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Abstract. In the paper three new mechanisms for maintaining popula-

tion diversity in (u, \)-evolution strategies are introduced: deterministic

modification of standard deviations, crowding, and elitism. The proposed

mechanisms are experimentally verified with the use of optimal shape de-

signing of rotating variable-thickness annular elastic discs problem.
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1 Introduction

Many engineering tasks lead to the global optimization problems, which in most
cases cannot be solved by traditional methods. In such a situation one can use
(meta)heuristic computational techniques such as evolutionary algorithms. This
term covers a wide range of search and optimization methods, based on analogies
to Darwinian model of evolutionary processes. Particularly interesting from the
engineering problems point of view are evolution strategies. They are most often
used for solving continuous optimization problems and are distinguished by a
real-valued representation, Gaussian mutation with auto-adaptation as the main
variation operator, and deterministic selection scheme [2, 8].

The paper discusses the application of evolution strategies to optimal shape
designing of a rotating variable-thickness annular disc—the optimal shape means
here the one corresponding to the maximal elastic carrying capacity of the disc
[6]. The main goal of the paper is to present some modifications of “classical”
evolution strategies mainly focused on maintaining population diversity and thus
protecting the searching process from getting stuck in a local extrema. Main-
taining population diversity seems to be the problem of vast importance in this
case.

The paper is organized as follows. Classical evolution strategies and proposed
mechanisms for maintaining population diversity (i.e. deterministic modification
of standard deviations, crowding and elitism) are described in section 2. Section
3 presents the optimization problem: the design of rotating variable-thickness an-
nular elastic disc, proposed representation of the solutions, and the model used to
evaluate their quality (fitness). Selected experimental results with the proposed
(u, A)-evolution strategy with additional mechanisms conclude the work.



2 Evolution Strategies

Evolution strategies (ES) were developed by Rechenberg and Schwefel in the
1960s at the Technical University of Berlin. The first applications were aimed
at hydrodynamical problems like shape optimization of a bended pipe and drag
minimization of a joint plate [3]. ES is a special instance of an evolutionary
algorithm characterized by real-valued vector representation, Gaussian mutation
as main variation operator, self-adaptation of mutation rate, and deterministic
selection mechanisms.

2.1 Classical Approach

Algorithmic framework of contemporary evolution strategies may be described
with the use of following notation [7]:

— (p+ A)-ES generates X offspring from p parents and selects the p best indi-
viduals from p + A (parents and offspring) individuals (1 < u <)),

— (u, A)-ES denotes an ES that each time step generates A\ offspring from p
parents and selects the p best individuals only from X (offspring) individuals
(L<p<N.

The individuals in a population consist of the objective variables vector & and
a vector of strateqy parameters o, where o; denotes the standard deviation used
when applying a zero-mean Gaussian mutation to the i-th component in parent
vector. These parameters are incorporated into the representation of individual
in order to obtain evolutionary self-adaptation of an ES [8,1]. The mutation
operator changes strategy parameters according to:

ol = o;exp(toN(0,1) + 7N;(0,1)) (1)

and the objective variables (a simplified case of uncorrelated mutations):
z; = x; + N(0,07) (2)

1 1 i i
where the constant 7 WoNR 0 X 75 N(0,1) is a standard Gaussian random
variable sampled once for all n dimensions and N;(0, 1) is a standard Gaussian
random variable sampled for each of the n dimensions.

If the number of parents p > 1, the objective variables and internal strategy
parameters can be recombined with usual recombination operators, for example

intermediate recombination [4], which acts on two parents 1 and x2 and creates
an offspring x’ as the weighted average:

:L'; = axry; + (1 - 04)3521' (3)
where « € [0,1] and i = 1,...,n. The same may be applied to standard devia-
tions:

ol =aoy; + (1 — a)oy; (4)

It is not necessary to apply the same recombination operator for objective
variables and standard deviations. For example one can use discrete recombina-
tion for standard deviations and intermediate recombination for objective vari-
ables.



2.2 Maintaining Population Diversity Mechanisms

An evolutionary algorithm works properly (in terms of searching for a global
solution) if the population consists of individuals different enough, i.e. the so-
called diversity in the population is preserved. Yet many algorithms tend to
prematurely loose this useful diversity and, as a result, there is possibility that
population gets stuck in some local extrema instead of searching for a global
one. To avoid this undesirable behavior in classical ES the mechanism of self-
adaptation, as described above, was proposed. Yet this mechanism proves often
not sufficient for very complex multi-modal problems.

In [5] the additional mutation operator was introduced. It improved obtained
results, however it turned out that this additional mutation was still insuffi-
cient in the case of highly multi-modal problems of shape designing. The new
mechanisms for maintaining population diversity in ES introduced in this paper
include:

M1: the new mechanism of modifying standard deviation. Standard deviation
is changed deterministically, in the following way:

— )2
OJ(QS) = Omaz — (Jmaz — szn)( ((’b ¢mzn)

(bmaz - ¢min)2 (5)

where:
Omaz,Omin are predefined values of maximal and minimal mutation stan-
dard deviation;

Omaz, Pmin are maximal and minimal fitness found in all past generations.
The above function causes that the standard deviation of “poor” solutions
is increased, so their children can “jump” in the solution space with greater
probability. There are of course different function with the same character-
istic and the one presented above was chosen arbitrary.

M2: the mechanism of crowding. The next generation population of p individ-
uals is generated from the population of A individuals in the following way.
The individuals in the offspring population are sorted on the basis of their
fitness values. The best individual from the offspring population is added to
the next generation population. Then the next individual is added to the
population only if its Gaussian norm based distance from all & individuals
already added to the population is greater than:

¢ 2

where k is the number of individuals already present in the new generation
population, d,,;, is the minimal distance between two individuals, t,,q: iS
the predefined maximal number of generations, and ¢ is the actual number
of generation. The third component of the above equation (1 - (tmtam )2) is
decreasing as the number of generation increases (the analogy to “temper-
ature” in simulated annealing technique). This mechanism works in such a

way that “good” individuals can be more “crowded” than the “poor” ones
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Fig. 1. Annular disc under consideration and its profile representation

but this restriction is loosen as the current number of generation increases.
Thanks to this we can promote population diversity—individuals located in
basins of attraction of “poor” local minima can not be crowded but they can
be moved to the next generation population of y individuals.

M3: elitism mechanism. The best individual from the population of u parents
is always moved to the population of A offspring.

3 The optimization problem

The most important assumptions about the physical model of the discussed
design problem are as follows [6]:

1. We consider an annular elastic disc of variable thickness h = h(r) rotating
with constant angular velocity w and subject to uniform traction p at the
outer radius b. The disc is clamped at the inner radius a.

2. The classical theory of thin discs with small gradient dh/dr is assumed and
hence the stresses ¢, and s, are neglected'.

3. The material is linear-elastic with Young’s modulus F, Poisson’s ratio v and
subject to the Huber-Mises-Hencky (H-M-H) yield condition.

4. The small-strain theory is adopted.

The profile of the disc is represented by the 37¢ order spline built on equidistant
nodes (see fig. 1), where a dimensionless radius = r/a was introduced.

! In this paper we use ¢t and r symbols to denote the stresses instead of 7 and o, which
are usually used in the literature, because the latter ones are already used in the
evolution strategies description



After introducing basic equations one may formulate the optimization prob-
lem by defining a decision variables vector, a feasible region and an objective
function. The decision variables vector:

Y:(y17y25"'7yn)€MCRn (7)

represents the shape of the disc in n equidistant points.
The feasible region:

M={Y €R" | kg hmin <9 < kg Hmae Vji=1,....n} (8)

assumes that the disc is clamped at the inner radius having there fixed thickness
(yo = Hinaz) and that the disc can be neither too thin (not thinner than kg-huin)
nor too thick (not thicker than kg - Hyqz). Objective function is described by
the following formula:

. { [B_ /f () da

where 0 < ¢ < 1 makes it possible to set the importance of each of the two criteria
taken into account. The first of them (with the multiplier ¢) is connected with the
equalization of the stress intensity and the second one with the external loadings
(it is worth noting that if ¢ = 0 this criterion becomes a simple maximization
of elastic carrying capacity). Such a generalization is very helpful in estimating
the limit carrying capacity or decohesive carrying capacity.

+(1c)\/p2+92}ema:c 9)

4 Experimental results

Optimal shapes in the meaning of criterion (9) connected with different ratio
£2/p were presented in [6]. Below only the analysis of the proposed mechanisms
is discussed.

All the results of experiments presented in this section were obtained for the
following values of the systems’ parameters (the definitions of these parameters
can be found in [5]): 8 = 2, Hmaz/hmin = 5, p/2 =0, kg = 0.9, k; = 1.1,
v = 0.3, 50/E = 0.001, c = 1, p = 15, A = 100, opnin = 1075, opax = 1,
dmin = 0.13.

The results for the basic version of the algorithm are presented in the figure
2. It can be observed that the population diversity is not maintained very well in
this case. Usually it is quite quickly reduced after 20-30 (sometimes after about
100-150) generations. In the first case there is usually an individual with high
fitness value (as compared to other individuals within the population) within
the population but with very low standard deviation values. In such a case
the population is quite quickly composed of the clones of such individual, the
algorithm loses the population diversity and the abilities to explore the search
space—usually the results obtained in such a case are very poor.

In the second case (when the population diversity falls down after 100-150
time steps) the algorithm locates the basin of attraction of one of the local
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Fig. 2. Minimum, average and maximum value of the objective function for the base
algorithm (with no additional mechanisms)

maxima. The population diversity is very low but the standard deviations are
such that there is still the possibility of locating basins of attraction of other
maxima (the values of standard deviations are analyzed in [6, 5]). Sometimes the
algorithm locates the basin of attraction of quite “good” maxima but generally
results obtained are not satisfying.

The additional operators presented in [5] had not greatly improved the re-
sults, and there still had been the tendency to lose the population diversity
during optimization.

It was observed that the mechanism M1 (the deterministic standard devia-
tion modification) applied separately led to worse final results as compared to
the base algorithm. The main problem was related to the lack of convergence—
the algorithm with the deterministic standard deviation modifications resembled
random walk.

The use of the mechanism of crowding (M2) results in better results when
the diversity of the population is considered but additionally causes that the
algorithm is not “stable”—there are chaotic changes of the fitness values within
the population (see fig. 3). When we additionally introduce the elitism mecha-
nism (M2) the chaotic fluctuations of the fitness values disappear—the algorithm
works “stable” (fig. 5). The application of all three mechanisms together (see fig.
5) results in maintaining population diversity, there are no chaotic changes in
fitness values of the individuals, and additionally the possibility of dominating
the whole population by the copies of the individual with small fitness value
and small values of standard deviations is reduced. Also in this case the average
results obtained are the best.
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Fig. 3. Minimum (bottom line), average (middle line) and maximum (top line) value
of the objective function for mechanism M2 (crowding)

5 Concluding remarks

Many tasks related to optimal designing cannot be solved by the use of classical
methods (e.g. calculus of variations) because of various reasons. It is the case
for example when there is no strict mathematical model of a problem (e.g. the
mapping between the decisive variables and the objective function is unknown).
In such a situation the optimization process is performed as a sequence of evalua-
tions of possible solutions. When the domain space make the complete searching
impossible one can use some heuristic methods to control the algorithm of can-
didate solutions selecting, like evolutionary algorithms or simulated annealing.
Both the techniques in their classic forms usually do not work correctly in prob-
lems with many local extrema. In case of evolutionary algorithms one of the key
problems is related to maintaining population diversity.

In the paper the following three modifications to the classic (u, A)-ES were
discussed: deterministic modification of standard deviations, crowding and elitism.
The analysis was based on the results of the shape optimization of rotating
variable-thickness annular elastic disc. The results clearly show that only the
simultaneous use of all these three mechanisms help to maintain population
diversity and, in consequence, lead to a more stable searching processes and
finally—better solutions. Future research could concentrate on the further ver-
ification of the proposed mechanisms. Other engineering problems should be
considered for this purpose.
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Fig. 4. Minimum, average and maximum value of the objective function for mechanism
M3 (elitism)
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Fig. 5. Minimum (bottom line), average (middle line) and maximum (top line) value
of the objective function for combined mechanisms M2 and M3 (crowding and elitism)
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Fig. 6. Minimum (bottom line), average (middle line) and maximum (top line) value
of the objective function for combined mechanisms M1, M2 and M3 (the deterministic
standard deviation modification, crowding and elitism)



