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Abstract. The complexity of generating investment strategies makeard (or
even impossible), in most cases, to use traditional tectesiqnd to find the exact
solution. In this chapter the evolutionary system for gatieg investment strate-
gies is presented. The algorithms used in the system (éwoduy algorithm,
co-evolutionary algorithm, and agent-based co-evolatipralgorithm) are veri-
fied and compared on the basis of the results coming from iEmpets carried
out with the use of real-life stock data. The conclusionswirrom the results of
experiments are such that co-evolutionary and agent-hasegolutionary tech-
niques better maintain population diversity and generaieergeneral strategies
than evolutionary algorithms.

1 Introduction

Investing on the stock market requires analyzing of thetgrember of possible strate-
gies (which securities should be chosen, when they shoulbbght and when sold).
The majority of the investment decisions are based on aimglyaf present and his-
torical data since it allows for predicting future trendsieTproblem however is that
the anticipation of future trends depends on many assungtgarameters and condi-
tions. Taking into consideration so many assumptions, doeations of parameters and
their values leads to the comparison of the great numberaghgr. The evaluation of
parameters of many securities isfdiult and time consuming for the investor and the
analysts. As a result, the investor or the analyst is able#tyae only the small subset
of all possible strategies, so the optimal investmentegats usually not found [15].

The set of the strategies which consists of indicator famcts infinite because
the complexity of the strategy can be unlimited. Formulashef given strategy are
functions of hundreds (or thousands) of parameters. Coditplef the problem makes
it impossible to use direct search methods and instead dféuaistic approach has to
be used. For instanaolutionary algorithmsan be applied here.

Evolutionary algorithms are optimization and search tépies, which are based
on the Darwinian model of evolutionary processes [2]. Onthefbranches of evolu-
tionary algorithms areo-evolutionary algorithmgL2]. The most important éierence
between them is the way in which the fitness of the individs&\ialuated. In the case
of evolutionary algorithms the fitness of the individual dads only on how “valu-
able” is the solution of the given problem encoded withing&notype. In the case of



co-evolutionary algorithms the fitness of the individugbeeds on the values of other
individuals’ fitness. The value of fitness is usually basedharesults of tournaments,
in which the given individual and some other individualsrfr¢the population are en-
gaged. Co-evolutionary algorithms are generally appleabthe cases in which it is
difficult or even impossible to formulate an explicit fithess fimt. Co-evolutionary
interactions between individuals have also other postitects—for example main-
taining population diversity [6]. Population diversityaspecially important in the case
of multi-modal optimization problems, multi-objectivetopization problems, and dy-
namic environments.

Agent-based (co-)evolutionary algorithms have been pegas the result of re-
search on decentralized models of evolutionary computstibhe basic idea of such an
approachis the realization of evolutionary processesmélmulti-agent system, which
leads to very interesting class of systems: (co-)evolatiprmulti-agent systems—
(Co)EMAS [5]. Such systems have some features which rddidaffer them from
“classical” evolutionary algorithms. The most importarittbem are the following:
synchronization constraints of the computations are egldbecause the evolutionary
processes are decentralized (individuals are agentsg #xésts the possibility of de-
veloping hybrid systems using manyfférent soft-computing technigues within one
single, coherent agent architecture, and finally there eéspibssibility of introducing
new evolutionary and social mechanisms, which were hard/en @npossible to in-
troduce in the case of classical evolutionary algorithi@®)EMAS systems have been
already applied to solving multi-modal and multi-objeetptimization problems [7].
Another area of applications is the modeling and simulatibsocial and economical
phenomena.

In the case of financial and economical computations (arwfalancial and eco-
nomical modeling and simulation) we have to deal with dyraerivironments and
competing or co-operating economical and social agentdt Ass said before, co-
evolutionary techniques help maintaining population diitg, and agent-based co-
evolutionary systems maintain the diversity even bettdrats more, agent-based ap-
proach allows us to easily model social and economical agamd relations between
them.

In the chapter the component-based system for generatiegtinent strategies
is presented. In the system three algorithms were implesdefitlassical” evolution-
ary algorithm, co-evolutionary algorithm, and agent-loase-evolutionary algorithm.
These algorithms were assessed and compared during the skexperiments, which
results conclude the chapter.

2 Previous Research on Evolutionary Algorithms for Generaing
Investment Strategies

During recent years there can be observed the growing sitgreapplying biologically
inspired algorithms to solving economic and financial peots [3, 4]. Below, only se-
lected applications of evolutionary algorithms in systesmgporting investment-related
decision making are presented. To the authors’ best kn@&lgere were no attempts
to apply agent-based (co-)evolutionary algorithms in sydtems.



S. K. Kassicieh, T. L. Paez and G. Vora used the genetic ahgorior supporting
the investment decisions making [10]. Their algorithm eped on historical stock data.
The tasks of the algorithm included selecting company teshin. The time series of
the considered companies were given. In their system sogiealooperations were
carried out on the data. The genetic algorithm was used &rméte, which logical
operators should be applied in a given situation.

O. V. Pictet, M. M. Dacorogna, R. D. Dave, B. Chopard, R. Schénd M. Tomassini
([11]) presented the genetic algorithm for the automatitegation of trade models rep-
resented by financial indicators. Three algorithms werdémpnted: genetic algorithm
(it converged to local minima and revealed the poor capgghifi generalization), ge-
netic algorithm with fitness sharing technique developedXbyin and N. Germay
[16] (it explored the search space mofteetively and revealed better abilities to find
diverse optima), and genetic algorithm with fitness shat@ethnique developed by au-
thors themselves in order to prevent the concentrationedfithividuals around “peaks”
of fitness function (it revealed the best capability of gatization). The proposed al-
gorithms selected parameters for indicators and combineah tto create new, more
complex ones.

F. Allen and R. Karjalainen ([1]) used genetic algorithm fiding trading rules
for S&P 500 index. Their algorithm was able to select thecites and parameters
for rules. Each rule was composed of a function organizes antree and a returned
value (signal), which indicated whether stocks should beght or sold at a given
price. Components of the rules were the following: funcsiaperating on historical
data, numerical or logical constants, logical functionsohhallowed for combining
individual blocks in order to build more complicated rulBsinction in the root always
returned logical value, which ensured the correctnessefttategy. Fithess measure
was based on excess return from the buy-and-hold strategigver the return did not
take into consideration the transaction cost.

3 Evolutionary System for Generating Investment Strategie

In this section both: the architecture of the componenetdagstem for generating in-
vestment strategies as well as three algorithms (evolatjcedgorithm, co-evolutionary
algorithm, and agent-based co-evolutionary algorithneduess computational compo-
nents are presented and discussed.

3.1 The Architecture of the System

In Fig. 1 there is presented the high-level architecturéenefdystem. As one may see
the system consists of the following basic components:

— DataSource-this component supplies the data to the strategy genektitborical
sessions’ stock data are used.

— Functions—it contains all classes, which are necessary for creatinglas of
strategies. It allows to carry out basic operations on fdasiie.: initialization, ex-
change of single functions, adding new functions or remgxisting ones. For-
mulas can be tested on data and, in such a case, the resulis wéturned.
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Fig. 1. The architecture of the system used in experiments

— SystemTesterthis component allows for testing of proposed stratedtas.able
to prepare reports concerning the transactions and camgetime information about
the gained profit. It is used by the generation algorithmstorete the fitness.

— GenerationAlgorithms-it contains implementation of three algorithms respolesib
for generating strategies: evolutionary algorithm (EA);evolutionary algorithm
(CCEA) and co-evolutionary multi-agent system (CoEMAS)isTcomponent in-
cludes the mutation and recombination operators as weleafithess estimation
mechanisms. Implementation of this subsystem was dividedgackages shown
in Fig. 2:

e algorithm package—it is the most general package containing claggesh
are the basis for implementation of other algorithms resjidafor investment
strategy generation.

e EApackage—it contains implementation of evolutionary atton.

o CCEApackage—it contains implementation of co-evolutionagpathm.

o CoEMASrackage—it contains implementation of agent-based chiwnary
algorithm.

— Presentation-it contains definitions of GUI forms responsible for instarior re-
sults presentation, algorithm monitoring etc.

3.2 Data Representation

In all three algorithms implemented and discussed in theseoof this chapter the strat-
egy is a pair of formulas. First formula indicates when onauthenter the market and
the second indicates when one should exit the market. Eawtufa, which is a part of

strategy can be represented as a tree, which leaves andaredesictions performing

some operations. Such tree has a root and any quantity af sbdes. The function

placed in the root always returns logical value. Fig. 3 shtivestree of the formula,

which can be symbolically written in the following wa$. T HWillR(20),30)> 10.0.
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Fig. 2. Package diagram for generation strategies algorithms

When treating this expression as entry formula, the systédhgenerate “buy” sig-
nal when the value of Standard Error indicator (STE) from 89sdand for data from
Williams’ %R indicator for percentage period equal to 20 & greater than 10.0.

GreaterThan
ConstArray

[ WiIllR ] [ constData(30.0) ][ constData(10.0) ]

constData(20)

Fig. 3. Tree of exemplary formula

A formula tree is represented in memory as a tree. The rocd rdn object con-
taining the references to the functions and the referemcpatameters. These param-
eters are also the same objects as the root. Leaves of therérebjects which do not
contain parameters. When formula is executed recursive @atur. In the beginning,
the root requires values of all parameters needed to ingskeriction. Then the control
flows to objects of the parameters. Objects representiranpeters behave in the same
way as the root object. Leaves do not contain parameterbgegocan return the value
required by the parent node.

Functions (which formulas are composed of) were divided fatir categories:

— Functions returning data arrays (see Table 1). There aret6fanctions.

— Mathematical functions (for examphbs—each value in the returned data array is
absolute value of corresponding element from the data pasged as an argument,
Cos—calculates cosine for values from the data array passed agyament, etc.)
There are 40 such functions.

— Tool functions (for examplérojBandBot—returns the data array with values of
the bottom Projection Ban@§TEBandBet-returns the data array with values of
the bottom Standard Error Band, etc.) There are 33 of them.



— Indicator functions (see Table 2). There are 14 of them.

There are 93 functions altogether.

Table 1. Data array functions

Function name| Description

Close Returns close prices.

ConstArray  |Returns array of constant passed as argument.
High Returns high prices.

Low Returns low prices.

Open Returns open prices.

Volume Returns volumes.

Table 2. Indicator functions

Function name| Description

AD Returns the data array with values of the Accumulgastribution in-
dicator.

ADX Returns the data array with values of Average Directional/&moent
indicator.

BBandBot Returns the data array with values of the Bollinger Band @ottndi-
cator.

BBandTop Returns the data array with values of the Bollinger Band Taliciator.

LinearReg Returns the data array with values of the Linear Regressidinator.

Mov Returns the data array with values of diverse moving average

ROC Returns the data array with values of the Rate of Changeatatic

RSI Returns the data array with values of the Relative Strengilex indi-
cator.

STE Returns the data array with values of the Standard Errocatai.

Stdev Returns the data array with values of the Standard Deviatidioator.

TSF Returns the data array with values of the Time Series Foretwdisator.

Var Returns the data array with values of the Variance indicator

WilIR Returns the data array with values of the Williams’ %R inttica

Zig Returns the data array with values of the Zig Zag indicator.

Implemented functions accept the following types of pari@mse constantsrfteger,
float or enun), array of constant float values, and values returned byr dthrection
(array of logical values or array of float values). Logicahstant does not exist because
it was not needed for building formulas.

Classes containing implementations of mentioned funstéye presented in Fig. 4.
A FunctionBaseclass contains meta-data concerning all functions definetscen-
dent classes. To those meta-data belong for instance fieasilnes of functions argu-
ments.SecurityDataclass contains session data of single stock. It suppliestdan-



dicator functions. It also accumulates errors from forraulans (e.g. division by zero,
attempt of computing logarithm of negative value, etc.) alhalvs reporting them when
it is required. Other classes contain implementation oitiadr functions belonging to
the categories mentioned earlier.

DataArrayFunctions

SecurityData
i:‘

ToolsFunctions

Fig. 4. Hierarchy of classes with functions used to build formulas

3.3 Evolutionary Algorithm (EA)

IndividualEA

FormulaTree
- formula : Formula

+ computeFitness(fitness : FitnessEA)

N

+ getFitness() : double - root : TreeNode
+ getProfit() : double + getFormula() : Formula
+ getAvgTradelength() : double - createFormula()

+ getComplexity() : double

Fig. 5. Individual in EA and its genotype

In the evolutionary algorithm genetic programming apphoaas used. The geno-
type of individuals simultaneously contains formula fotexing and exiting the market.
Class diagram presented in Fig. 5 shows that each indiviths(in its genotype) two
formula trees which represent formulas for entering antirexithe market. Method
computeFitnesss used to estimate fitness of an individual. When fitnesstimated



its value can be obtained lyetFitnessnethod. It is also possible to get all components
of fithess such as profit, average length of trades, and avexagplexity of formulas.

An object ofFormulaTreeclass contains root of tree and cached object of the formula,
which is created from the tree usingeateFormulamethod.

Estimation of the fitness value of the strategies is carrigda the basis of loaded
historical data. Two tables of logical values are createdrasult of execution of the for-
mulas. The first one relates to the purchase action (entérémarket) and the second
one relates to the sale action (exiting the market). Alpanitesponsible for computing
the profit processes tables and determines when a purchdsesate occur. Entering
the market occurs when a system is outside the market arelithtére value of “true”
in the enter table. Exiting the market occurs when the system the market and there
is value of “false” in the exit table. In the other cases norafien is performed. When
applying this algorithm, the system cannot enter the marke¢ more (before any sale
action takes place). In other words, after the sale—pugcheation must take place, and
after buying—the sale action must occur. The pfiofits from the given transaction is
estimated when exiting the market and it is accumulated.cbisé of each transaction
is included—the commission is calculated by subtracting@ain constant from the
transaction value.

Apart from the profiloss there are also other criteria, which are included irfithe
ness estimation. The first one is the formula complexity-mi@las which are too com-
plex can slow down the computations and increase the mensaiyeu The complexity
of the formulas is determined by summing up of all componentfions. The second
criteria is the length of the transaction—it depends on tleégpence of the investor.

RecombinationThree kinds of recombination operators are usetlrned valuere-
combination,argumentsrecombination, andunction recombinationReturned value
recombination is performed when there are two functionb gifferent arguments but
the same returned values within the formula tree. Thesetimgare exchanged be-
tween individuals (functions are moved with their argunsgnt

LowerThan

ProjBandBot

[ constData( 34 ) ]

ProjBandBot ] [ constData( 7 ) ]

constData( 7 )

Fig. 6. Parent 1 foreturned valueecombination

Let us consider two formulas:

— ProjBandBof34)< LLV(ProjBandBof7),7) (see Fig. 6), and
— ProjBandTog7)> STEBandBdHigh(),7,7) (see Fig. 7),
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Fig. 7. Parent 2 foreturned valuegecombination
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Fig. 8. Descendant 1 afteeturned valugecombination

wherePro jBandBofts function which calculates the bottom Projection Banddatbr,
ProjBandT opcalculates the top Projection Band indicatorV (Lowest Low Value)

is indicator, which calculates the lowest value in the datayaover the preceding pe-
riod, andS T EBandBotalculates the bottom Standard Error Band indicator. Fonst
ProjBandBotandS T EBandBahave diterent arguments, but the types of their return
values are the same (they both return double values). Asi te® new formulas will

be created:

— ProjBandBof34)< S TEBandBdHigh(), 7,7) (see Fig. 8), and
— ProjBandTo(§7) > LLV(ProjBandBo(7),7) (see Fig. 9).

Argumentsecombination occurs when there are two functions with #mesargu-
ments within the parents. These arguments are exchangeddretndividuals during
the recombination.

Let us consider two parents:

— BBandBofClosd), 10, Triangular,4.3) (see Fig. 10), and
— BBandToOpen),3,Simple2.9) (see Fig. 11),

GreaterThan

ProjBandTop

E constData( 7 ) ] E ProjBandBot ] E constData( 7 ) ]

constData( 7))

Fig. 9. Descendant 2 afteeturned valuaecombination




BBandBot
Close constData( 4.3 )

[ constData( 10 ) ] {constData( Triangular )]

Fig. 10.Parent 1 fomargumentgecombination

BBandTop
Open constData( 2.9 )

[ constData( 3) j [ constData( Simple ) ]

Fig. 11. Parent 2 fomrgumentgecombination

whereBBandBotandBBandT oalculate respectively bottom and top Bollinger Band
indicator. Function8BandBotand BBandT ophave the same arguments. After ex-
changing these arguments two new descendants will be dreate

— BBandBofOper(),3,Simple2.9) (see Fig. 12), and
— BBandToClosd),10, Triangular,4.3) (see Fig. 13).

Functionrecombination can take place when two functions have thee sangu-
ments and the same returned values. Let us consider twotpdirem the previous ex-
ample. Function8BandBotBBandT opCloseandO penfulfill the assumption which
requires return values and parameters to be the same. Aalaakapplyingfunction
recombination two new individuals will be created:

— BBandTofOpen), 10, Triangular,4.3) (see Fig. 14), and
— BBandBofClosd), 3,Simple2.9) (see Fig. 15).

Only one kind of recombination can be used to createfispdng. Probability of
recombination determines which kind of recombination issen. Each kind of recom-
bination has also a probability which controls carrying patticular recombination. It
determines how often particular elements of formulas achanged between parents.

BBandBot
Open constData( 2.9)

[ constData( 3 ) ] [ constData( Simple ) ]

Fig. 12.Descendant 1 aftargumentgecombination



BBandTop
Close constData( 4.3 )

[ constData( 10 ) ] [constDala( Triangular )]

Fig. 13.Descendant 2 aftargumentgecombination

BBandTop
Open constData( 4.3 )

[ constData( 10 ) ] [constData( Triangular )]

Fig. 14.Descendant 1 aftdunctionrecombination

Parametereproduction factodetermines how manyfisprings are generated. The size
of population is multiplied by this cdgcient. The outcome defines the number i o
springs to be created.

During the recombination stage, in the first place, type obmebination is chosen
using RecombinationArraglass. Next, parents are chosen using a tournament selec-
tion. When two parents are selected, a certain type of retwtibn is performed in
accordance with, previously determined, type of recontiinaSequence diagram for
single recombination is presented in Fig. 16.

Mutation Two types of mutation were usetlinction argumentsnutation andiunc-
tion mutation. Infunction argumentnutation the argument of the function must be
a constant value. This constant value is exchanged with ttier @ne coming from
the allowed range. For instance, having a func#ad(1, 2) operator can modify it to
Add(5,2).

There are three variants of thenctionmutation:

1. If a given function should be mutated, a list of the funetidaking the same argu-
ments is found. If such functions exist, the exchange isqoeréd. If there are no

BBandBot
Close constData( 2.9 )

[ constData( 3 ) j [ constData( Simple ) j

Fig. 15. Descendant 2 aftdunctionrecombination
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Fig. 16.Carrying out a single recombination

such functions, mutation is not carried out. For instaAoe(a,b) can be changed
to Or(a,b). It was named as function mutation.

2. A given function can be exchanged with the other, completew one, regardless
of arguments—only returned types must match. Argumentsict sunction are
created randomly. For instance:

— BBandTopMonth),13 E,4.714)—before mutation,

— BBandTogHHV(Closd), 3), 13 E, 4.714)—after mutation.
Month function returns day of the month, from which data came frandHHV
function calculates the highest value in the data array thespreceding period.
Function Month was exchanged foHHV, and its arguments were created ran-
domly. It was named as the entire function mutation.

3. Similarly as in (2), but, if it is possible, parameters bé treplaced function are
copied to a new one. For instance, therdVied(Low(), AD())—before mutation,
and S T HLow(), 14)—after mutationMod function (which calculates modulus)
was exchanged fd@ T Efunction and parametdrow was moved. Second parame-
ter had to be created randomly, beca8seEfunction requires integer constant as
an argument. It was named as the partial function mutation.

Probability of mutation depends on the depth in the formrda.tif it is closer to
leaves the mutation probability is greater. Thanks to thiste is a greater chance that
the mutation will cause small changes in the genotype.

Many kinds of mutations could be performed on the same pdorofula. Mutation
factors are used while calculating mutation probabilitye$e cofficients let the user
specify how mutation likelihood changes when depth in fdenaf the mutated element
changes. If such cdéiécient is greater than 1, then the greater depth causes tategre



pop : Population ‘ ‘ mutation : Mutation ‘ formula : Formula

2: iterateOnFormula() L

\
\
Ju 3: handlelnvoker()

. performConstParamMutation()

1: mutate()

v

: performFunctMutation()

: performEntireFunctMutation()

: performPartialFunctMutation()

Fig. 17. Carrying out mutation of single formula element

mutation probability. But if cofficient is in the [Q1] range then the greater depth causes
the smaller mutation probability.

Fig. 17 shows mutation sequence of single formula elendutate method from
Mutationclass is carried out on genotype of an individual. Nextaitien on functions
of genotype is performediandlelnvokemethod is invoked on each function of geno-
type. Particular mutations are performed with probabgipgcified by the user.

SelectionThe tournament selection ([2]) was used in the EA algorithmthe tourna-
ment selection a group & individuals (N > 2) is selected. The individual which has
the highest fithess is chosen from the group.

After creating the fispring, it was added to the population of parents (the retiose
mechanism). From such enlarged population the new basdgiimmuwas chosen also
with the use of tournament mechanism.

Algorithm 1 shows the scheme of evolutionary algorithm.#& beginning the pop-
ulation is created randomly and evaluated. Next, repraédinctecombination and mu-
tation are performed in each generation. When the indivgai® created their fithess
value is estimated. Afterwards, new population is seleapgalying tournament reinser-
tion on parent and children individuals.



Algorithm 1. Scheme of evolutionary algorithm (EA)

1 gen« 0;

2 random initialization of populatioPop(gen);
3 evaluatePop(gen;

4 while not stop conditiordo

5 Popt(gen « reproductionPop(gen;

6 Pop?(gen « recombinatiorPopt(gen);
7 Pop?(gen « mutationPop?(gen);

8 evaluatePop?(gen);

9 Pop(gen+ 1) « reinsertion Pop?(gen U Pop(gen);
10 gen«— gen+1;

11 end

3.4 Co-Evolutionary Algorithm (CCEA)

Co-evolution is a process of mutual adaptation of a set df’iddals which interact
with each other [8]. When an individual becomes better agthpither individuals also
have the opportunity to improve their fithess.

All of evolutionary and co-evolutionary algorithms cortsissearching of the popu-
lation of solutions in accordance with the concept of ndseection. Co-evolutionary
algorithms however, dlier from ordinary evolutionary algorithms. Individual may- i
teract with other individuals. Partners of interactiong/rha members of the same pop-
ulation, or may belong to éierent populations, depending on the nature of the problem
being solved.

Many real problems are filicult to solve using standard evolutionary techniques.
However, such problems can be decomposed into many sulteprsjand finding their
solutions will result in solving an initial probler.o-operative co-evolutiois designed
to solve the problenX through co-evolving the sets of solutions of sub-probléims,
which X was decomposed into [8].

While developing the co-evolutionary algorithm for gerterg investment strate-
gies, co-operative approach proposed by M. A. Potter and.KkDéJong ([14]) was
used. There are two species in the implemented algorithdividuals representing en-
tering the market strategies and individuals represemiiting the market strategies.
Interactions between these species rely on co-operation.

Class diagram presented in Fig. 18 shows that each indiMdhsgin its genotype
one formula tree representing the formula for entering dtirexthe market depend-
ing on population to which the individual belongs. To estienthe fithess, formula is
obtained usingjetFormulamethod and passed to an objectrithessCCEAclass. In
setFitnessnethod—fitness value and its elements are taken frorrithessCCEAob-
ject. Likewise in EA fithess and its component can be obtabyegroper methods.

During the fitness estimation process individuals are s&diato pairs, which form
the complete solution. In the first generation, for eachweald individual from the
first species a partner for co-operation from the secondepecchosen randomly. For
the complete solution created in this way, the fitness is agethand assigned to the
individual that is being evaluated.



IndividualCCEA
+ setFitness(fitness : FitnessCCEA) FormulaTree
+ getFitness() : double 1 | - formula : Formula
+ getProfit() : double - root : TreeNode
+ getAvgTradelLength() : double + getFormula() : Formula
+ getComplexity() : double - createFormula()
+ getFormula() : FormulaTree

Fig. 18.Individual in CCEA and its genotype

In the next generations, the best individual from the oppaspecies and from the
previous generation is chosen for the evaluated individe@ instance, if second gen-
eration has finished then at the beginning of third genaraBproduction starts. After
recombination and mutation new individuals are creatediaenlthey can be evaluated.
To do this the best individual from the second generatiorxiftbe market population
is retrieved. Then pairs of previously selected individarad each individual from third
generation from enter the market population are createde$ses from such formed
pairs are assigned to individuals which came from enter tagket population. In the
similar manner fitnesses of individuals from the second faifmn are established. The
best individual from second generation of enter the mar&ptation is selected. Pairs
composed of this individual and each individual from exé tharket population (from
third generation) are created. Estimated fitnesses amgnaskto individuals from exit
the market population.

Algorithm 2 shows the scheme of co-evolutionary algoritéthe beginning pop-
ulations of two species are created randomly and fithesscbfiedividual is estimated.
Next, reproduction, recombination and mutation are agpmie both species in each it-
eration. When fispring individuals are created, fitness estimation oc&o#h species
interact at the stage of fithess computing . After that, egitisn is performed and single
step of CCEA is finished. The pairs of individuals gaining tiest profit are the result
of the algorithm run.

3.5 Co-Evolutionary Multi-Agent System (CoOEMAS)

Co-evolutionary multi-agent system used in the experiménthe agent-based real-
ization of the co-evolutionary algorithm. Its general gipies of functioning are in
accordance with the general model of co-evolution in madent system [5]. The Co-
EMAS system is composed of the environment (which includamatational nodes—
islands—connected with paths) and agents, which can reigrishin the environment.
The selection mechanism is based on the resources, whiatefined in the system.
The general rule is such, that in the each time step the envieot gives more resources
to “better” agents and less resources to “worse” agents.ableats use the resources
to perform each activity, like migration, reproductiondaso on. Each time step (the
agents can live more than one generation), individuals $osee constant amount of
the possessed resources, which is given back to the enveranithe agents make all



Algorithm 2. Scheme of co-evolutionary algorithm (CCEA) [13]

gen« O;

foreach species slo

random initialization of populatioRPops(gen;
evaluatePops(gen);

while not stop conditiordo
foreach species slo
Popl(gen « reproductionPops(gen;

1
2
3
4
5 end
6
7
8
9 PorZ(gen « recombinatiorPopl(gen;

10 Pog(gen « mutationPogg(gen;

11 evaluatePopi(gen);

12 Pops(gen+ 1) « reinsertion Po pg(ger) U Pops(gen);
13 end

14 gen< gen+1;

15 end

their decisions independently—especially those conogrnéproduction and migra-
tion. They can also communicate with each other and obskevertvironment.

In the COEMAS algorithm realized in the system for genermaiiivestment strate-
gies each co-evolutionary algorithm (CCEA) is an agent Wwhiclocated on one of
the islands and independently carries out the computatibims population of each
co-evolutionary algorithm also consists of the agentsrélage two species of agents
within each population, like in the case of CCEA).

Genetic operators and fithess estimation mechanism areathe as in the case
of previously described algorithms. Selection mechanisudifferent—it works on the
basis of resources (the agent possessing the greater aofaesburce wins the tour-
nament).

On the basis of the amount of the possessed resource eagliradidecides whether
it is ready for the reproduction. It occurs when the levelasfaurce is greater or equal
to rrrﬁiﬁ” (see Algorithm 3). Parents are chosen using a tournamertheAmutation
stage the amount of resource does not change. During thenbécation parents give
the dfspring certain amount of their resources.

The tournament during the reinsertion phase is also basetleoresources—the
agent that possesses more resource wins the tournamehé Aginsertion stage better
individuals receive more resource from the environment twedworse ones receive
less. If the agent possesses less resourcamait dies.

The possibility of migration of agent-individuals from opepulation to another
was added as well. During the migration the resource posddssthe given agent is
reduced by a constant amount.

The reproduction factorparameter in CoOEMAS determines only the maximum
number of d@fsprings to be created. Practically, the amount of creatdividuals is
smaller and depends on how many individuals have enoughnesito reproduce. If it
turns out that there are no such individuals any more, reptioh will be stopped.



Algorithm 3. Basic activities of agerd in COEMAS

10
11
12

13
14

15
16
17
18
19

20
21
22
23
24
25

input: indexi of profile to perform

switch profile p € PR} do; /* PR is the set of profiles of agent a */

end

caseinitialization profile

rY er?r’m ; /* 17 is the amount of resource y possessed by the
agent a, r?;m is the initial amount of resource given to the
agent */

o

aseresource profile

get from the environment some resource correspondinglyrtess;

if 17 <rlieVt—tereate> tmaxagethen; /* rl., is the minimal amount of
resource needed by the agent to live, t is number of
generation, tcreate is number of generation in which agent was
created, and tmaxage is maximum number of generations through
which agent can live */

| execute(die) strategy;

end

asereproduction profile

if r7>rrr§iﬁ’y then; /* r:ﬁiﬁy is the minimal amount of resource
needed for reproduction */

o

execute(seels strategy; /* find second agent to reproduce with
*/
execute(recombinatioi strategy;
execute{mutatior) strategy;
end
asemigration profile _
if r7>r::i'%y then; /* rm;%y is the minimal amount of resource
needed for migration */

O

execute{migration) strategy;

give rmi'%y amount of resource to the environment;
end

end




Individuals die when they possess too few resources. Hawévis approach is
insuficient because after a few generations there will be manyiihatls in population
which vegetate (do nothing and do not give back resourceioeenment) and therefore
their existence is useless. For that reason, when indilsghass to new generation they
give back a certain percent of resource to environment.

The number of individuals in population depends on the arhofimesource in
environment, however, the initial size of population isdfied by the user. If the envi-
ronment has more resource, then more individuals can éiikere is a small amount
of resource and many individuals receive it, then many iiddials will have too few
resources and will be killed at the reinsertion stage.
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Fig. 19. Allocation of resource at initialization stage (a), and émsecutive generations (b)

Each population lives in a certain environment (island)e €hvironment possesses
a specified amount of resource which circulates betweenrthieomment and agents.
The resource of population can change only through migrdtialividuals which mi-
grate take resource to the other population). The amourdsafurce in the system is
constant because the sum of resource in all populationsid¢hd environment does not
change. In the first stage resource is allocated propotlyotaethe fitness: the greater
fithess the greater amount of resource. The entire popolaticeives resource unless
there exist individuals whose fitness is not positive. FRa $hows the manner of re-
source allocation at the initialization stage.

In the consecutive generations—in order to increase seteptessure—only the
part of population receives resource. Resource is notatkacproportionally to the
fithess value. The fitness value is raised to the power spadiffethe user and the
resource is allocated on the basis of such modified fitness.nfénner of resource
allocation after initialization is shown in Fig. 19b.



4 The Experiments

In order to examine the generalization capabilities of stesm and compare the pro-
posed algorithms, strategies which earn the largest prefitypar for random stocks
were sought. An attempt was made to determine, which algorifeneralizes in a best
way and what quantity of stocks should be used for strateggeeration so that the
system would not overfit. It is also interesting to assesskhlgorithm generates the
best strategies and has the smallest convergence.

4.1 Plan of the Experiments

The presented results of the experiments comparing théyjoathe generated strate-
gies and convergence properties of the considered algwitlre average values from
30 runs of the algorithms. Each algorithm was run for 500 getiens on the data of
10 randomly chosen stocks. The session stock data camehlW G index ([9]) and
the period of 5 years was chosen (from 2001-09-29 to 2008997 he size of the
population in all the algorithms was equal to about 40 indirals (CoEMAS approach
uses variable-size populations).

All experiments were made with the use of optimal values efghrameters. These
values were found during consecutive experiments. Therighgas were run 10 times
for each parameter value coming from the established randeeerage results were
computed—on this basis the set of best parameters’ valueschesen.

While comparing all algorithms three approaches were used:

— on-line eﬂ‘iciency:%th:l f(t), whereT is the number of generations algorithm
worked through, and (t) is fitness of the best individual in generatibn
— off-line eﬁiciency:% Zthl f*(t), wheref*(t) = max f(1), f(2),..., f(t)}

,,,,,

the last generation, anfilis fithess ofi-th individual.

While examining the generalization capabilities, eacloalgm generated the so-
lution for n random stocks (stage 1). Nextffgrentn stocks were chosen ten times at
random and the profit was calculated using the best stratbtained in the stage 1.
Then, the average of these profits was counted. These didaslavere carried out four
times forn=3,5,7,10.

Like in the first type of experiments (when the quality of th@usions and the
convergence properties were compared), populations aithsisizes in the case of
all three algorithms. All experiments were carried out o tirachine with one AMD
Sempron 2600 processor.

4.2 Parameters’ Values Selection

Table 3 and Table 4 show optimal parameters’ values, whiate wletermined using
back to back experiments. Table 3 concerns all three algosit All algorithms have
the same values of these parameters. Table 4 concerns oBIMAS® algorithm. Pa-
rameters in this table refer to migration and resourceslwvbacur only in CoOEMAS.



Table 3. Optimal values of parameters for all three algorithms

Parameter | Parameter value
Fitness function

Price for entering the market Open
Price for exiting the market Close
Entry commissions 0.0
Exit commissions 1.0
Kind of got commissions Points ($)
Transaction length weight 0.1
Profit weight 1.0
Formula complexity weight 0.2
Initialization

Initial formula depth | 4
Mutation

Entire function mutation probability 0.3
Entire function mutation—if probability depends on depth true
Entire function mutation factor 2.0
Partial function mutation probability 0.1
Partial function mutation probability—if probability depds on depqh true
Partial function mutation factor 15
Function mutation probability 0.03
Function arguments mutation probability 0.03
Formula depth change probability 0.01
Recombination

Arguments recombination—usage probability 0.4
Arguments recombination—argument change probability 0.3
Function recombination—usage probability 0.4
Function recombination—function change probability 0.3
Return value recombination—usage probability 0.7
Return value recombination—function change probability 0.2
Population

Population size | 40
Reproduction

Tournament size during reproduction 5
Reproduction factor 0.8
Reinsertion

Tournament size during reinsertion | 3



Table 4. Optimal values of additional parameters for COEMAS

Parameter |Parameter value
Migration
Number of generation from which mutation is started 5
Mutation probability 0.05
Resources
Amount of resource required to reproduction 20.0
Amount of resource given back at migration 14.0
Minimal amount of agent’s resource to survive 10.0
Initial amount of environment resource 980.0
Percent of resource received from parents 20.0
Percent of resource which environment loses at reinsertion 100.0
Percent of resource taken back at ageing 3.0
Percent of population which receives energy 20.0
Exponent ofpowfunction at reinsertion 4.0
450
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Fig. 20. The influence of minimal amount of resource for individualsstirvive on results ob-
tained by CoEMAS (each point is the average of 10 values)
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Fig. 21.The influence of the percent of resource obtained by a citibd efcombination on results
obtained by COEMAS (each point is the average of 10 values)

In some cases, when changing values of parameters, no riggokinfluence on
efficiency changes was found. But there were some exceptions.

In Fig. 20 there is presented the influence of agent’s minnesdurce level on Co-
EMAS efficiency. In the beginning, with the growth of this parameter value of &i-
ciency slightly increases. But when resource amount excgedinits it systematically
decreases.

Fig. 21 presents the influence of the percent of resourcenaotdy a child after
recombination in COEMAS on itsfigciency. It indicates that giving a lot of resource
causes a decrease iffieiency of the algorithm. Whereas giving a small amount of
resource causes the increase of systeffisiency.

Fig. 22 presents dependency between the amount of resohicie wdividuals give
back to environment at migration stage and CoEMAS perfomaaAt the beginning
when the amount of resource which is given back groufsgiency grows too (best
individual achieved fithess about 430 units). Optimum isketua 14 units. Then, the
increase in returned resource causes performance decrease

Fig. 23 presents influence of migration probability on CoEMA&ficiency. Only
probability smaller than 0.15 causes high performance st individual achieved
fitness of about 400 units) ficiency decreases when probability is greater than 0.15.

4.3 Comparison of Algorithms

In EA and CCEA the size of populations during evolution isstant and is adjusted by
the parameter specified by the user. Admittedly, the pojounzize increases at recom-
bination step, but after reinsertion becomes again the sarbefore the recombination.



0 10 20 30 40 50 60 70 80
resource amount

Fig. 22.The influence of the amount of resource given back at migratiage on results obtained
by CoEMAS (each point is the average of 10 values)
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Fig. 23. The influence of the migration probability on results ob¢aifrboy COEMAS (each point
is the average of 10 values)



Different behavior can be observed in CoOEMAS—the size of thelptipn vary during
evolution.
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Fig. 24.Population size in COEMAS during evolution

Fig. 24 presents population size in COEMAS during evolufiozcess. It shows that
at the beginning initial population is small (about 47 iridivals) but after three steps it
becomes larger (up to 56 individuals). It is caused by theapmce of very good indi-
viduals in populations. They receive much resource fronirenment and create many
equally good individuals in reproduction stage. Becaugsegihantity of éfsprings is
greater than the quantity of dead individuals, the size pigetion increases. When the
ability of an algorithm to find better and better individudiminishes, the size of popu-
lation also decreases. When the algorithm no longer findsamemuch better solutions
(after about 100 generations) then, the population size doechange significantly.

Fig. 25 shows the average fithess (from 30 experiments) obés¢ individuals
for each generation. Presented results show that the aduy algorithm achieved
the best results. The co-evolutionary algorithm achievstightly worse results. The
quality of the solution generated by the COEMAS was closéab of the CCEA.

Fig. 26 presents the plot of the convergence. The conveegertbe phenomenon
of losing by the evolutionary algorithm the ability to seatbe solution spaces before
finding a solution which would be a global optimum. It is mastied by the occurrence
of the pairs composed of identical individuals in the pofala In the case of con-
vergence the evolutionary algorithm had the worst resuéisge convergence occurred
already at the beginning and from 200 generation it was imahge from 50% to 60%.
The co-evolutionary algorithm appeared to be much beti®EMAS had the smallest
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Fig. 25. Fitness of the best individuals (average values from 30raxgats)
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convergence. For the last two algorithms convergence dmmiysfrom the beginning,
but even in the end of the experiment it did not rise much.

Table 5. Comparison of fiiciency, work time and convergence of all three algorithms

Algorithm|On-line ef{Oft-line ef-{The best fittOn-line coniConvergengélgorithm
ficiency |[ficiency |ness in lagiergence |in last genfwork time
generation eration (m:s)
EA 229.888 |230.229 |238.369 [48.807 51.910 1:47.574
CCEA |213.069 |213.071 |(217.629 |19.145 27.147 1:50.213
CoEMAS|214.744 |238.741 |226.170 [8.851 14.785 9:29.872

Table 6. Generalization capabilities of the algorithms

Algorithm|No.  of|Profit (%) petProfit (%) per year faProfit (%) pefProfit (%) per year
stocks inyear  (stockgpuy & hold strategyyear (randorfor buy & hold strat-
the groupfrom the group)(stocks from the groupgtocks) egy (random stocks)
3 133.24 86.24 8.79 34.81

EA 5 89.15 28.85 1.8 33.62
7 68.32 21.43 13.74 23.72
10 87.57 24.29 20.81 26.07
3 115.63 46.12 3.29 21.07
5 64.82 8.83 7.39 31.36

CCEA 7 85.75 45.24 14.69 24.64
10 69.06 26.37 20.75 25.14
3 87.39 12.64 3.97 30.28
5 66.97 7.64 -1.93 20.72

COEMAS|; 86.93 39.48 19.01 34.47
10 46.67 18.67 24.6 24.98

Table 5 confirms results presented in the figures. The eweolaty algorithm had the
best éficiency and the worst results in the case of convergence gabéhe agent-based
co-evolutionary algorithm was always better than the ocalitdionary algorithm with
the exception of work time. The agent-based co-evolutipalgorithm had better &
line efficiency than the evolutionary algorithm because it founddgsalutions faster,
however, those solutions were not good enough for the @ndiiciency to be better.
Considering work times of all algorithms, both evolutiopand co-evolutionary algo-
rithms came & quite well. The co-evolutionary algorithm is somewhat veobgcause
it processes two populations. The agent-based co-evoaralgorithm has work time
six times longer than other algorithms. It is caused by theegsity of processing two
co-evolutionary algorithms in two threads (computatioesercarried out on a machine
with one processor). But the agent-based co-evolutiongorithm can be easily dis-
tributed because of the decentralized nature of agentdlzsaputations.



In Table 6 the results of experiments, which goal was to itigate the capability
of generalization of all compared algorithms are preserithd results show that while
generating a strategy, at least 7 stocks should be usedtshérstrategy could be used
on any stock and earn profits in any situation (see Table B)ett are more stocks used
during the strategy generation, the profit will be greatethin case of random stocks.
For random stocks, when there was 3 or 5 of them in the groepptbfits are varied
and unstable. For this reason it isftiult to compare implemented algorithms withy
and holdstrategy. It is not so, when the number of stocks in the gretpdr 10. In the
case of the random stocks, buy and hold strategy was alwdtes lfen average 2.67
times) than the strategies generated by all three evolayoalgorithms, but for the
stocks from the learning set generated strategies werey/allbetter (on average 1.45
times) than buy and hold strategy.

5 Summary and Conclusions

Generating investment strategies is generally very haothlpm because there exist
many assumptions, parameters, conditions and objectitiehvehould be taken into
consideration. In the case of such problems finding the ¢iolbatimal solution is
impossible in most cases and sub-optimal solution is uggaite suficient for the de-
cision maker. In such cases some (meta-)heuristic algositike biologically inspired
techniques and methods can be used. In this chapter thersf@mtgenerating invest-
ment strategies, which uses three types of evolutionayritifigns was presented. The
system can generate strategies with the use of “classiealtigonary algorithm, co-
evolutionary algorithm, and agent-based co-evolutiordggrithm. These algorithms
were verified and compared with the use of real-life data ogrfiom the WIG index.

The presented results show that evolutionary algorithmegetad the individual
(strategy) with the best fithess, the second was agent-fwasedolutionary algorithm,
and the third co-evolutionary algorithm. When the popolailiversity (convergence)
is taken into consideration, the results are quite oppaitebest was CoEMAS, the
second CCEA, and the worst results were reported in the dag&.oSuch obser-
vations generally confirm that co-evolutionary and agexseal co-evolutionary algo-
rithms maintain population diversity much better than Sciaal” evolutionary algo-
rithms. This can lead to stronger abilities of the populatio “escape” from the local
minima in the case of highly multi-modal problems. High plapion diversity is also
very desirable in the case of dynamic environments.

When we consider the generalization capabilities (profitggfrom 7 and 10 ran-
dom stocks during one year) of the strategies generatedhdthse of each evolution-
ary algorithm, the best results were obtained by COEMAS3%ilprofit on the average),
the second was CCEA (on the average 17.7%), and the wordtsresre obtained in
the case of EA (17.3% on the average). Implemented algosifinovide better results
than buy and hold strategy for stocks from the learning set/gorse results in the case
of the random stocks.

The future research could concentrate on additional vati€in of the proposed al-
gorithms, and on the implementation and testing of othesagutionary mechanisms—
especially in the case of the most promising technique: CAEMIso, the implemen-



tation of the distributed version of the agent-based allgoriis included in the future
plans.
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