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eAGH University of S
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e and Te
hnology, Kraków, Poland{drezew,doroh}�agh.edu.plAbstra
t. In the paper three new me
hanisms for maintaining popula-tion diversity in (µ, λ)-evolution strategies are introdu
ed: deterministi
modi�
ation of standard deviations, 
rowding, and elitism. The proposedme
hanisms are experimentally veri�ed with the use of optimal shape de-signing of rotating variable-thi
kness annular elasti
 dis
s problem.Keywords: evolution strategies, maintaining population diversity, op-timal shape design1 Introdu
tionMany engineering tasks lead to the global optimization problems, whi
h in most
ases 
annot be solved by traditional methods. In su
h a situation one 
an use(meta)heuristi
 
omputational te
hniques su
h as evolutionary algorithms. Thisterm 
overs a wide range of sear
h and optimization methods, based on analogiesto Darwinian model of evolutionary pro
esses. Parti
ularly interesting from theengineering problems point of view are evolution strategies. They are most oftenused for solving 
ontinuous optimization problems and are distinguished by areal-valued representation, Gaussian mutation with auto-adaptation as the mainvariation operator, and deterministi
 sele
tion s
heme [2, 8℄.The paper dis
usses the appli
ation of evolution strategies to optimal shapedesigning of a rotating variable-thi
kness annular dis
�the optimal shape meanshere the one 
orresponding to the maximal elasti
 
arrying 
apa
ity of the dis
[6℄. The main goal of the paper is to present some modi�
ations of �
lassi
al�evolution strategies mainly fo
used on maintaining population diversity and thusprote
ting the sear
hing pro
ess from getting stu
k in a lo
al extrema. Main-taining population diversity seems to be the problem of vast importan
e in this
ase.The paper is organized as follows. Classi
al evolution strategies and proposedme
hanisms for maintaining population diversity (i.e. deterministi
 modi�
ationof standard deviations, 
rowding and elitism) are des
ribed in se
tion 2. Se
tion3 presents the optimization problem: the design of rotating variable-thi
kness an-nular elasti
 dis
, proposed representation of the solutions, and the model used toevaluate their quality (�tness). Sele
ted experimental results with the proposed
(µ, λ)-evolution strategy with additional me
hanisms 
on
lude the work.



2 Evolution StrategiesEvolution strategies (ES) were developed by Re
henberg and S
hwefel in the1960s at the Te
hni
al University of Berlin. The �rst appli
ations were aimedat hydrodynami
al problems like shape optimization of a bended pipe and dragminimization of a joint plate [3℄. ES is a spe
ial instan
e of an evolutionaryalgorithm 
hara
terized by real-valued ve
tor representation, Gaussian mutationas main variation operator, self-adaptation of mutation rate, and deterministi
sele
tion me
hanisms.2.1 Classi
al Approa
hAlgorithmi
 framework of 
ontemporary evolution strategies may be des
ribedwith the use of following notation [7℄:� (µ + λ)-ES generates λ o�spring from µ parents and sele
ts the µ best indi-viduals from µ + λ (parents and o�spring) individuals (1 ≤ µ ≤ λ),� (µ, λ)-ES denotes an ES that ea
h time step generates λ o�spring from µparents and sele
ts the µ best individuals only from λ (o�spring) individuals(1 ≤ µ ≤ λ).The individuals in a population 
onsist of the obje
tive variables ve
tor x anda ve
tor of strategy parameters σ, where σi denotes the standard deviation usedwhen applying a zero-mean Gaussian mutation to the i-th 
omponent in parentve
tor. These parameters are in
orporated into the representation of individualin order to obtain evolutionary self-adaptation of an ES [8, 1℄. The mutationoperator 
hanges strategy parameters a

ording to:
σ′

i = σi exp(τ0N(0, 1) + τNi(0, 1)) (1)and the obje
tive variables (a simpli�ed 
ase of un
orrelated mutations):
x′

i = xi + N(0, σ′
i) (2)where the 
onstant τ ∝ 1√

2
√

n
, τ0 ∝ 1√

2n
, N(0, 1) is a standard Gaussian randomvariable sampled on
e for all n dimensions and Ni(0, 1) is a standard Gaussianrandom variable sampled for ea
h of the n dimensions.If the number of parents µ > 1, the obje
tive variables and internal strategyparameters 
an be re
ombined with usual re
ombination operators, for exampleintermediate re
ombination [4℄, whi
h a
ts on two parents x1 and x2 and 
reatesan o�spring x

′ as the weighted average:
x′

i = αx1i + (1 − α)x2i (3)where α ∈ [0, 1] and i = 1, . . . , n. The same may be applied to standard devia-tions:
σ′

i = ασ1i + (1 − α)σ2i (4)It is not ne
essary to apply the same re
ombination operator for obje
tivevariables and standard deviations. For example one 
an use dis
rete re
ombina-tion for standard deviations and intermediate re
ombination for obje
tive vari-ables.



2.2 Maintaining Population Diversity Me
hanismsAn evolutionary algorithm works properly (in terms of sear
hing for a globalsolution) if the population 
onsists of individuals di�erent enough, i.e. the so-
alled diversity in the population is preserved. Yet many algorithms tend toprematurely loose this useful diversity and, as a result, there is possibility thatpopulation gets stu
k in some lo
al extrema instead of sear
hing for a globalone. To avoid this undesirable behavior in 
lassi
al ES the me
hanism of self-adaptation, as des
ribed above, was proposed. Yet this me
hanism proves oftennot su�
ient for very 
omplex multi-modal problems.In [5℄ the additional mutation operator was introdu
ed. It improved obtainedresults, however it turned out that this additional mutation was still insu�-
ient in the 
ase of highly multi-modal problems of shape designing. The newme
hanisms for maintaining population diversity in ES introdu
ed in this paperin
lude:M1: the new me
hanism of modifying standard deviation. Standard deviationis 
hanged deterministi
ally, in the following way:
σ′(φ) = σmax − (σmax − σmin)

(φ − φmin)2

(φmax − φmin)2
(5)where:

σmax, σmin are prede�ned values of maximal and minimal mutation stan-dard deviation;
φmax, φmin are maximal and minimal �tness found in all past generations.The above fun
tion 
auses that the standard deviation of �poor� solutionsis in
reased, so their 
hildren 
an �jump� in the solution spa
e with greaterprobability. There are of 
ourse di�erent fun
tion with the same 
hara
ter-isti
 and the one presented above was 
hosen arbitrary.M2: the me
hanism of 
rowding. The next generation population of µ individ-uals is generated from the population of λ individuals in the following way.The individuals in the o�spring population are sorted on the basis of their�tness values. The best individual from the o�spring population is added tothe next generation population. Then the next individual is added to thepopulation only if its Gaussian norm based distan
e from all k individualsalready added to the population is greater than:

k · dmin ·
(

1 −
(

t

tmax

)2)

, for t = 1, 2, . . . tmax. (6)where k is the number of individuals already present in the new generationpopulation, dmin is the minimal distan
e between two individuals, tmax isthe prede�ned maximal number of generations, and t is the a
tual numberof generation. The third 
omponent of the above equation (

1 − ( t
tmax

)2
) isde
reasing as the number of generation in
reases (the analogy to �temper-ature� in simulated annealing te
hnique). This me
hanism works in su
h away that �good� individuals 
an be more �
rowded� than the �poor� ones
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Fig. 1. Annular dis
 under 
onsideration and its pro�le representationbut this restri
tion is loosen as the 
urrent number of generation in
reases.Thanks to this we 
an promote population diversity�individuals lo
ated inbasins of attra
tion of �poor� lo
al minima 
an not be 
rowded but they 
anbe moved to the next generation population of µ individuals.M3: elitism me
hanism. The best individual from the population of µ parentsis always moved to the population of λ o�spring.3 The optimization problemThe most important assumptions about the physi
al model of the dis
usseddesign problem are as follows [6℄:1. We 
onsider an annular elasti
 dis
 of variable thi
kness h = h(r) rotatingwith 
onstant angular velo
ity ω and subje
t to uniform tra
tion pb at theouter radius b. The dis
 is 
lamped at the inner radius a.2. The 
lassi
al theory of thin dis
s with small gradient dh/dr is assumed andhen
e the stresses try and sy are negle
ted1.3. The material is linear-elasti
 with Young's modulus E, Poisson's ratio ν andsubje
t to the Huber-Mises-Hen
ky (H-M-H) yield 
ondition.4. The small-strain theory is adopted.The pro�le of the dis
 is represented by the 3rd order spline built on equidistantnodes (see �g. 1), where a dimensionless radius x = r/a was introdu
ed.1 In this paper we use t and r symbols to denote the stresses instead of τ and σ, whi
hare usually used in the literature, be
ause the latter ones are already used in theevolution strategies des
ription



After introdu
ing basi
 equations one may formulate the optimization prob-lem by de�ning a de
ision variables ve
tor, a feasible region and an obje
tivefun
tion. The de
ision variables ve
tor:
Y = (y1, y2, . . . , yn) ∈ M ⊂ R

n (7)represents the shape of the dis
 in n equidistant points.The feasible region:
M = {Y ∈ R

n | kd · hmin ≤ yj ≤ kg · Hmax ∀j = 1, . . . , n} (8)assumes that the dis
 is 
lamped at the inner radius having there �xed thi
kness(y0 = Hmax) and that the dis
 
an be neither too thin (not thinner than kd ·hmin)nor too thi
k (not thi
ker than kg · Hmax). Obje
tive fun
tion is des
ribed bythe following formula:
Φ =

{

c

[

1

β − 1

∫ β

1

si(x) dx

]

+ (1 − c)
√

p2 + Ω2

}

→ max (9)where 0 ≤ c ≤ 1 makes it possible to set the importan
e of ea
h of the two 
riteriataken into a

ount. The �rst of them (with the multiplier c) is 
onne
ted with theequalization of the stress intensity and the se
ond one with the external loadings(it is worth noting that if c = 0 this 
riterion be
omes a simple maximizationof elasti
 
arrying 
apa
ity). Su
h a generalization is very helpful in estimatingthe limit 
arrying 
apa
ity or de
ohesive 
arrying 
apa
ity.4 Experimental resultsOptimal shapes in the meaning of 
riterion (9) 
onne
ted with di�erent ratio
Ω/p were presented in [6℄. Below only the analysis of the proposed me
hanismsis dis
ussed.All the results of experiments presented in this se
tion were obtained for thefollowing values of the systems' parameters (the de�nitions of these parameters
an be found in [5℄): β = 2, Hmax/hmin = 5, p/Ω = 0, kd = 0.9, kg = 1.1,
ν = 0.3, s0/E = 0.001, c = 1, µ = 15, λ = 100, σmin = 10−6, σmax = 1,
dmin = 0.13.The results for the basi
 version of the algorithm are presented in the �gure2. It 
an be observed that the population diversity is not maintained very well inthis 
ase. Usually it is quite qui
kly redu
ed after 20�30 (sometimes after about100�150) generations. In the �rst 
ase there is usually an individual with high�tness value (as 
ompared to other individuals within the population) withinthe population but with very low standard deviation values. In su
h a 
asethe population is quite qui
kly 
omposed of the 
lones of su
h individual, thealgorithm loses the population diversity and the abilities to explore the sear
hspa
e�usually the results obtained in su
h a 
ase are very poor.In the se
ond 
ase (when the population diversity falls down after 100�150time steps) the algorithm lo
ates the basin of attra
tion of one of the lo
al
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Fig. 2. Minimum, average and maximum value of the obje
tive fun
tion for the basealgorithm (with no additional me
hanisms)maxima. The population diversity is very low but the standard deviations aresu
h that there is still the possibility of lo
ating basins of attra
tion of othermaxima (the values of standard deviations are analyzed in [6, 5℄). Sometimes thealgorithm lo
ates the basin of attra
tion of quite �good� maxima but generallyresults obtained are not satisfying.The additional operators presented in [5℄ had not greatly improved the re-sults, and there still had been the tenden
y to lose the population diversityduring optimization.It was observed that the me
hanism M1 (the deterministi
 standard devia-tion modi�
ation) applied separately led to worse �nal results as 
ompared tothe base algorithm. The main problem was related to the la
k of 
onvergen
e�the algorithm with the deterministi
 standard deviation modi�
ations resembledrandom walk.The use of the me
hanism of 
rowding (M2) results in better results whenthe diversity of the population is 
onsidered but additionally 
auses that thealgorithm is not �stable��there are 
haoti
 
hanges of the �tness values withinthe population (see �g. 3). When we additionally introdu
e the elitism me
ha-nism (M2) the 
haoti
 �u
tuations of the �tness values disappear�the algorithmworks �stable� (�g. 5). The appli
ation of all three me
hanisms together (see �g.5) results in maintaining population diversity, there are no 
haoti
 
hanges in�tness values of the individuals, and additionally the possibility of dominatingthe whole population by the 
opies of the individual with small �tness valueand small values of standard deviations is redu
ed. Also in this 
ase the averageresults obtained are the best.
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Fig. 3. Minimum (bottom line), average (middle line) and maximum (top line) valueof the obje
tive fun
tion for me
hanism M2 (
rowding)5 Con
luding remarksMany tasks related to optimal designing 
annot be solved by the use of 
lassi
almethods (e.g. 
al
ulus of variations) be
ause of various reasons. It is the 
asefor example when there is no stri
t mathemati
al model of a problem (e.g. themapping between the de
isive variables and the obje
tive fun
tion is unknown).In su
h a situation the optimization pro
ess is performed as a sequen
e of evalua-tions of possible solutions. When the domain spa
e make the 
omplete sear
hingimpossible one 
an use some heuristi
 methods to 
ontrol the algorithm of 
an-didate solutions sele
ting, like evolutionary algorithms or simulated annealing.Both the te
hniques in their 
lassi
 forms usually do not work 
orre
tly in prob-lems with many lo
al extrema. In 
ase of evolutionary algorithms one of the keyproblems is related to maintaining population diversity.In the paper the following three modi�
ations to the 
lassi
 (µ, λ)-ES weredis
ussed: deterministi
 modi�
ation of standard deviations, 
rowding and elitism.The analysis was based on the results of the shape optimization of rotatingvariable-thi
kness annular elasti
 dis
. The results 
learly show that only thesimultaneous use of all these three me
hanisms help to maintain populationdiversity and, in 
onsequen
e, lead to a more stable sear
hing pro
esses and�nally�better solutions. Future resear
h 
ould 
on
entrate on the further ver-i�
ation of the proposed me
hanisms. Other engineering problems should be
onsidered for this purpose.
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Fig. 4.Minimum, average and maximum value of the obje
tive fun
tion for me
hanism
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Fig. 5. Minimum (bottom line), average (middle line) and maximum (top line) valueof the obje
tive fun
tion for 
ombined me
hanisms M2 and M3 (
rowding and elitism)

0 100 200 300 400 500 600 700 800 900 1000

0.4

0.5

0.6

0.7

0.8

0.9

t

F

Fig. 6. Minimum (bottom line), average (middle line) and maximum (top line) valueof the obje
tive fun
tion for 
ombined me
hanisms M1, M2 and M3 (the deterministi
standard deviation modi�
ation, 
rowding and elitism)


