
Hierarchical Approach to Evolutionary

Multi-Objective Optimization

Eryk Ciepiela1, Joanna Kocot1, Leszek Siwik1, Rafa l Dreżewski1

1Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland

{siwik,drezew}@agh.edu.pl

Abstract. In this paper a new “hierarchical” evolutionary approach
to solving multi-objective optimization problems is introduced. The re-
sults of experiments with standard multi-objective test problems, which
were aimed at comparing “hierarchical” and “classical” versions of multi-
objective evolutionary algorithms, show that the proposed approach is a
very promising technique.

1 Introduction

The most natural process of decision making for human being consists in an-
alyzing many—often contradictory—factors and searching for peculiar compro-
mise among them. Such decisive process is known as a multi-criteria decision
making (MCDM). The most frequently, MCDM process is based on appro-
priately defined multi-objective optimization problem (MOOP). Following [2]—
multi-objective optimization problem in its general form is defined as minimiz-
ing/maximizing the set of objectives fm(x̄), where m = 1, 2 . . . , M , taking
into account the set of constraints, which define all possible (feasible) decision
alternatives (D).

Because there are many criteria, to indicate which solution is better than
the other, so called dominance relation is used [2]. A solution of the multi-
objective optimization problem in the Pareto sense means determination of all
non-dominated alternatives from the set D.

During over 20 years of research on evolutionary multi-objective algorithms
(EMOAs) quite many techniques have been proposed. Generally all of these tech-
niques and algorithms can be classified as elitist (which give the best individuals
the opportunity to be directly carried over to the next generation) or non-elitist
ones [2].

The Hierarchical Genetic Strategy (HGS) was introduced by Ko lodziej and
Schaefer [4] as one of the multi-deme, parallel genetic algorithms models. The
main idea of HGS is running a set of dependent evolutionary processes in parallel.
Its dependency relation has a tree structure with fixed depth. The tree nodes
which are closer to the root perform chaotic search with low accuracy—they
detect promising regions of the optimization landscape—while more accurate
searching is done in further successor nodes.

In the course of this paper the new “hierarchical” approach to multi-objective
optimization based on HGS model is presented and compared experimentally
with “classical” EMOAs. “Hierarchical” in this context means that presented
algorithm is trying to identify more and more precisely (in a hierarchical way)
the more and more accurate approximation of non-dominated points.

The paper is organized as follows. First the HGS model is described with
more details. Next the “hierarchical” approach to multi-objective optimization
(MOHGS) is presented. The preliminary experimental results comparing “hi-
erarchical” and “classical” versions of multi-objective evolutionary algorithms
conclude the paper.

2 Hierarchical Genetic Strategy

As it was said already, the main idea of HGS is running in parallel a set of de-
pendent evolutionary processes organized as a tree with more and more accurate
searching done in the nodes located far and far away from the root of the tree [4].
The HGS node’s individuals represent the solutions (phenotypes) with precision
that increases with the node’s level.

After a metaepoch which lasts a predefined number of iterations of evolu-
tionary algorithm, each HGS node chooses the best individuals. Each of them
constitutes a new “child” population. This procedure is called sprouting oper-
ation and is performed conditionally, according to the outcome of the branch
comparison operation. It is reasonable as long as such a comparison prevents the
same or similar individual from sprouting identical or similar populations in the
child HGS nodes.

Avoiding exploration of the same regions of the optimization landscape is
also supported by further operation called reduction. However, unlike branch
comparison operation, reduction is performed after branches have been sprouted.
Reductions can be performed both within the scope of sibling HGS nodes—then
it is said to be local, and globally when sibling scope is exceeded. Details on
how the above mentioned operations are carried out depend strongly on the
implementation of HGS.

The individual being sprouted, has to be prepared to find a new HGS node
of increased precision, what means that the individual (phenotype) has to be
specified more precisely. This is accomplished e.g. by appending randomly least
significant bits to the floating point number’s binary representation.

3 Multi-Objective Hierarchical Genetic Strategy

The first implementations of HGS ([6]) used simple genetic algorithm (SGA) as
the main optimization algorithm, therefore being limited to optimizing single-
objective problems. Our goal in this paper is to introduce multi-objective opti-
mization algorithms to HGS—thus developing multi-objective HGS (MOHGS)—
and provide it with new features to take advantage of these algorithms’ proper-
ties.

In our approach SGA algorithm was replaced by vector evaluated genetic al-
gorithm (VEGA) [5], multiple objective genetic algorithm (MOGA) [3], strength
pareto evolutionary algorithm (SPEA) [9] and non-dominated sorting genetic
algorithm II (NSGA-II) [2]. However, any other multi-objective evolutionary al-
gorithm could have been used as well.

3.1 Sprouting and Reduction Operators in MOHGS

Having more than one objectives to operate on, means that in the process of
sprouting more than one criterion can be considered. Furthermore, these criteria
do not have to be limited only to objectives, but other properties of the investi-
gated population (generation) can be used—e.g. the domination level (see [2]). It
can be also advisable to promote individuals which seem to differ from others in
either the problem domain space or the objective space. It is also likely to take
into consideration the criteria based on the ideas known from the multi-objective
evolutionary algorithms, like niching or elitism (see [2]).

New HGS node sprouted with respect to one criterion creates a new popu-
lation (generation), which neither can be compared with nor reduced to popu-
lations resulting from sprouting with regard to other criteria. In this way, HGS
tree can be considered as a colored tree, where the node’s color denotes the node
sprouting criteria. Certainly, such an approach may cause existence of similar
populations in HGS tree. However, it was found desirable as long as it ensures
heavier computation of those populations that were promoted with respect to
more than one criterion.

4 Selected Aspects of the System Realization

In the following section the key aspects of MOHGS implementation on the EA-
AE platform ([1]) are described.

4.1 The EA-AE Platform

The EA-AE system is a runtime environment that provides the convenient ap-
proach to development, “composition”, and running of different types of evolu-
tionary algorithms. Its approach is based on the idea of multiple “processors”
which, arranged in a sequence, create a single iteration of an algorithm. Each
of the processors transforms the given generation of a population, in a way de-
fined by the developer. A single processor can be for example responsible for
performing mutation (or recombination) operation on the current generation of
individuals.

Despite of being independent, the processors have to be able to exchange
some information. As an example, the recombination based on the previously
selected pool of individuals can be considered. If so, the information about pool
has to be passed forward from pool selector processor. To enable such communi-
cation, the individual properties concept is introduced. Processors are able to an-
notate each individual of the generation they are transforming with “key-value”

pairs. In this way, the information is exchanged in “per individual” context and
is actually attached to the individual. These “key-value” pairs are called proper-
ties and are carried throughout the “evolution step” (see further in this section).
The information the processor needs is expressed by property-existence require-
ments. Hence, the processors are characterized by properties they use and by
those they provide.

Once the generation passes the chain of processors custom rankers rate (in
the way defined by the developer) the generation’s individuals. Each ranker
keeps a ranking of the best individuals, to which the rated ones are compared.
Depending on the comparison, they are inserted (or not) into the ranker’s list.

P1P2P3P4

Ranker A Ranker B Ranker C

Generation

Properties used: -

Properties provided: a, b

Properties used: a, b

Properties provided: c

Properties used: a, c

Properties provided: d, e

Properties used: a, d, e

Properties provided: f

Generation evolves

Rankers meet generation

Evolution Step Iteration

(a) Evolution step

stopS

R
Generation

(b) Sprouting (“S”) and reduction
(“R”) processors

Fig. 1. Principles of EA-AE platform functioning.

The sequence of processors along with rankers constitute the evolution step
(see Fig. 1a). Evolution step is performed in the context of the problem’s objec-
tive function and the search region constraints defining a phenotype space.

The phenotype space is responsible for bidirectional mapping between indi-
vidual’s genotype and phenotype. Since within EA-AE phenotypes and geno-
types are represented in a generic, normalized, and uniform way, generation
processors remain universal and independent of phenotype space. The generic
binary genotype is provided as well as floating point phenotype feature (deci-
sion variable), etc. What is more, since the objective function is defined using
generic phenotypes, it is also separated from the phenotype space. Therefore,
the orthogonal concerns such as: search region constraints along with genetic
representation, individuals rating, and applied evolutionary algorithm are inde-
pendent.

The evolution step constitutes the iteration of the evolutionary algorithm.
Since the evolution step can be composed of processors and rankers chosen by
developer, ideas from different algorithms may be combined in order to find the
best heuristic for solving various optimization problems.

4.2 Multi-Objective HGS Meets EA-AE

The EA-AE platform was used for the implementation of the MOHGS algo-
rithms. It was possible because of the EA-AE platform mechanisms and features,
which include: the generation processors ability to spawn computation (which
enables the HGS branch sprouting), and computation controller, which main-
tains the structure of the spawned computations and therefore enables HGS tree
structure and HGS branch reduction operation. The implementation of MOHGS
was reduced to providing HGS-specific generation processors.

As it was previously said, every generation from the HGS node is rated with
regard to several criteria. For each of those, a certain number of best individ-
uals is marked and can be used for sprouting new HGS nodes—each initially
containing a population of one individual, copied from the initial population.
A HGS node containing the derived population evolves in the same way as its
parent node does, still, representing the individuals with higher precision. Simul-
taneously the initial population’s node continues the evolutionary algorithm’s
transformations.

The sprouting process is performed by generic sprouting processor (see Fig.
1b) which designates individuals annotated by property with certain name to be
sprouted.

The reduction operator is used when populations of two different HGS nodes
are operating on a very similar area of decision variables space. The similarity of
the HGS nodes defined as the similarity of the areas of decision variables space
they operate on, was estimated by the Equation (1).

sim(Pi, Pj) =
1

|Pi| · |Pj |

∑

indi∈Pi

∑

indj∈Pj

dist(indi, indj) (1)

where: sim(Pi, Pj) is the similarity measure of the two populations Pi and Pj

(located in the i-th and j-th HGS nodes), |Pi| is the number of individuals in the
population Pi, indi is the individual from population Pi, dist(indi, indj) is the
distance between indi and indj individuals in the Euclidean metric (ind ∈ Rn).

The nodes reduction operator is introduced as a custom generation proces-
sor (see Fig. 1b), which calculates the similarity at the same level of the HGS
tree—not only locally between sibling nodes, but also globally. Since the mea-
sure (1) is symmetrical, in order to avoid computation redundancy as well as
simultaneous reduction of two close populations, each node compares itself only
to its ancestors. The node with a similarity measure value less than similarity
threshold value does not continue computations. However, despite stopping the
parent node, its children remains active.

To avoid the effectiveness losses, the reduction processor was placed before
the processor responsible for sprouting in the HGS processor sequence. Other-
wise, the amount of similar non-sibling child nodes would have been sprouted
just before their parent nodes similarity evaluation.

Each of the HGS nodes is allowed to perform only a defined number of
computing iterations. After that, like in the case of reduction, it is stopped. The
whole strategy is completed when all the HGS nodes are stopped.

5 Experimental Results

The experiments were intended to compare “hierarchical” realizations of vari-
ous multi-objective evolutionary algorithms with their “classical” versions. To
achieve this the Zitzler-Deb-Thiele ZDT1, ZDT3, and ZDT6 problems ([8]) were
used.

5.1 The Methodology of the Experiments

In order to ensure comparable results, both classical and HGS-based algorithms
were allowed to evolve for the same overall number of iterations. The results’
quality was compared using various metrics. The measured time of execution
also gave an outlook on the overhead introduced by the HGS strategy.

For the experiments the following multi-objective evolutionary algorithms
were chosen: vector evaluated genetic algorithm (VEGA), multiple objective
genetic algorithm (MOGA), strength pareto evolutionary algorithm (SPEA) and
non-dominated sorting genetic algorithm II (NSGA-II) [2].

The metrics used for measuring the quality of the obtained results are de-
scribed in [7]. The first trivial metric that was taken into consideration was the
number of non-dominated individuals (solutions), which form the approximation
of the Pareto frontier. Generally, the greater the value of this metric is, the better
is the quality of the found solution.

The Inferior Region (IR) metric calculates the size of the area dominated by
obtained non-dominated individuals. The greater is the Inferior Region Metric’
value, the better is the approximation of the ideal Pareto frontier.

The Dominant Region Metric (DR) measures the size of the area that domi-
nates the obtained non-dominated individuals. Generally the smaller is the Dom-
inant Region Metric’ value, the better is the approximation of the ideal Pareto
frontier. However, its value decreases also in the case of increasing concentra-
tion of the Pareto frontier without moving towards the “good point”, thus local
variations of the metric’ value are possible.

The Accuracy Frontier Metric (AF) calculates the size of the area that neither
dominates the obtained individuals, nor is dominated by them. It can be observed
that the value of this metric can be expressed by the formula 1 − DR − IR,
where DR and IR are values of the DR and the IR metrics, respectively. The
smaller is the AF metric value, the more complete and concentrated the Pareto
frontier approximation is. However, the Accuracy Frontier Metric actually does
not measure the quality of the ideal Pareto frontier approximation.

The Pareto Spread Metric compares the range of the obtained Pareto frontier
and the ideal Pareto frontier (approximated by “good point” and “bad point”).

The tests for all implemented evolutionary algorithms were carried out on
a “flat” HGS structure (without sprouting and reduction—see Section 3.1) as
well as on a regular HGS tree. This way the equal conditions were assured for
both “classical” evolutionary algorithm (the ”flat” structure) and HGS using
this algorithm.

To ensure that the number of iterations will be the same in both cases, after
HGS execution, iterations on all its nodes were counted and the compared algo-
rithm was iterated exactly the same number of times. The number of individuals
per population was also exactly the same.

5.2 Discussion of the Results

The Figures 2, 3, and 4 present plots of the obtained solutions for ZDT-1 with
VEGA, ZDT-3 with MOGA, and ZDT-6 with SPEA, respectively. These three
were chosen from 20 experiment runs, each per every combination of the prob-
lem and the algorithm. Each of the presented experiments completed in 450
iterations.

(a) VEGA (b) MOHGS with VEGA

Fig. 2. The plot of obtained Pareto frontier for the ZDT-1 test problem.

(a) MOGA (b) MOHGS with MOGA

Fig. 3. The plot of obtained Pareto frontier for the ZDT-3 test problem.

(a) SPEA (b) MOHGS with SPEA

Fig. 4. The plot of obtained Pareto frontier for the ZDT-6 test problem.

Table 1. Number of non-dominated individuals metric values comparison.

test problem / algorithm classic strategy HGS

ZDT-1 / VEGA 10 21

ZDT-3 / MOGA 8 21

ZDT-6 / SPEA 7 8

Detailed comparison of the quality metrics results is shown in the Tables 1–5.
The time of computation in each mentioned case was gathered in the Table 6.

On the basis of the experiment’s results the HGS-based algorithms can be
considered regarding to the following criteria:

1. Number of non-dominated individuals. In the case of HGS the number of
non-dominated individuals is usually significantly greater than in the case
of “classic” algorithm (see Table 1). It means that HGS offers a wider and
more varied range of acceptable solutions.

2. Other Pareto frontier’s quality metrics values. The “classic” strategies’ Infe-
rior Region metric values (Table 2) are in the most cases slightly better (the
values are 1-5% higher). Similarly, the Dominant Region (Table 3) remains
a little better (below 10%) in the case of “classic” algorithm. On the other
hand, HGS obtains better Accuracy Frontier metric values (Table 4), which
is implied by densely filled Pareto frontier. Moreover, the Overall Pareto

Table 2. Inferior Region metric values comparison.

test problem / algorithm classic strategy HGS

ZDT-1 / VEGA 0.7741 0.7284

ZDT-3 / MOGA 0.7715 0.7673

ZDT-6 / SPEA 0.0323 0.0393

Table 3. Dominant Region metric values comparison.

test problem / algorithm classic strategy HGS

ZDT-1 / VEGA 0.1981 0.2290

ZDT-3 / MOGA 0.1813 0.1981

ZDT-6 / SPEA 0.6958 0.7382

Table 4. Accuracy Frontier metric values comparison.

test problem / algorithm classic strategy HGS

ZDT-1 / VEGA 0.0279 0.0426

ZDT-3 / MOGA 0.0472 0.0345

ZDT-6 / SPEA 0.2719 0.2225

Spread is more satisfactory in HGS (see Table 5). The differences in Ac-
curacy Frontier and Overall Pareto Spread metrics decrease with the test
problem complexity.

3. Efficiency. The overhead introduced by the MOHGS usually varies between
10-30% (see Table 6).

4. Even Pareto Spread. However not measured by any metric formula, worth
taking into consideration is the observation that HGS much more evenly
spreads the Pareto frontiers’ individuals (compare Figures 2, 3, and 4).

While performing the experiments a strong and non-linear impact of HGS
parameters such as node similarity threshold value, population size or metaepoch
length on the strategy course was observed.

It is also worth mentioning that HGS enables distribution and paralleliza-
tion of computations and does not cause high communication overhead, which
involves only sending sprouted individual. However, the reduction operation in
distributed environment remains a non-trivial and extremely important issue.

6 Concluding Remarks

In this paper the “hierarchical” approach to evolutionary multi-objective opti-
mization was presented. The results of preliminary experiments show that still
more research is needed on the proposed technique—however it seems to be a

Table 5. Overall Pareto Spread metric values comparison.

test problem / algorithm classic strategy HGS

ZDT-1 / VEGA 0.1993 0.2283

ZDT-3 / MOGA 0.2276 0.2231

ZDT-6 / SPEA 0.0020 0.0019

Table 6. Time elapsed for computing [ms].

test problem / algorithm iterations classic strategy HGS

ZDT-1 / VEGA 450 17906 23110

ZDT-3 / MOGA 450 27875 34188

ZDT-6 / SPEA 450 21766 19766

very promising approach especially in the case of difficult multi-objective prob-
lems, and the goal of this paper was to present the idea of MOHGS approach
from the general point of view.

The future research could concentrate on additional verification of the pro-
posed approach especially with the use of hard multi-objective problems and on
the introduction of additional mechanisms (like niching and elitism) improving
the obtained results. The agent-based realization of MOHGS seems to be the
specially interesting direction of research. Such system will allow for introduc-
ing additional mechanisms—for example mechanisms of maintaining population
diversity based on co-evolutionary interactions between evolving agents.

References

1. E. Ciepiela, J. Kocot, and L. Siwik. Composable runtime environment for building
evolutionary algorithms. Technical report, Department of Computer Science, AGH
University of Science and Technology, 2006.

2. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons, 2001.

3. C. Fonseca and P. Fleming. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Genetic Algorithms: Proceedings of

the Fifth International Conference, pages 416–423. Morgan Kaufmann, 1993.
4. R. Schaefer and J. Ko lodziej. Genetic search reinforced by the population hier-

archy. In Foundations of Genetic Algorithms 7, pages 383–399. Morgan Kaufman
Publisher, 2003.

5. J. D. Schaffer. Some experiments in machine learning using vector evaluated genetic

algorithms. PhD thesis, Vanderbilt University, 1984.
6. B. Wierzba, A. Semczuk, J. Ko lodziej, and R. Schaefer. Hierarchical genetic strat-

egy with real number encoding. Technical report, Institute of Computer Science,
Jagiellonian University, 2003.

7. J. Wu and S. Azarm. Metrics for quality assessment of a multiobjective design
optimization solution set. Transactions of the ASME, Journal of Mechanical Design,
123:18–25, 2001.

8. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and

Applications. PhD thesis, Swiss Federal Institute of Technology, 2001.
9. E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective optimization:

The strength pareto approach. Technical Report 43, Swiss Federal Institute of
Technology, Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 1998.

