of hard
multi-modal multi-objective test problems, and the apgdiicn of other co-evolutionary
mechanisms like symbiosis (co-operative co-evolutioe) iacluded in future plans.
Another, and very important, area of research on co-ewiaty multi-agent systems
will be modeling and simulation of socio-economical medkars and emergent phe-
nomena.
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Fig. 5. Pareto frontier approximations after 1 (a,b,c), 300 (Ylantl 500 (g,h,i) steps obtained by
CoEMAS, PPES, and NPGA for buildingfective portfolio consisting of 3 stocks
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Fig. 9. Effective portfolio consisting of three stocks proposed by K& in consecutive steps
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