
Maintaining Population Diversity in EvolutionStrategy for Engineering ProblemsRoman D�bski, Rafaª Dre»ewski, Marek Kisiel-DorohinikiDepartment of Computer SieneAGH University of Siene and Tehnology, Kraków, Poland{drezew,doroh}�agh.edu.plAbstrat. In the paper three new mehanisms for maintaining popula-tion diversity in (µ, λ)-evolution strategies are introdued: deterministimodi�ation of standard deviations, rowding, and elitism. The proposedmehanisms are experimentally veri�ed with the use of optimal shape de-signing of rotating variable-thikness annular elasti diss problem.Keywords: evolution strategies, maintaining population diversity, op-timal shape design1 IntrodutionMany engineering tasks lead to the global optimization problems, whih in mostases annot be solved by traditional methods. In suh a situation one an use(meta)heuristi omputational tehniques suh as evolutionary algorithms. Thisterm overs a wide range of searh and optimization methods, based on analogiesto Darwinian model of evolutionary proesses. Partiularly interesting from theengineering problems point of view are evolution strategies. They are most oftenused for solving ontinuous optimization problems and are distinguished by areal-valued representation, Gaussian mutation with auto-adaptation as the mainvariation operator, and deterministi seletion sheme [2, 8℄.The paper disusses the appliation of evolution strategies to optimal shapedesigning of a rotating variable-thikness annular dis�the optimal shape meanshere the one orresponding to the maximal elasti arrying apaity of the dis[6℄. The main goal of the paper is to present some modi�ations of �lassial�evolution strategies mainly foused on maintaining population diversity and thusproteting the searhing proess from getting stuk in a loal extrema. Main-taining population diversity seems to be the problem of vast importane in thisase.The paper is organized as follows. Classial evolution strategies and proposedmehanisms for maintaining population diversity (i.e. deterministi modi�ationof standard deviations, rowding and elitism) are desribed in setion 2. Setion3 presents the optimization problem: the design of rotating variable-thikness an-nular elasti dis, proposed representation of the solutions, and the model used toevaluate their quality (�tness). Seleted experimental results with the proposed
(µ, λ)-evolution strategy with additional mehanisms onlude the work.



2 Evolution StrategiesEvolution strategies (ES) were developed by Rehenberg and Shwefel in the1960s at the Tehnial University of Berlin. The �rst appliations were aimedat hydrodynamial problems like shape optimization of a bended pipe and dragminimization of a joint plate [3℄. ES is a speial instane of an evolutionaryalgorithm haraterized by real-valued vetor representation, Gaussian mutationas main variation operator, self-adaptation of mutation rate, and deterministiseletion mehanisms.2.1 Classial ApproahAlgorithmi framework of ontemporary evolution strategies may be desribedwith the use of following notation [7℄:� (µ + λ)-ES generates λ o�spring from µ parents and selets the µ best indi-viduals from µ + λ (parents and o�spring) individuals (1 ≤ µ ≤ λ),� (µ, λ)-ES denotes an ES that eah time step generates λ o�spring from µparents and selets the µ best individuals only from λ (o�spring) individuals(1 ≤ µ ≤ λ).The individuals in a population onsist of the objetive variables vetor x anda vetor of strategy parameters σ, where σi denotes the standard deviation usedwhen applying a zero-mean Gaussian mutation to the i-th omponent in parentvetor. These parameters are inorporated into the representation of individualin order to obtain evolutionary self-adaptation of an ES [8, 1℄. The mutationoperator hanges strategy parameters aording to:
σ′

i = σi exp(τ0N(0, 1) + τNi(0, 1)) (1)and the objetive variables (a simpli�ed ase of unorrelated mutations):
x′

i = xi + N(0, σ′
i) (2)where the onstant τ ∝ 1√
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, N(0, 1) is a standard Gaussian randomvariable sampled one for all n dimensions and Ni(0, 1) is a standard Gaussianrandom variable sampled for eah of the n dimensions.If the number of parents µ > 1, the objetive variables and internal strategyparameters an be reombined with usual reombination operators, for exampleintermediate reombination [4℄, whih ats on two parents x1 and x2 and reatesan o�spring x

′ as the weighted average:
x′

i = αx1i + (1 − α)x2i (3)where α ∈ [0, 1] and i = 1, . . . , n. The same may be applied to standard devia-tions:
σ′

i = ασ1i + (1 − α)σ2i (4)It is not neessary to apply the same reombination operator for objetivevariables and standard deviations. For example one an use disrete reombina-tion for standard deviations and intermediate reombination for objetive vari-ables.



2.2 Maintaining Population Diversity MehanismsAn evolutionary algorithm works properly (in terms of searhing for a globalsolution) if the population onsists of individuals di�erent enough, i.e. the so-alled diversity in the population is preserved. Yet many algorithms tend toprematurely loose this useful diversity and, as a result, there is possibility thatpopulation gets stuk in some loal extrema instead of searhing for a globalone. To avoid this undesirable behavior in lassial ES the mehanism of self-adaptation, as desribed above, was proposed. Yet this mehanism proves oftennot su�ient for very omplex multi-modal problems.In [5℄ the additional mutation operator was introdued. It improved obtainedresults, however it turned out that this additional mutation was still insu�-ient in the ase of highly multi-modal problems of shape designing. The newmehanisms for maintaining population diversity in ES introdued in this paperinlude:M1: the new mehanism of modifying standard deviation. Standard deviationis hanged deterministially, in the following way:
σ′(φ) = σmax − (σmax − σmin)

(φ − φmin)2

(φmax − φmin)2
(5)where:

σmax, σmin are prede�ned values of maximal and minimal mutation stan-dard deviation;
φmax, φmin are maximal and minimal �tness found in all past generations.The above funtion auses that the standard deviation of �poor� solutionsis inreased, so their hildren an �jump� in the solution spae with greaterprobability. There are of ourse di�erent funtion with the same harater-isti and the one presented above was hosen arbitrary.M2: the mehanism of rowding. The next generation population of µ individ-uals is generated from the population of λ individuals in the following way.The individuals in the o�spring population are sorted on the basis of their�tness values. The best individual from the o�spring population is added tothe next generation population. Then the next individual is added to thepopulation only if its Gaussian norm based distane from all k individualsalready added to the population is greater than:

k · dmin ·
(

1 −
(

t

tmax

)2)

, for t = 1, 2, . . . tmax. (6)where k is the number of individuals already present in the new generationpopulation, dmin is the minimal distane between two individuals, tmax isthe prede�ned maximal number of generations, and t is the atual numberof generation. The third omponent of the above equation (

1 − ( t
tmax

)2
) isdereasing as the number of generation inreases (the analogy to �temper-ature� in simulated annealing tehnique). This mehanism works in suh away that �good� individuals an be more �rowded� than the �poor� ones
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Fig. 1. Annular dis under onsideration and its pro�le representationbut this restrition is loosen as the urrent number of generation inreases.Thanks to this we an promote population diversity�individuals loated inbasins of attration of �poor� loal minima an not be rowded but they anbe moved to the next generation population of µ individuals.M3: elitism mehanism. The best individual from the population of µ parentsis always moved to the population of λ o�spring.3 The optimization problemThe most important assumptions about the physial model of the disusseddesign problem are as follows [6℄:1. We onsider an annular elasti dis of variable thikness h = h(r) rotatingwith onstant angular veloity ω and subjet to uniform tration pb at theouter radius b. The dis is lamped at the inner radius a.2. The lassial theory of thin diss with small gradient dh/dr is assumed andhene the stresses try and sy are negleted1.3. The material is linear-elasti with Young's modulus E, Poisson's ratio ν andsubjet to the Huber-Mises-Henky (H-M-H) yield ondition.4. The small-strain theory is adopted.The pro�le of the dis is represented by the 3rd order spline built on equidistantnodes (see �g. 1), where a dimensionless radius x = r/a was introdued.1 In this paper we use t and r symbols to denote the stresses instead of τ and σ, whihare usually used in the literature, beause the latter ones are already used in theevolution strategies desription



After introduing basi equations one may formulate the optimization prob-lem by de�ning a deision variables vetor, a feasible region and an objetivefuntion. The deision variables vetor:
Y = (y1, y2, . . . , yn) ∈ M ⊂ R

n (7)represents the shape of the dis in n equidistant points.The feasible region:
M = {Y ∈ R

n | kd · hmin ≤ yj ≤ kg · Hmax ∀j = 1, . . . , n} (8)assumes that the dis is lamped at the inner radius having there �xed thikness(y0 = Hmax) and that the dis an be neither too thin (not thinner than kd ·hmin)nor too thik (not thiker than kg · Hmax). Objetive funtion is desribed bythe following formula:
Φ =

{

c

[

1

β − 1

∫ β

1

si(x) dx

]

+ (1 − c)
√

p2 + Ω2

}

→ max (9)where 0 ≤ c ≤ 1 makes it possible to set the importane of eah of the two riteriataken into aount. The �rst of them (with the multiplier c) is onneted with theequalization of the stress intensity and the seond one with the external loadings(it is worth noting that if c = 0 this riterion beomes a simple maximizationof elasti arrying apaity). Suh a generalization is very helpful in estimatingthe limit arrying apaity or deohesive arrying apaity.4 Experimental resultsOptimal shapes in the meaning of riterion (9) onneted with di�erent ratio
Ω/p were presented in [6℄. Below only the analysis of the proposed mehanismsis disussed.All the results of experiments presented in this setion were obtained for thefollowing values of the systems' parameters (the de�nitions of these parametersan be found in [5℄): β = 2, Hmax/hmin = 5, p/Ω = 0, kd = 0.9, kg = 1.1,
ν = 0.3, s0/E = 0.001, c = 1, µ = 15, λ = 100, σmin = 10−6, σmax = 1,
dmin = 0.13.The results for the basi version of the algorithm are presented in the �gure2. It an be observed that the population diversity is not maintained very well inthis ase. Usually it is quite quikly redued after 20�30 (sometimes after about100�150) generations. In the �rst ase there is usually an individual with high�tness value (as ompared to other individuals within the population) withinthe population but with very low standard deviation values. In suh a asethe population is quite quikly omposed of the lones of suh individual, thealgorithm loses the population diversity and the abilities to explore the searhspae�usually the results obtained in suh a ase are very poor.In the seond ase (when the population diversity falls down after 100�150time steps) the algorithm loates the basin of attration of one of the loal



t

F

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2. Minimum, average and maximum value of the objetive funtion for the basealgorithm (with no additional mehanisms)maxima. The population diversity is very low but the standard deviations aresuh that there is still the possibility of loating basins of attration of othermaxima (the values of standard deviations are analyzed in [6, 5℄). Sometimes thealgorithm loates the basin of attration of quite �good� maxima but generallyresults obtained are not satisfying.The additional operators presented in [5℄ had not greatly improved the re-sults, and there still had been the tendeny to lose the population diversityduring optimization.It was observed that the mehanism M1 (the deterministi standard devia-tion modi�ation) applied separately led to worse �nal results as ompared tothe base algorithm. The main problem was related to the lak of onvergene�the algorithm with the deterministi standard deviation modi�ations resembledrandom walk.The use of the mehanism of rowding (M2) results in better results whenthe diversity of the population is onsidered but additionally auses that thealgorithm is not �stable��there are haoti hanges of the �tness values withinthe population (see �g. 3). When we additionally introdue the elitism meha-nism (M2) the haoti �utuations of the �tness values disappear�the algorithmworks �stable� (�g. 5). The appliation of all three mehanisms together (see �g.5) results in maintaining population diversity, there are no haoti hanges in�tness values of the individuals, and additionally the possibility of dominatingthe whole population by the opies of the individual with small �tness valueand small values of standard deviations is redued. Also in this ase the averageresults obtained are the best.
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Fig. 3. Minimum (bottom line), average (middle line) and maximum (top line) valueof the objetive funtion for mehanism M2 (rowding)5 Conluding remarksMany tasks related to optimal designing annot be solved by the use of lassialmethods (e.g. alulus of variations) beause of various reasons. It is the asefor example when there is no strit mathematial model of a problem (e.g. themapping between the deisive variables and the objetive funtion is unknown).In suh a situation the optimization proess is performed as a sequene of evalua-tions of possible solutions. When the domain spae make the omplete searhingimpossible one an use some heuristi methods to ontrol the algorithm of an-didate solutions seleting, like evolutionary algorithms or simulated annealing.Both the tehniques in their lassi forms usually do not work orretly in prob-lems with many loal extrema. In ase of evolutionary algorithms one of the keyproblems is related to maintaining population diversity.In the paper the following three modi�ations to the lassi (µ, λ)-ES weredisussed: deterministi modi�ation of standard deviations, rowding and elitism.The analysis was based on the results of the shape optimization of rotatingvariable-thikness annular elasti dis. The results learly show that only thesimultaneous use of all these three mehanisms help to maintain populationdiversity and, in onsequene, lead to a more stable searhing proesses and�nally�better solutions. Future researh ould onentrate on the further ver-i�ation of the proposed mehanisms. Other engineering problems should beonsidered for this purpose.
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Fig. 4.Minimum, average and maximum value of the objetive funtion for mehanism
M3 (elitism)Referenes1. T. Bäk, D. Fogel, D. Whitley, and P. Angeline. Mutation. In T. Bäk, D. Fogel, andZ. Mihalewiz, editors, Handbook of Evolutionary Computation. IOP Publishingand Oxford University Press, 1997.2. T. Bäk and H.-P. Shwefel. An overview of evolutionary algorithms for parameteroptimisation. Evolutionary Computation, 1(1), 1993.3. T. Bäk and H.-P. Shwefel. Evolutionary omputation: An overview. In Proeedingsof the Third IEEE Conferene on Evolutionary Computation, Pisataway NJ, 1996.IEEE Press.4. L. Booker, D. Fogel, D. Whitley, and P. Angeline. Reombination. In T. Bäk,D. Fogel, and Z. Mihalewiz, editors, Handbook of Evolutionary Computation. IOPPublishing and Oxford University Press, 1997.5. R. D�bski, R. Dre»ewski, and M. Kisiel-Dorohiniki. Preserving diversity in evo-lution strategy for shape design of rotating elasti dis. In Proeedings of the 6thConferene on Evolutionary Algorithms and Global Optimization (KAEiOG 2003).University of Zielona Góra, 2003.6. R. D�bski, G. Wo¹niak, R. Dre»ewski, and M. Kisiel-Dorohiniki. Evolutionarystrategy for shape design of rotating variable-thikness annular elasti dis. In Pro-eedings of the Symposium on Methods of Arti�ial Intelligene (AI-METH 2002),Gliwie, 2002. Silesian University of Tehnology.7. G. Rudolph. Evolution strategies. In T. Bäk, D. Fogel, and Z. Mihalewiz, edi-tors, Handbook of Evolutionary Computation. IOP Publishing and Oxford UniversityPress, 1997.8. H.-P. Shwefel. Numerial Optimization of Computer Models. John Willey & Sons,Ltd., Chihester, 1981.
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Fig. 5. Minimum (bottom line), average (middle line) and maximum (top line) valueof the objetive funtion for ombined mehanisms M2 and M3 (rowding and elitism)
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Fig. 6. Minimum (bottom line), average (middle line) and maximum (top line) valueof the objetive funtion for ombined mehanisms M1, M2 and M3 (the determinististandard deviation modi�ation, rowding and elitism)


