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1. Introduction 
Evolutionary algorithms are heuristic techniques for finding (sub)optimal solutions for hard 
global optimization problems. Evolutionary algorithms may be also applied to multimodal 
and multi-objective problems (for example compare (Deb, 2001)). In these cases however 
some special techniques must be used in order to obtain multiple high-quality solutions. 
Most important of these mechanisms are techniques that maintain population diversity 
because we are interested in finding the whole set of solutions—it would be a set of non-
dominated solutions in the case of multi-objective optimization (all notions and ideas of multi-
objective optimization may be found in (Deb, 2001)) and a set of individuals located within 
basins of attraction of different local optima in the case of multi-modal optimization problems. 
Agent-based evolutionary algorithms result from mixing two paradigms: evolutionary 
algorithms and multi-agent systems. Two approaches are possible when we try to mix these 
two paradigms. In the first one we can use agent-based layer of the computing system as a 
“manager” of the computations. In this case each agent has sub-population of individuals 
inside of it. Agent tries to utilize computational resources in a best way—it observes the 
computational environment and tries to migrate to nodes which have free computational 
resources. In this approach evolving individuals are processed with the use of standard 
evolutionary algorithm. 
In the second approach individuals are agents which live within the environment composed 
of computational nodes, compete for resources, reproduce, die, observe the environment 
and other agents, communicate with other agents, and can change the environment. The 
selection is realized in the decentralized way: there are some resources defined in the system 
and “worse” agents (which have “worse” solutions encoded within their genotypes) give 
some amount of their resources to “better” agents. These resources are needed for all 
activities, like reproduction, migration, etc. When an agent runs out of resources it dies and 
is removed from the system. 
The example of the second approach is evolutionary multi-agent system (EMAS) model 
(Cetnarowicz et al., 1996), and co-evolutionary multi-agent system (CoEMAS) model 
(Dreżewski, 2003), which additionally allows for existence of many species and sexes of 
agents—it is also possible to define interactions between them and introduce co-
evolutionary interactions. 
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The two mentioned approaches can be mixed in such a way that we use agent-based layer 
for managing the computations and each evolving individual is also an agent which can 
compete for resources, migrate within the environment, reproduce, and die. 
Agent-based evolutionary algorithms have some distinguishing features, among which the 
most interesting seem to be: 
1. The possibility of constructing hybrid systems. In such a case we can use many different 

bio-inspired techniques together, within one coherent agent-based computational 
model. 

2. Relaxation of computational constraints—computations are decentralized and 
asynchronous because we use agent-based approach. 

3. The possibility of introducing new biologically and socially inspired operators, which 
were hard or impossible to introduce in the case of “classical” evolutionary 
computations. 

In this chapter we mainly focus on the first and third of the mentioned above issues. The 
main objective is to introduce two new mechanisms for EMAS model: cultural, and 
immunological. These mechanisms are applied in agent-based multi-objective evolutionary 
algorithm. 
Following (Deb, 2001)—multi-objective optimization problem—MOOP in its general form is 
being defined as follows: 

 
Authors assume that readers are familiar with at least fundamental concepts and notions 
regarding multi-objective optimization in the Pareto sense (relation of domination, Pareto 
frontier and Pareto set etc) and because of space limitation their explanation is omitted in 
this chapter (interested readers can find definitions and deep analysis of all necessary 
concepts and notions of Pareto MOO for instance in (Coello et al., 2007; Deb, 2001)). 
The chapter is organized as follows: 
• in section 2 shortcomings of naive application of EMAS model for solving multi-

objective optimization problems are discussed and concluded with motivation for 
further research on advanced mechanisms that could be introduced into EMAS and 
overcome defined problems; 

• in section 3 short introduction into immune and cultural mechanisms is given and next 
our realization of immune-cultural Evolutionary Multi-Agent System for multi-
objective optimization ic-EMAS is presented and discussed; 

• in section 4 we discuss shortly test suite, performance metric and noising algorithm 
used during experiments, and next we glance at obtained results; 

• in section 5 the most important remarks, conclusions and comments are given. 

2. Shortcomings of naive application of EMAS model for solving MOOPs 
Evolutionary Multi-Agent System (EMAS) discussed for instance in (Dobrowolski & Kisiel-
Dorohinicki, 2002; Cetnarowicz et al., 1996; Socha & Kisiel-Dorohinicki, 2002; Dreżewski & 
Siwik, 2008b; Dreżewski et al., 2009) proved to be very promising computational model. 
Unfortunately, at the same time, results obtained during solving multi-objective 
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optimization problems (MOOPs) by distributed and decentralized agent-based evolutionary 
heuristic approach turned out to be not as high-quality as results obtained by classical 
equivalents and state-of-the-art algorithms. 
During testing EMAS on various optimization problems, two core issues that could have 
great negative influence on obtained results have been identified i.e. algorithm stagnation 
and non-uniform distribution of agents over (approximation of) the Pareto frontier. 
The crucial activities of agents in EMAS environment are interactions with another agents. 
In particular it means meetings with another agents and comparing with each other 
represented by them solutions. According to the domination principle when one of agents 
dominates the other one—life energy is transferred from dominated agent to the dominating 
one. Because almost any activity of EMAS agents depends on the amount of their resources 
(life energy)—it is now obvious why agents’ interactions and flows of resources are so 
important. 
Unfortunately, with time (during our experiments after ca. six hundreds of steps—see fig. 
1b) the number of non-dominated agents is (almost) equal to the number of agents in 
environment. In the consequence, there are almost only mutually non-dominated 
individuals, so the probability that the solution represented by agent randomly selected 
from the whole population, will be dominating or dominated one is quite low. 
From the point of view of Agent A in fig. 1a (Siwik et al., 2008) flow of energy takes place 
only when met agent is located in the Area A or in the Area C—so only if it meets Agents B 
and C or Agents F, G and H). In the consequence the process of evolution falls into 
stagnation. It implies that during meetings among agents the flow of energy disappears, so 
agents can neither reproduce nor die. 
In the case of classical algorithms (like NSGA-II) such problem is not so significant, since 
individual is compared with all the others in each iteration. Similar solution (meetings and 
comparisons with the whole population in each step/iteration) is not possible in the case of 
EMAS-based approach since it is distributed and decentralized system and one of the main 
assumption in this case is lack of the global knowledge and lack of the global management 
of the whole population as well. 
 

 
Fig. 1. Stagnation process in EMAS-based multi-objective optimization 

Since in the basic implementation of EMAS there are no mechanisms responsible for even 
distribution of non-dominated solutions over the whole (approximation of the) Pareto 
frontier, there is also one more difficulty with effective applying “plain” EMAS for solving 
MOOPs— often non-dominated agents are grouped within some areas while other parts of 
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the Pareto frontier are not covered at all. Such situation is absolutely undesirable since main 
goals of multi-objective optimization is to find non-dominated solutions located as close to 
the true Pareto frontier as it is possible but simultaneously none of the objectives should be 
preferred. So, in other words, all found non-dominated solutions should be evenly 
dispersed over the whole Pareto frontier. The reason of mentioned problem is often 
associated with the fact that the probability of locating agents in some areas of the Pareto 
frontier is pretty low. Often large area in problem domain is mapped into relatively small 
function value range. EMAS should take such a situation into account and cover such 
problematic areas. 
To recapitulate, it has to be said that introducing evolutionary mechanisms into the 
population of (autonomous) agents and proposed in this way distributed and decentralized 
model of evolution seemed to be very promising and attractive. On the other hand 
simultaneously however, direct and naive applying of such model for solving multi-
objective optimization problems turned out to be fruitless to some extent—and that has been 
the reason and the motivation for researching on additional (advanced) mechanisms that 
could be introduced into EMAS to eliminate mentioned shortcomings. 
Our research on such advanced mechanisms includes inter alia: 
• elitist and semi-elitist mechanisms (Siwik & Natanek, 2008b; Siwik & Natanek, 2008a; 

Siwik & Kisiel-Dorohinicki, 2006; Siwik & Kisiel-Dorohinicki, 2005); 
• flock-based mechanisms (Kisiel-Dorohinicki, 2004; Siwik et al., 2008); 
• mechanisms dedicated for solving constrained MOOPs (Siwik & Sikorski, 2008); 
• responsible mainly for diversity maintaining co-evolutionary mechanisms and 

techniques. In this group, the following approaches should be mentioned: 
• co-evolutionary multi-agent system with predator-prey interactions (Drezėwski & 

Siwik, 2007b; Drezėwski & Siwik, 2007a); 
• co-evolutionary multi-agent system with host-parasite interactions (Drezėwski & 

Siwik, 2006b); 
• co-evolutionary multi-agent system with sexual selection (Drezėwski & 

Cetnarowicz, 2007; Drezėwski & Siwik, 2006a; Drezėwski & Siwik, 2008a); 
During further research it has turned out that also mechanisms borrowed from 
immunological as well as from cultural algorithms can be introduced into EMAS and 
improve significantly its effectiveness taking solving MOOPs into account. One of possible 
realization of immune-cultural Evolutionary Multi-Agent System ic-EMAS (which in 
particular allows for overcoming mentioned in this section shortcomings of simple EMAS) is 
presented in the next section. 

3. Immune-cultural Evolutionary Multi-Agent System—ic-EMAS 

The idea of artificial immune systems comes from the observation of natural, human-being 
immune system which is responsible—in general—for identification and destroying or 
neutralization of any kind of pathogens like viruses, bacteria, parasites, tumor-cells etc. 
Computer models of immune system are a subject of quite intensive research since 90s 
(Hunt & Cooke, 1995; Dasgupta, 1999; Forrest & Hofmeyr, 2000) and the most important 
and interesting features of (artificial) immune systems are self-organizing as well as 
adaptability and learning capabilities. In the consequence, artificial immune systems are 
very interesting computational approach providing fault tolerance, robustness, dynamism 
and adaptability (Frank, 1996; Hunt & Cooke, 1995; Castro & Timmis, 2002). 
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In immunology, there are two crucial concepts i.e. antigens and antibodies (Wierzchon, 
2001). Antigens it is such kind of pathogen which can be recognized by immune system and 
can trigger off so-called immune response. Antigens activate immune cells—lymphocytes. 
Lymphocytes are producing antibodies which are able to destroy or to neutralize antigens. 
Lymphocytes posses so-called pattern recognition receptors so they are able to discover not-
known so far antigens. Apart from that, immune system possesses also so-called immune 
memory and it is able to discover in more and more effective way antigens it has been in 
contact previously. It turns out, that computer model of natural immune systems can 
improve significantly multi-objective optimization algorithms (Coello & Nareli, 2005). 
Immune system, like agent system, is autonomous so applying immune mechanisms within 
the agent system seems to be natural and smooth. Like in a real immune systems also here 
the most important issue and responsibility of “immune agents” is recognizing and 
neutralizing pathogens i.e. dominated specimen. 
The most natural way to model immune system within agent system was introducing 
agents behaving like lymphocytes. Their antibodies can vary, with time, depending on met 
agents—it is a kind of equivalent of learning feature mentioned and observed in natural 
immune systems. 
Lymphocyte-agent is a kind of EMAS agent so it possesses a genotype. It is also able to 
gather resources (“life energy”) however, in this case, it does not need life energy to perform 
its activities—it can be said so that “lympho-agents” are immortal. During their life in 
EMAS environment lympho-agents are able to meet with ordinary agents only and during 
such meetings relation of domination is evaluated. If lympho-agent dominates met 
ordinary-agent it means that it meets antigen. According to the ideas and principles of 
immune systems it triggers an immune response i.e. antigen neutralization. In our 
realization the process of neutralization consists of two parts. First of all, lympho-agent 
takes 60% of ordinary-agent’s life-energy (the value of 60% was taken on the basis of 
experiments performed). The second part of neutralization process consists in crossing over 
genotypes of ordinary- and lympho-agent and if better genotype is created it replaces the 
genotype of ordinary agent. 
It is obviously possible that during the meeting between ordinary- and lympho-agent 
ordinary-agent dominates lympho-agent. In such a case the process of adaptation of 
lympho-agent takes place which is realized as taking over by lympho-agent mutated 
genotype of ordinary-agent. In the consequence lympho-agent is now able to recognize all of 
that antigens which so far it hasn’t been able to dominate and to recognize as antigens (it is 
similar to some extent to so-called clonal selection known from natural immune systems 
(Castro & von Zuben, 2002)). During this process, lympho-agent transfers all of its life-
energy to dominating ordinary-agent. 
Very important parameter from the effectiveness of proposed agent-based artificial immune 
system point of view is the proper number of lympho-agents. In our realization the number 
of lympho-agents should be correlated (should be equal to) with the number of ordinary-
agents located on the particular island. 
Cultural algorithm proposed by R. G. Reynolds from Wayne State University (Reynolds, 
1994) has been developed as a kind of supplement of classical genetic algorithm. Such kind 
of algorithms are making the use of sociological (and archaeological) theories to propose a 
model of cultural evolution. It is realized by introducing to the system a kind of common 
(available for all individuals) consciousness which allows for determining the set of 
expected features and for steering the process of evolution and the behavior of specimens in 
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such a way to maximize the number of specimens possessing such features. On the other 
hand, the state of consciousness (so called belief space) depends on the knowledge and 
experience of individuals, so any change in the population can influence on it causing 
changes of preferred features. Cultural algorithm works on two levels, i.e.: 
• on genome level with the use of mutation, crossover and selection mechanisms as usual 

in genetic algorithms; 
• on the level of belief space being the representation of common consciousness storing 

the knowledge gathered by all individuals and influencing their behavior. 
Both of these levels are able to communicate each other. A given number (fulfilling given 
conditions) of (best) individuals influences the belief space. Specimens belonging to such a 
group are chosen with the use of acceptation() function. Function direction() works in a 
different way—it influences genetic operators in such a way to maximize the number of 
individuals with expected features—where “expected features” are defined on the basis of 
the knowledge stored in the belief space. 
Approaches utilizing ideas of cultural algorithm have been successfully applied to solving 
many optimization problems (Jin & Reynolds, n.d.; Jin & Reynolds, 2000). And what is more 
important from our point of view, cultural-like approaches have been also successfully 
applied to solving MOOPs (Coello & Becerra, 2003; Becerra & Coello, 2006). 
In our EMAS-based realization of cultural mechanisms, belief space has been introduced on 
the level of each island. Similarly, to some extent, to solutions proposed in (Coello & 
Becerra, 2003) as the knowledge stored in the belief space—localization of (non-dominated) 
individuals in particular areas of search space was chosen. During the initialization, extreme 
values of each objective function for initial population is determined. Next, each found 
interval is divided into Nd subintervals. Those subranges divide belief space into k

dc N=  

cells. Each cell stores the number of non-dominated individuals representing the given area 
of search space. 
Cultural mechanisms are used during crossover process. In simple EMAS, during 
reproduction one single offspring is created which is automatically added to the population. 
Now, after introducing cultural-oriented mechanisms, the process of reproduction looks as 
follows. First of all, making the use of crossover and mutation operators the number of 
NP pretenders are being created. For each of them, their localization in belief space is being 
determined but in this moment they are not added to the belief space. First the tournament 
is being performed and only its winner is being added to the belief space and to the 
population—the rest of pretenders are destroyed. During the tournament each pretender 
meets all the others. During each meeting (compare Alg. 1) firstly relation of domination is 
evaluated. If one of them dominates the other, the value of pv counter is being increased. If 
pretenders are mutually non-dominated their localization in the belief space is being 
checked. If one of them is located outside the borders of the belief space—it wins, else the 
numbers of individuals located in represented by both agents cells are being checked and 
the winner is the one representing less crowded cell. After performing such a tournament 
pretender with the highest number of victories becomes the descendant (the rest—as it was 
mentioned—is being destroyed). 
As one may notice, belief space and cultural-oriented mechanisms address the second 
problem mentioned in previous section i.e. even distribution of non-dominated solution 
over the whole approximation of the Pareto frontier. 



Agent-Based Multi-Objective Evolutionary Algorithms with Cultural and Immunological Mechanisms  

 

547 

 
 

Now, keeping in mind both: immune and cultural-oriented mechanisms, interactions 
between lympho-agents and ordinary-agents with the use of belief space look as follows 
(compare Alg. 2): In our realization of immune-cultural EMAS (ic-EMAS) also lympho-
agents posses information about their localization in belief space. Now, modified lympho-
agent is able to recognize not only dominated agent but also agents located in more 
crowded cell in belief space. If lympho- and ordinary-agent are mutually non-dominated the 
one located in less crowded cell is being considered as the better alternative. In such a case 
immune response is different than in the case of domination, because in such a situation it is 
more important to neutralize antigen by transferring it to less crowded cell. That is why its 
genotype is replaced by mutated genotype of lympho-agent. Simultaneously, ordinary-
agent transfers 40% of its life energy to lympho-agent. In Alg. 2 the complete algorithm of 
interaction between lympho-agent (l) and ordinary-agent (s) is presented where: 
• l,s means lympho- and ordinary-agent respectively; 
• l.E and s.E means energy possessed by lympho- and ordinary-agent respectively; 
• P means the set of pretenders and NP  means the number of pretenders; 
• x.E means genotype of particular agents; 
• l.C and s.C means the content of the cell in the belief space where particular agents 

belongs to; 

4. Experimental results 
To compare classical, i.e. non agent-based algorithms, with proposed in this chapter 
immune-cultural Evolutionary Multi-Agent System, at least two aspects have to be taken 
into consideration, since the effectiveness of optimization algorithm can be analyzed as the 
function of (algorithm’s) step and as the function of time. Decision maker (algorithm’s user) is 
interested obviously in time aspects (it is important for him how fast it is possible to obtain 
valuable results) and how precisely given algorithm is able to approximate the model (ideal)  
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solution (in the case of multi-objective optimization it is of course true Pareto frontier). On 
the other hand, researchers, during the process of algorithm development should keep in 
mind also its effectiveness per computational step. Because of its significance for the Decision 
Maker in this chapter time aspects and comparisons will be presented. It is important to 
notice in this place that all experiments have been performed with the use of one single 
hardware and software environment and if it was only possible with the same value of 
particular parameters. There is also one more important disclaimer that has to be underlined 
here. The goal of this chapter is to present, for the first time, the general idea of introducing 
both: immune and cultural mechanisms into EMAS with explanation of shortcomings of 
applying simple EMAS for solving MOOPs and it is not the goal of this chapter to present 
detailed and deep experimental analysis and comparisons. Therefore, in this section only 
general—it can be said: from bird’s eye view—results are presented. Detailed discussion of 
obtained results not only for ZDT but also for CTP and DTLZ test suites, values of particular 
parameters and their influence on the behavior of proposed ic-EMAS are presented and 
discussed in (Goik et al., 2007). 
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4.1 Test suite, performance metric, state-of-the-art algorithms and noise 
As it was mentioned, in the course of this chapter there are presented only selected, general 
results obtained during solving the Zitzler-Deb-Thiele test suite which in the literature is 
known and identified as the set of test problems ZDT1-ZDT6 ((Zitzler, 1999, p. 57–63), 
(Zitzler et al., 2000), (Deb, 2001, p. 356–362), (Coello et al., 2007, p. 194–199)). 
Two main distinguishing features of high-quality solution of MOOPs are: closeness to the 
true Pareto frontier as well as dispersion of found non-dominated solution over the whole 
(approximation) of the Pareto frontier (see fig. 2). 
 

 
Fig. 2. Two goals of multi-objective optimization 

In the consequence, despite that using only one single measure during assessing the 
effectiveness of (evolutionary) algorithms for multi-objective optimization is not enough 
(Zitzler et al., 2003), since Hypervolume Ratio measure (HVR) (Zitzler & Thiele, 1998) allows 
for estimating both of these aspects—in this chapter discussion and presentation of obtained 
results is based on this very measure. 
Hypervolume or Hypervolume ratio (HVR), describes the area covered by solutions of 
obtained result set. For each solution, hypercube is evaluated with respect to the fixed 
reference point. In order to evaluate hypervolume ratio, value of hypervolume for obtained 
set is normalized with hypervolume value computed for true Pareto frontier. HV and HVR 
are defined as follows: 

 
(1a) 

where vi is hypercube computed for i – th solution, PF* represents obtained Pareto frontier 
and PF is the true Pareto frontier. 
To assess (in a quantitative way) proposed ic-EMAS, the comparison with results obtained 
with the use of state-of-the-art algorithms has to be made. That is why we are comparing 
results obtained by ic-EMAS with results obtained by NSGA-II (Deb et al., 2002) and SPEA2 
(Zitzler & Thiele, 1999) algorithms since these very algorithms are the most efficient and 
most commonly used evolutionary multi-objective optimization algorithms. 
When one considers applying proposed optimization method for solving real-life problems 
its effectiveness in noisy environment has to be considered and assessed since in real-life 
problems noise can not be avoided. 
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To assess the behavior of algorithm solving multi-objective optimization problem(s)— 
several forms of noise can be considered and introduced (in order to simulate real 
situations). So, the noise can be considered at the level of objective function evaluation, as 
well as at the level of decision variables and finally the noise can be introduced as the—so 
called— environmental noise (Bui et al., 2004; Miller, 1997; Siwik et al., 2008). 
Since several forms of noise can be considered—to omit such considerations as: how strong 
and how often repeating noise at the level of decision variables results in noise at the level of 
objective function evaluation (especially that it depends on the particular problem that is 
being solved)—in this chapter authors focus on objective function evaluation noise (see 
Algorithm 3). 
Such kind of noise simulation directly affects fitness value, and directly influences the 
quality of obtained result set, and allows in the consequence for direct observation of 
algorithm’s ability for coping with noise occurrences. 
 

 

4.2 A glance at obtained results 
In figures fig. 3 and fig. 4 there are presented results obtained by NSGA-II, SPEA2, ic- EMAS 
and EMAS approaches solving ZDT1 to ZDT6 problems in environment with no occurrence 
of noise. 
As one may see, on all five diagrams from fig. 3 and fig. 4 presenting values of HVR metric 
for ZDT problems—introducing into EMAS, discussed in this chapter cultural and 
immunological mechanisms significantly positively influence evolutionary agent-based 
systems, however in the comparison to state-of-the-art algorithms (SPEA2 and NSGA-II) it 
can not be said that ic-EMAS is better alternative—since in the case of ZDT4 problem (see 
fig.4a) it is better than classical algorithms but in the case of ZDT6 (see fig.4b) it is worse and 
in the case of ZDT1, ZDT2 and ZDT3 problems (see fig.3abc) it allows for obtaining only as 
valuable results as mentioned well-known referencing algorithms. 
The situation is completely different when experiments are conducted in noisy environment. 
In fig. 5 and fig. 6 there are presented results obtained by ic-EMAS as well as by NSGA-II 
and SPEA2 algorithms during solving ZDT1–ZDT6 problems with the simulation of noisy 
environment with the probability of the occurrence of noise equal to 20%. As one may see, 
only in the case of ZDT1 problem all three approaches allow for obtaining similar results 
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Fig. 3. HVR values obtained solving ZDT1 (a), ZDT2 (b) and ZDT3 (c) in environment 
without noise 
 

 
Fig. 4. HVR values obtained solving ZDT4 (a) and ZDT6 (b) problems in environment 
without noise 

(see fig. 5a) whereas in the case of ZDT2, ZDT3, ZDT4 and ZDT6 problems (see fig. 5bc and 
fig. 6ab)—proposed in this chapter immune-cultural Evolutionary Multi-Agent Systems is 
definitely the best alternative. In fig. 7 there are presented visualizations of Pareto frontiers’ 
approximations obtained by ic-EMAS, NSGA-II and SPEA2 algorithms in noisy 
environment after 15 (a), 30 (b), 60 (c) and 120 (d) seconds solving ZDT3 problem. It is 
obviously coherent with the values of HVR measure presented in figures 5 and 6 and 
confirms that in noisy environment ic-EMAS is better alternative than state-of-the-art 
NSGA-II and SPEA2 algorithms. 
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Fig. 5. HVR values obtained solving ZDT1 (a), ZDT2 (b) and ZDT3 (c) problems in noisy 
environment with the probability of noise occurrence equal to 20% 
 

 
Fig. 6. HVR values obtained solving ZDT4 (a) and ZDT6 (b) problems in noisy environment 
with the probability of noise occurrence equal to 20% 

5. Conclusions 
To recapitulate considerations presented in the course of this chapter, it is worth to say, that: 
• in this chapter, for the first time, the general idea of realization of cultural and immune 

mechanisms in decentralized way within the confines of EMAS model is presented; 
• EMAS model turns out to be so flexible that introducing considered mechanisms was 

possible, moreover, as it was discussed, it can be done in elegant, smooth and fully 
consistent with distributed, autonomous and decentralized agent-oriented way; 
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Fig. 7. Approximation of Pareto frontiers obtained by ic-EMAS, NSGA-II and SPEA2 in 
noisy environment after 15 (a), 30 (b), 60 (c) and 120 (d) seconds solving ZDT3 problem 

• introduced cultural and immune mechanisms significantly improved the effectiveness 
of simple EMAS taking the quality of obtained approximations of the Pareto frontier 
into account as well as time needed for obtaining such high-quality results; 

• as it was stated in section 2, there are two shortcomings when applying simple EMAS 
for solving MOOPs i.e. stagnation and lack of mechanisms responsible for dispersing 
individuals over the whole approximation of the Pareto frontiers. Proposed in this 
chapter immune mechanisms address the first problem whereas cultural mechanisms 
address the second one; 

• in the consequence, in the function of time, ic-EMAS i.e. presented in this chapter 
realization of immune-cultural Evolutionary Multi-Agent System allows for obtaining 
as high quality results as it is possible with the use of state-of-the-art algorithms like 
NSGA-II and SPEA2; 

• what is more, in noisy environment ic-EMAS turns out to be even significantly more 
effective than mentioned state-of-the-art EMOAs; 

• significant superiority of ic-EMAS over NSGA-II and SPEA2 comes from the 
phenomenon that can be called soft selection. Even, if in a given step strong agent 
(individual) because of the noise turns out to be dominated—the only consequence is 
the lost (the part) of its energy. But still—on the contrary to classical algorithms where 
in such a situation individual is usually removed from the population — it can operate 
in the environment and during the next meeting(s) with another agents, when only the 
noise disappears it dominates another agents, so it gains energy and it can reproduce 
etc. etc. So, to recapitulate in a soft model of selection represented by evolutionary 
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multi-agent systems (and by ic-EMAS in particular)—temporary noise does not cause 
losing strong/promising (often non dominated in fact) individuals; 

• because proposed immune-cultural agent-based approach seems to be very promising 
one, further research on hybridization of EMAS and cultural and immune systems will 
be conducted with special attention to real-life optimization and decision-supporting 
applications. 
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