
Classical and Agent-Based Evolutionary Algorithms for
Investment Strategies Generation

Rafał Dreżewski, Jan Sepielak, Leszek Siwik

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland

drezew@agh.edu.pl

Abstract. The complexity of generating investment strategies makes it hard (or
even impossible), in most cases, to use traditional techniques and to find the exact
solution. In this chapter the evolutionary system for generating investment strate-
gies is presented. The algorithms used in the system (evolutionary algorithm,
co-evolutionary algorithm, and agent-based co-evolutionary algorithm) are veri-
fied and compared on the basis of the results coming from experiments carried
out with the use of real-life stock data. The conclusions drawn from the results of
experiments are such that co-evolutionary and agent-basedco-evolutionary tech-
niques better maintain population diversity and generate more general strategies
than evolutionary algorithms.

1 Introduction

Investing on the stock market requires analyzing of the great number of possible strate-
gies (which securities should be chosen, when they should bebought and when sold).
The majority of the investment decisions are based on analyzing of present and his-
torical data since it allows for predicting future trends. The problem however is that
the anticipation of future trends depends on many assumptions, parameters and condi-
tions. Taking into consideration so many assumptions, combinations of parameters and
their values leads to the comparison of the great number of graphs. The evaluation of
parameters of many securities is difficult and time consuming for the investor and the
analysts. As a result, the investor or the analyst is able to analyze only the small subset
of all possible strategies, so the optimal investment strategy is usually not found [15].

The set of the strategies which consists of indicator function is infinite because
the complexity of the strategy can be unlimited. Formulas ofthe given strategy are
functions of hundreds (or thousands) of parameters. Complexity of the problem makes
it impossible to use direct search methods and instead of it aheuristic approach has to
be used. For instanceevolutionary algorithmscan be applied here.

Evolutionary algorithms are optimization and search techniques, which are based
on the Darwinian model of evolutionary processes [2]. One ofthe branches of evolu-
tionary algorithms areco-evolutionary algorithms[12]. The most important difference
between them is the way in which the fitness of the individual is evaluated. In the case
of evolutionary algorithms the fitness of the individual depends only on how “valu-
able” is the solution of the given problem encoded within itsgenotype. In the case of



co-evolutionary algorithms the fitness of the individual depends on the values of other
individuals’ fitness. The value of fitness is usually based onthe results of tournaments,
in which the given individual and some other individuals from the population are en-
gaged. Co-evolutionary algorithms are generally applicable in the cases in which it is
difficult or even impossible to formulate an explicit fitness function. Co-evolutionary
interactions between individuals have also other positiveeffects—for example main-
taining population diversity [6]. Population diversity isespecially important in the case
of multi-modal optimization problems, multi-objective optimization problems, and dy-
namic environments.

Agent-based (co-)evolutionary algorithms have been proposed as the result of re-
search on decentralized models of evolutionary computations. The basic idea of such an
approach is the realization of evolutionary processes within a multi-agent system, which
leads to very interesting class of systems: (co-)evolutionary multi-agent systems—
(Co)EMAS [5]. Such systems have some features which radically differ them from
“classical” evolutionary algorithms. The most important of them are the following:
synchronization constraints of the computations are relaxed because the evolutionary
processes are decentralized (individuals are agents), there exists the possibility of de-
veloping hybrid systems using many different soft-computing techniques within one
single, coherent agent architecture, and finally there is the possibility of introducing
new evolutionary and social mechanisms, which were hard or even impossible to in-
troduce in the case of classical evolutionary algorithms. (Co)EMAS systems have been
already applied to solving multi-modal and multi-objective optimization problems [7].
Another area of applications is the modeling and simulationof social and economical
phenomena.

In the case of financial and economical computations (and also financial and eco-
nomical modeling and simulation) we have to deal with dynamic environments and
competing or co-operating economical and social agents. Asit was said before, co-
evolutionary techniques help maintaining population diversity, and agent-based co-
evolutionary systems maintain the diversity even better. What is more, agent-based ap-
proach allows us to easily model social and economical agents and relations between
them.

In the chapter the component-based system for generating investment strategies
is presented. In the system three algorithms were implemented: “classical” evolution-
ary algorithm, co-evolutionary algorithm, and agent-based co-evolutionary algorithm.
These algorithms were assessed and compared during the series of experiments, which
results conclude the chapter.

2 Previous Research on Evolutionary Algorithms for Generating
Investment Strategies

During recent years there can be observed the growing interests in applying biologically
inspired algorithms to solving economic and financial problems [3, 4]. Below, only se-
lected applications of evolutionary algorithms in systemssupporting investment-related
decision making are presented. To the authors’ best knowledge, there were no attempts
to apply agent-based (co-)evolutionary algorithms in suchsystems.



S. K. Kassicieh, T. L. Paez and G. Vora used the genetic algorithm for supporting
the investment decisions making [10]. Their algorithm operated on historical stock data.
The tasks of the algorithm included selecting company to invest in. The time series of
the considered companies were given. In their system some logical operations were
carried out on the data. The genetic algorithm was used to determine, which logical
operators should be applied in a given situation.

O. V. Pictet, M. M. Dacorogna, R. D. Dave, B. Chopard, R. Schirru and M. Tomassini
([11]) presented the genetic algorithm for the automatic generation of trade models rep-
resented by financial indicators. Three algorithms were implemented: genetic algorithm
(it converged to local minima and revealed the poor capability of generalization), ge-
netic algorithm with fitness sharing technique developed byX. Yin and N. Germay
[16] (it explored the search space more effectively and revealed better abilities to find
diverse optima), and genetic algorithm with fitness sharingtechnique developed by au-
thors themselves in order to prevent the concentration of the individuals around “peaks”
of fitness function (it revealed the best capability of generalization). The proposed al-
gorithms selected parameters for indicators and combined them to create new, more
complex ones.

F. Allen and R. Karjalainen ([1]) used genetic algorithm forfinding trading rules
for S&P 500 index. Their algorithm was able to select the structures and parameters
for rules. Each rule was composed of a function organized into a tree and a returned
value (signal), which indicated whether stocks should be bought or sold at a given
price. Components of the rules were the following: functions operating on historical
data, numerical or logical constants, logical functions which allowed for combining
individual blocks in order to build more complicated rules.Function in the root always
returned logical value, which ensured the correctness of the strategy. Fitness measure
was based on excess return from the buy-and-hold strategy, however the return did not
take into consideration the transaction cost.

3 Evolutionary System for Generating Investment Strategies

In this section both: the architecture of the component-based system for generating in-
vestment strategies as well as three algorithms (evolutionary algorithm, co-evolutionary
algorithm, and agent-based co-evolutionary algorithm) used as computational compo-
nents are presented and discussed.

3.1 The Architecture of the System

In Fig. 1 there is presented the high-level architecture of the system. As one may see
the system consists of the following basic components:

– DataSource—this component supplies the data to the strategy generator. Historical
sessions’ stock data are used.

– Functions—it contains all classes, which are necessary for creating formulas of
strategies. It allows to carry out basic operations on formulas i.e.: initialization, ex-
change of single functions, adding new functions or removing existing ones. For-
mulas can be tested on data and, in such a case, the results will be returned.



EA

«subsystem»
Presentation

«subsystem»
DataSource

«subsystem»
Functions

«subsystem»
GenerationAlgorithms

«subsystem»
SystemTester

CoEMASCCEA

Fig. 1.The architecture of the system used in experiments

– SystemTester—this component allows for testing of proposed strategies.It is able
to prepare reports concerning the transactions and containing the information about
the gained profit. It is used by the generation algorithms to estimate the fitness.

– GenerationAlgorithms—it contains implementation of three algorithms responsible
for generating strategies: evolutionary algorithm (EA), co-evolutionary algorithm
(CCEA) and co-evolutionary multi-agent system (CoEMAS). This component in-
cludes the mutation and recombination operators as well as the fitness estimation
mechanisms. Implementation of this subsystem was divided into packages shown
in Fig. 2:
• algorithmpackage—it is the most general package containing classes,which

are the basis for implementation of other algorithms responsible for investment
strategy generation.

• EA package—it contains implementation of evolutionary algorithm.
• CCEApackage—it contains implementation of co-evolutionary algorithm.
• CoEMASpackage—it contains implementation of agent-based co-evolutionary

algorithm.
– Presentation—it contains definitions of GUI forms responsible for instance for re-

sults presentation, algorithm monitoring etc.

3.2 Data Representation

In all three algorithms implemented and discussed in the course of this chapter the strat-
egy is a pair of formulas. First formula indicates when one should enter the market and
the second indicates when one should exit the market. Each formula, which is a part of
strategy can be represented as a tree, which leaves and nodesare functions performing
some operations. Such tree has a root and any quantity of child nodes. The function
placed in the root always returns logical value. Fig. 3 showsthe tree of the formula,
which can be symbolically written in the following way:S T E(WillR(20),30)> 10.0.



EA CCEA CoEMAS

algorithm

strategies

Fig. 2. Package diagram for generation strategies algorithms

When treating this expression as entry formula, the system will generate “buy” sig-
nal when the value of Standard Error indicator (STE) from 30 days and for data from
Williams’ %R indicator for percentage period equal to 20, will be greater than 10.0.

Fig. 3. Tree of exemplary formula

A formula tree is represented in memory as a tree. The root node is an object con-
taining the references to the functions and the references to parameters. These param-
eters are also the same objects as the root. Leaves of the treeare objects which do not
contain parameters. When formula is executed recursive calls occur. In the beginning,
the root requires values of all parameters needed to invoke its function. Then the control
flows to objects of the parameters. Objects representing parameters behave in the same
way as the root object. Leaves do not contain parameters, so they can return the value
required by the parent node.

Functions (which formulas are composed of) were divided into four categories:

– Functions returning data arrays (see Table 1). There are 6 such functions.
– Mathematical functions (for exampleAbs—each value in the returned data array is

absolute value of corresponding element from the data arraypassed as an argument,
Cos—calculates cosine for values from the data array passed as an argument, etc.)
There are 40 such functions.

– Tool functions (for exampleProjBandBot—returns the data array with values of
the bottom Projection Band,STEBandBot—returns the data array with values of
the bottom Standard Error Band, etc.) There are 33 of them.



– Indicator functions (see Table 2). There are 14 of them.

There are 93 functions altogether.

Table 1.Data array functions

Function name Description

Close Returns close prices.
ConstArray Returns array of constant passed as argument.
High Returns high prices.
Low Returns low prices.
Open Returns open prices.
Volume Returns volumes.

Table 2. Indicator functions

Function name Description

AD Returns the data array with values of the Accumulation/Distribution in-
dicator.

ADX Returns the data array with values of Average Directional Movement
indicator.

BBandBot Returns the data array with values of the Bollinger Band Bottom indi-
cator.

BBandTop Returns the data array with values of the Bollinger Band Top indicator.
LinearReg Returns the data array with values of the Linear Regression indicator.
Mov Returns the data array with values of diverse moving averages.
ROC Returns the data array with values of the Rate of Change indicator.
RSI Returns the data array with values of the Relative Strength Index indi-

cator.
STE Returns the data array with values of the Standard Error indicator.
Stdev Returns the data array with values of the Standard Deviationindicator.
TSF Returns the data array with values of the Time Series Forecast indicator.
Var Returns the data array with values of the Variance indicator.
WillR Returns the data array with values of the Williams’ %R indicator.
Zig Returns the data array with values of the Zig Zag indicator.

Implemented functions accept the following types of parameters: constants (integer,
float or enum), array of constant float values, and values returned by other function
(array of logical values or array of float values). Logical constant does not exist because
it was not needed for building formulas.

Classes containing implementations of mentioned functions are presented in Fig. 4.
A FunctionBaseclass contains meta-data concerning all functions defined in descen-
dent classes. To those meta-data belong for instance feasible values of functions argu-
ments.SecurityDataclass contains session data of single stock. It supplies data to in-



dicator functions. It also accumulates errors from formulas runs (e.g. division by zero,
attempt of computing logarithm of negative value, etc.) andallows reporting them when
it is required. Other classes contain implementation of indicator functions belonging to
the categories mentioned earlier.

FunctionBase

MathFunctions

ToolsFunctions

Functions

DataArrayFunctions SecurityData

Fig. 4. Hierarchy of classes with functions used to build formulas

3.3 Evolutionary Algorithm (EA)

FormulaTree
� formula : Formula
� root : TreeNode
+ getFormula() : Formula
� createFormula()

2

IndividualEA

+ computeFitness(fitness : FitnessEA)
+ getFitness() : double
+ getProfit() : double
+ getAvgTradeLength() : double
+ getComplexity() : double

Fig. 5. Individual in EA and its genotype

In the evolutionary algorithm genetic programming approach was used. The geno-
type of individuals simultaneously contains formula for entering and exiting the market.
Class diagram presented in Fig. 5 shows that each individualhas (in its genotype) two
formula trees which represent formulas for entering and exiting the market. Method
computeFitnessis used to estimate fitness of an individual. When fitness is estimated



its value can be obtained bygetFitnessmethod. It is also possible to get all components
of fitness such as profit, average length of trades, and average complexity of formulas.
An object ofFormulaTreeclass contains root of tree and cached object of the formula,
which is created from the tree usingcreateFormulamethod.

Estimation of the fitness value of the strategies is carried out on the basis of loaded
historical data. Two tables of logical values are created asa result of execution of the for-
mulas. The first one relates to the purchase action (enteringthe market) and the second
one relates to the sale action (exiting the market). Algorithm responsible for computing
the profit processes tables and determines when a purchase and a sale occur. Entering
the market occurs when a system is outside the market and there is the value of “true”
in the enter table. Exiting the market occurs when the systemis on the market and there
is value of “false” in the exit table. In the other cases no operation is performed. When
applying this algorithm, the system cannot enter the marketonce more (before any sale
action takes place). In other words, after the sale—purchase action must take place, and
after buying—the sale action must occur. The profit/loss from the given transaction is
estimated when exiting the market and it is accumulated. Thecost of each transaction
is included—the commission is calculated by subtracting a certain constant from the
transaction value.

Apart from the profit/loss there are also other criteria, which are included in thefit-
ness estimation. The first one is the formula complexity—formulas which are too com-
plex can slow down the computations and increase the memory usage. The complexity
of the formulas is determined by summing up of all component functions. The second
criteria is the length of the transaction—it depends on the preference of the investor.

RecombinationThree kinds of recombination operators are used:returned valuere-
combination,argumentsrecombination, andfunction recombination.Returned value
recombination is performed when there are two functions with different arguments but
the same returned values within the formula tree. These functions are exchanged be-
tween individuals (functions are moved with their arguments).

Fig. 6.Parent 1 forreturned valuerecombination

Let us consider two formulas:

– Pro jBandBot(34)< LLV(Pro jBandBot(7),7) (see Fig. 6), and
– Pro jBandTop(7)> S T EBandBot(High(),7,7) (see Fig. 7),



Fig. 7.Parent 2 forreturned valuerecombination

Fig. 8. Descendant 1 afterreturned valuerecombination

wherePro jBandBotis function which calculates the bottom Projection Band indicator,
Pro jBandTopcalculates the top Projection Band indicator,LLV (Lowest Low Value)
is indicator, which calculates the lowest value in the data array over the preceding pe-
riod, andS T EBandBotcalculates the bottom Standard Error Band indicator. Functions
Pro jBandBotandS T EBandBothave different arguments, but the types of their return
values are the same (they both return double values). As a result two new formulas will
be created:

– Pro jBandBot(34)< S T EBandBot(High(),7,7) (see Fig. 8), and
– Pro jBandTop(7)> LLV(Pro jBandBot(7),7) (see Fig. 9).

Argumentsrecombination occurs when there are two functions with the same argu-
ments within the parents. These arguments are exchanged between individuals during
the recombination.

Let us consider two parents:

– BBandBot(Close(),10,Triangular,4.3) (see Fig. 10), and
– BBandTop(Open(),3,S imple,2.9) (see Fig. 11),

Fig. 9. Descendant 2 afterreturned valuerecombination



Fig. 10.Parent 1 forargumentsrecombination

Fig. 11.Parent 2 forargumentsrecombination

whereBBandBotandBBandTopcalculate respectively bottom and top Bollinger Band
indicator. FunctionsBBandBotand BBandTophave the same arguments. After ex-
changing these arguments two new descendants will be created:

– BBandBot(Open(),3,S imple,2.9) (see Fig. 12), and
– BBandTop(Close(),10,Triangular,4.3) (see Fig. 13).

Function recombination can take place when two functions have the same argu-
ments and the same returned values. Let us consider two parents from the previous ex-
ample. FunctionsBBandBot, BBandTop,CloseandOpenfulfill the assumption which
requires return values and parameters to be the same. As a result of applyingfunction
recombination two new individuals will be created:

– BBandTop(Open(),10,Triangular,4.3) (see Fig. 14), and
– BBandBot(Close(),3,S imple,2.9) (see Fig. 15).

Only one kind of recombination can be used to create an offspring. Probability of
recombination determines which kind of recombination is chosen. Each kind of recom-
bination has also a probability which controls carrying outparticular recombination. It
determines how often particular elements of formulas are exchanged between parents.

Fig. 12.Descendant 1 afterargumentsrecombination



Fig. 13.Descendant 2 afterargumentsrecombination

Fig. 14.Descendant 1 afterfunctionrecombination

Parameterreproduction factordetermines how many offsprings are generated. The size
of population is multiplied by this coefficient. The outcome defines the number of off-
springs to be created.

During the recombination stage, in the first place, type of recombination is chosen
usingRecombinationArrayclass. Next, parents are chosen using a tournament selec-
tion. When two parents are selected, a certain type of recombination is performed in
accordance with, previously determined, type of recombination. Sequence diagram for
single recombination is presented in Fig. 16.

Mutation Two types of mutation were used:function argumentsmutation andfunc-
tion mutation. Infunction argumentmutation the argument of the function must be
a constant value. This constant value is exchanged with the other one coming from
the allowed range. For instance, having a functionAdd(1,2) operator can modify it to
Add(5,2).

There are three variants of thefunctionmutation:

1. If a given function should be mutated, a list of the functions taking the same argu-
ments is found. If such functions exist, the exchange is performed. If there are no

Fig. 15.Descendant 2 afterfunctionrecombination



pop : Population cArray : RecombinationArray r : IRecombination

1: getRecombination()

2: tournament()

3: tournament()

4: recombineIndividuals()

5: recombine()

Fig. 16.Carrying out a single recombination

such functions, mutation is not carried out. For instanceAnd(a,b) can be changed
to Or(a,b). It was named as function mutation.

2. A given function can be exchanged with the other, completely new one, regardless
of arguments—only returned types must match. Arguments of such function are
created randomly. For instance:

– BBandTop(Month(),13,E,4.714)—before mutation,
– BBandTop(HHV(Close(),3),13,E,4.714)—after mutation.

Month function returns day of the month, from which data came from,andHHV
function calculates the highest value in the data array overthe preceding period.
Function Month was exchanged forHHV, and its arguments were created ran-
domly. It was named as the entire function mutation.

3. Similarly as in (2), but, if it is possible, parameters of the replaced function are
copied to a new one. For instance, there isMod(Low(),AD())—before mutation,
and S T E(Low(),14)—after mutation.Mod function (which calculates modulus)
was exchanged forS T Efunction and parameterLow was moved. Second parame-
ter had to be created randomly, becauseS T Efunction requires integer constant as
an argument. It was named as the partial function mutation.

Probability of mutation depends on the depth in the formula tree. If it is closer to
leaves the mutation probability is greater. Thanks to this,there is a greater chance that
the mutation will cause small changes in the genotype.

Many kinds of mutations could be performed on the same part offormula. Mutation
factors are used while calculating mutation probability. These coefficients let the user
specify how mutation likelihood changes when depth in formula of the mutated element
changes. If such coefficient is greater than 1, then the greater depth causes the greater



3: handleInvoker()

4: performConstParamMutation()

5: performFunctMutation()

6: performEntireFunctMutation()

7: performPartialFunctMutation()

pop : Population mutation : Mutation formula : Formula

2: iterateOnFormula()
1: mutate()

Fig. 17.Carrying out mutation of single formula element

mutation probability. But if coefficient is in the [0,1] range then the greater depth causes
the smaller mutation probability.

Fig. 17 shows mutation sequence of single formula element.Mutatemethod from
Mutationclass is carried out on genotype of an individual. Next, iteration on functions
of genotype is performed.HandleInvokermethod is invoked on each function of geno-
type. Particular mutations are performed with probabilityspecified by the user.

SelectionThe tournament selection ([2]) was used in the EA algorithm.In the tourna-
ment selection a group ofN individuals (N ≥ 2) is selected. The individual which has
the highest fitness is chosen from the group.

After creating the offspring, it was added to the population of parents (the reinsertion
mechanism). From such enlarged population the new base population was chosen also
with the use of tournament mechanism.

Algorithm 1 shows the scheme of evolutionary algorithm. At the beginning the pop-
ulation is created randomly and evaluated. Next, reproduction, recombination and mu-
tation are performed in each generation. When the individuals are created their fitness
value is estimated. Afterwards, new population is selectedapplying tournament reinser-
tion on parent and children individuals.



Algorithm 1 . Scheme of evolutionary algorithm (EA)

gen← 0;1

random initialization of populationPop(gen);2

evaluatePop(gen);3

while not stop conditiondo4

Pop1(gen)← reproductionPop(gen);5

Pop2(gen)← recombinationPop1(gen);6

Pop3(gen)←mutationPop2(gen);7

evaluatePop3(gen);8

Pop(gen+1)← reinsertion (Pop3(gen)∪Pop(gen));9

gen← gen+1;10

end11

3.4 Co-Evolutionary Algorithm (CCEA)

Co-evolution is a process of mutual adaptation of a set of individuals which interact
with each other [8]. When an individual becomes better adapted, other individuals also
have the opportunity to improve their fitness.

All of evolutionary and co-evolutionary algorithms consist in searching of the popu-
lation of solutions in accordance with the concept of natural selection. Co-evolutionary
algorithms however, differ from ordinary evolutionary algorithms. Individual may in-
teract with other individuals. Partners of interactions may be members of the same pop-
ulation, or may belong to different populations, depending on the nature of the problem
being solved.

Many real problems are difficult to solve using standard evolutionary techniques.
However, such problems can be decomposed into many sub-problems, and finding their
solutions will result in solving an initial problem.Co-operative co-evolutionis designed
to solve the problemX through co-evolving the sets of solutions of sub-problems,for
whichX was decomposed into [8].

While developing the co-evolutionary algorithm for generating investment strate-
gies, co-operative approach proposed by M. A. Potter and K. A. De Jong ([14]) was
used. There are two species in the implemented algorithm: individuals representing en-
tering the market strategies and individuals representingexiting the market strategies.
Interactions between these species rely on co-operation.

Class diagram presented in Fig. 18 shows that each individual has in its genotype
one formula tree representing the formula for entering or exiting the market depend-
ing on population to which the individual belongs. To estimate the fitness, formula is
obtained usinggetFormulamethod and passed to an object ofFitnessCCEAclass. In
setFitnessmethod—fitness value and its elements are taken from theFitnessCCEAob-
ject. Likewise in EA fitness and its component can be obtainedby proper methods.

During the fitness estimation process individuals are selected into pairs, which form
the complete solution. In the first generation, for each evaluated individual from the
first species a partner for co-operation from the second species is chosen randomly. For
the complete solution created in this way, the fitness is computed and assigned to the
individual that is being evaluated.



1

IndividualCCEA

+ setFitness(fitness : FitnessCCEA)
+ getFitness() : double
+ getProfit() : double
+ getAvgTradeLength() : double
+ getComplexity() : double
+ getFormula() : FormulaTree

FormulaTree
" formula : Formula
" root : TreeNode
+ getFormula() : Formula
" createFormula()

Fig. 18. Individual in CCEA and its genotype

In the next generations, the best individual from the opposite species and from the
previous generation is chosen for the evaluated individual. For instance, if second gen-
eration has finished then at the beginning of third generation reproduction starts. After
recombination and mutation new individuals are created andthen they can be evaluated.
To do this the best individual from the second generation of exit the market population
is retrieved. Then pairs of previously selected individualand each individual from third
generation from enter the market population are created. Fitnesses from such formed
pairs are assigned to individuals which came from enter the market population. In the
similar manner fitnesses of individuals from the second population are established. The
best individual from second generation of enter the market population is selected. Pairs
composed of this individual and each individual from exit the market population (from
third generation) are created. Estimated fitnesses are assigned to individuals from exit
the market population.

Algorithm 2 shows the scheme of co-evolutionary algorithm.At the beginning pop-
ulations of two species are created randomly and fitness of each individual is estimated.
Next, reproduction, recombination and mutation are applied on both species in each it-
eration. When offspring individuals are created, fitness estimation occurs.Both species
interact at the stage of fitness computing . After that, reinsertion is performed and single
step of CCEA is finished. The pairs of individuals gaining thebest profit are the result
of the algorithm run.

3.5 Co-Evolutionary Multi-Agent System (CoEMAS)

Co-evolutionary multi-agent system used in the experiments is the agent-based real-
ization of the co-evolutionary algorithm. Its general principles of functioning are in
accordance with the general model of co-evolution in multi-agent system [5]. The Co-
EMAS system is composed of the environment (which include computational nodes—
islands—connected with paths) and agents, which can migrate within the environment.
The selection mechanism is based on the resources, which aredefined in the system.
The general rule is such, that in the each time step the environment gives more resources
to “better” agents and less resources to “worse” agents. Theagents use the resources
to perform each activity, like migration, reproduction, and so on. Each time step (the
agents can live more than one generation), individuals losesome constant amount of
the possessed resources, which is given back to the environment. The agents make all



Algorithm 2 . Scheme of co-evolutionary algorithm (CCEA) [13]

gen← 0;1

foreach species sdo2

random initialization of populationPops(gen);3

evaluatePops(gen);4

end5

while not stop conditiondo6

foreach species sdo7

Pop1
s(gen)← reproductionPops(gen);8

Pop2
s(gen)← recombinationPop1

s(gen);9

Pop3
s(gen)←mutationPop2

s(gen);10

evaluatePop3
s(gen);11

Pops(gen+1)← reinsertion (Pop3
s(gen)∪Pops(gen));12

end13

gen← gen+1;14

end15

their decisions independently—especially those concerning reproduction and migra-
tion. They can also communicate with each other and observe the environment.

In the CoEMAS algorithm realized in the system for generating investment strate-
gies each co-evolutionary algorithm (CCEA) is an agent which is located on one of
the islands and independently carries out the computations. The population of each
co-evolutionary algorithm also consists of the agents (there are two species of agents
within each population, like in the case of CCEA).

Genetic operators and fitness estimation mechanism are the same as in the case
of previously described algorithms. Selection mechanism is different—it works on the
basis of resources (the agent possessing the greater amountof resource wins the tour-
nament).

On the basis of the amount of the possessed resource each individual decides whether
it is ready for the reproduction. It occurs when the level of resource is greater or equal
to r rep,γ

min (see Algorithm 3). Parents are chosen using a tournament. Atthe mutation
stage the amount of resource does not change. During the recombination parents give
the offspring certain amount of their resources.

The tournament during the reinsertion phase is also based onthe resources—the
agent that possesses more resource wins the tournament. At the reinsertion stage better
individuals receive more resource from the environment andthe worse ones receive
less. If the agent possesses less resource thanrγdie, it dies.

The possibility of migration of agent-individuals from onepopulation to another
was added as well. During the migration the resource possessed by the given agent is
reduced by a constant amount.

The reproduction factorparameter in CoEMAS determines only the maximum
number of offsprings to be created. Practically, the amount of created individuals is
smaller and depends on how many individuals have enough resource to reproduce. If it
turns out that there are no such individuals any more, reproduction will be stopped.



Algorithm 3 . Basic activities of agenta in CoEMAS

input : index i of profile to perform

switch profile pri ∈ PRa do ; /* PRa is the set of profiles of agent a */1

2

caseinitialization profile3

rγ ← rγinit ; /* rγ is the amount of resource γ possessed by the4

agent a, rγinit is the initial amount of resource given to the

agent */

caseresource profile5

get from the environment some resource correspondingly to fitness;6

if rγ ≤ rγdie∨ t− tcreate≥ tmaxagethen ; /* rγdie is the minimal amount of7

resource needed by the agent to live, t is number of
generation, tcreate is number of generation in which agent was

created, and tmaxage is maximum number of generations through

which agent can live */

8

execute〈die〉 strategy;9

end10

casereproduction profile11

if rγ > r rep,γ
min then ; /* r rep,γ

min is the minimal amount of resource12

needed for reproduction */

13

execute〈seek〉 strategy; /* find second agent to reproduce with14

*/

execute〈recombination〉 strategy;15

execute〈mutation〉 strategy;16

end17

casemigration profile18

if rγ > rmig,γ
min then ; /* rmig,γ

min is the minimal amount of resource19

needed for migration */

20

execute〈migration〉 strategy;21

give rmig,γ
min amount of resource to the environment;22

end23

end24

end25



Individuals die when they possess too few resources. However, this approach is
insufficient because after a few generations there will be many individuals in population
which vegetate (do nothing and do not give back resource to environment) and therefore
their existence is useless. For that reason, when individuals pass to new generation they
give back a certain percent of resource to environment.

The number of individuals in population depends on the amount of resource in
environment, however, the initial size of population is specified by the user. If the envi-
ronment has more resource, then more individuals can exist.If there is a small amount
of resource and many individuals receive it, then many individuals will have too few
resources and will be killed at the reinsertion stage.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

fitness

re
so

ur
ce

(a)

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

fitness

re
so

ur
ce

(b)

Fig. 19.Allocation of resource at initialization stage (a), and in consecutive generations (b)

Each population lives in a certain environment (island). The environment possesses
a specified amount of resource which circulates between the environment and agents.
The resource of population can change only through migration (individuals which mi-
grate take resource to the other population). The amount of resource in the system is
constant because the sum of resource in all populations and in the environment does not
change. In the first stage resource is allocated proportionally to the fitness: the greater
fitness the greater amount of resource. The entire population receives resource unless
there exist individuals whose fitness is not positive. Fig. 19a shows the manner of re-
source allocation at the initialization stage.

In the consecutive generations—in order to increase selection pressure—only the
part of population receives resource. Resource is not allocated proportionally to the
fitness value. The fitness value is raised to the power specified by the user and the
resource is allocated on the basis of such modified fitness. The manner of resource
allocation after initialization is shown in Fig. 19b.



4 The Experiments

In order to examine the generalization capabilities of the system and compare the pro-
posed algorithms, strategies which earn the largest profit per year for random stocks
were sought. An attempt was made to determine, which algorithm generalizes in a best
way and what quantity of stocks should be used for strategiesgeneration so that the
system would not overfit. It is also interesting to assess which algorithm generates the
best strategies and has the smallest convergence.

4.1 Plan of the Experiments

The presented results of the experiments comparing the quality of the generated strate-
gies and convergence properties of the considered algorithms are average values from
30 runs of the algorithms. Each algorithm was run for 500 generations on the data of
10 randomly chosen stocks. The session stock data came from the WIG index ([9]) and
the period of 5 years was chosen (from 2001-09-29 to 2006-09-29). The size of the
population in all the algorithms was equal to about 40 individuals (CoEMAS approach
uses variable-size populations).

All experiments were made with the use of optimal values of the parameters. These
values were found during consecutive experiments. The algorithms were run 10 times
for each parameter value coming from the established range and average results were
computed—on this basis the set of best parameters’ values were chosen.

While comparing all algorithms three approaches were used:

– on-line efficiency: 1
T

∑T
t=1 f (t), whereT is the number of generations algorithm

worked through, andf (t) is fitness of the best individual in generationt.
– off-line efficiency: 1

T

∑T
t=1 f ∗(t), wheref ∗(t) =max{ f (1), f (2), . . . , f (t)}

– the best value in last generation: maxi=1,...,N fi (T), N is the number of individuals in
the last generation, andfi is fitness ofi-th individual.

While examining the generalization capabilities, each algorithm generated the so-
lution for n random stocks (stage 1). Next, differentn stocks were chosen ten times at
random and the profit was calculated using the best strategy obtained in the stage 1.
Then, the average of these profits was counted. These calculations were carried out four
times forn= 3,5,7,10.

Like in the first type of experiments (when the quality of the solutions and the
convergence properties were compared), populations had similar sizes in the case of
all three algorithms. All experiments were carried out on the machine with one AMD
Sempron 2600+ processor.

4.2 Parameters’ Values Selection

Table 3 and Table 4 show optimal parameters’ values, which were determined using
back to back experiments. Table 3 concerns all three algorithms. All algorithms have
the same values of these parameters. Table 4 concerns only CoEMAS algorithm. Pa-
rameters in this table refer to migration and resources which occur only in CoEMAS.



Table 3.Optimal values of parameters for all three algorithms

Parameter Parameter value

Fitness function
Price for entering the market Open
Price for exiting the market Close
Entry commissions 0.0
Exit commissions 1.0
Kind of got commissions Points ($)
Transaction length weight 0.1
Profit weight 1.0
Formula complexity weight 0.2
Initialization
Initial formula depth 4
Mutation
Entire function mutation probability 0.3
Entire function mutation—if probability depends on depth true
Entire function mutation factor 2.0
Partial function mutation probability 0.1
Partial function mutation probability—if probability depends on depth true
Partial function mutation factor 1.5
Function mutation probability 0.03
Function arguments mutation probability 0.03
Formula depth change probability 0.01
Recombination
Arguments recombination—usage probability 0.4
Arguments recombination—argument change probability 0.3
Function recombination—usage probability 0.4
Function recombination—function change probability 0.3
Return value recombination—usage probability 0.7
Return value recombination—function change probability 0.2
Population
Population size 40
Reproduction
Tournament size during reproduction 5
Reproduction factor 0.8
Reinsertion
Tournament size during reinsertion 3



Table 4.Optimal values of additional parameters for CoEMAS

Parameter Parameter value

Migration
Number of generation from which mutation is started 5
Mutation probability 0.05
Resources
Amount of resource required to reproduction 20.0
Amount of resource given back at migration 14.0
Minimal amount of agent’s resource to survive 10.0
Initial amount of environment resource 980.0
Percent of resource received from parents 20.0
Percent of resource which environment loses at reinsertion 100.0
Percent of resource taken back at ageing 3.0
Percent of population which receives energy 20.0
Exponent ofpow function at reinsertion 4.0

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

resource amount

fit
ne

ss

Min. resource to survive

Fig. 20. The influence of minimal amount of resource for individuals to survive on results ob-
tained by CoEMAS (each point is the average of 10 values)



0 10 20 30 40 50 60 70 80
200

250

300

350

400

450

resource percent

fit
ne

ss

Resource percent obtained by child

Fig. 21.The influence of the percent of resource obtained by a child after recombination on results
obtained by CoEMAS (each point is the average of 10 values)

In some cases, when changing values of parameters, no regularity of influence on
efficiency changes was found. But there were some exceptions.

In Fig. 20 there is presented the influence of agent’s minimalresource level on Co-
EMAS efficiency. In the beginning, with the growth of this parameter the value of effi-
ciency slightly increases. But when resource amount exceeds 10 units it systematically
decreases.

Fig. 21 presents the influence of the percent of resource obtained by a child after
recombination in CoEMAS on its efficiency. It indicates that giving a lot of resource
causes a decrease in efficiency of the algorithm. Whereas giving a small amount of
resource causes the increase of system’s efficiency.

Fig. 22 presents dependency between the amount of resource which individuals give
back to environment at migration stage and CoEMAS performance. At the beginning
when the amount of resource which is given back grows, efficiency grows too (best
individual achieved fitness about 430 units). Optimum is at about 14 units. Then, the
increase in returned resource causes performance decrease.

Fig. 23 presents influence of migration probability on CoEMAS efficiency. Only
probability smaller than 0.15 causes high performance (thebest individual achieved
fitness of about 400 units). Efficiency decreases when probability is greater than 0.15.

4.3 Comparison of Algorithms

In EA and CCEA the size of populations during evolution is constant and is adjusted by
the parameter specified by the user. Admittedly, the population size increases at recom-
bination step, but after reinsertion becomes again the sameas before the recombination.



0 10 20 30 40 50 60 70 80
320

340

360

380

400

420

440

resource amount

fit
ne

ss

Fig. 22.The influence of the amount of resource given back at migration stage on results obtained
by CoEMAS (each point is the average of 10 values)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
−50

0

50

100

150

200

250

300

350

400

450

migration probability

fit
ne

ss

Fig. 23.The influence of the migration probability on results obtained by CoEMAS (each point
is the average of 10 values)



Different behavior can be observed in CoEMAS—the size of the population vary during
evolution.

0 50 100 150 200 250 300 350 400 450 500
44

46

48

50

52

54

56

generation no.

po
pu

la
tio

n 
si

ze

Fig. 24.Population size in CoEMAS during evolution

Fig. 24 presents population size in CoEMAS during evolutionprocess. It shows that
at the beginning initial population is small (about 47 individuals) but after three steps it
becomes larger (up to 56 individuals). It is caused by the appearance of very good indi-
viduals in populations. They receive much resource from environment and create many
equally good individuals in reproduction stage. Because the quantity of offsprings is
greater than the quantity of dead individuals, the size of population increases. When the
ability of an algorithm to find better and better individualsdiminishes, the size of popu-
lation also decreases. When the algorithm no longer finds newand much better solutions
(after about 100 generations) then, the population size does not change significantly.

Fig. 25 shows the average fitness (from 30 experiments) of thebest individuals
for each generation. Presented results show that the evolutionary algorithm achieved
the best results. The co-evolutionary algorithm achieved aslightly worse results. The
quality of the solution generated by the CoEMAS was close to that of the CCEA.

Fig. 26 presents the plot of the convergence. The convergence is the phenomenon
of losing by the evolutionary algorithm the ability to search the solution spaces before
finding a solution which would be a global optimum. It is manifested by the occurrence
of the pairs composed of identical individuals in the population. In the case of con-
vergence the evolutionary algorithm had the worst results.Large convergence occurred
already at the beginning and from 200 generation it was in therange from 50% to 60%.
The co-evolutionary algorithm appeared to be much better. CoEMAS had the smallest



0 100 200 300 400 500 600
120

140

160

180

200

220

240

generation no.

fit
ne

ss

EA

CCEA

CoEMAS

Fig. 25.Fitness of the best individuals (average values from 30 experiments)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

generation no.

co
nv

er
ge

nc
e

EA

CCEA

CoEMAS

Fig. 26.Convergence values for three compared algorithms (averagefrom 30 experiments)



convergence. For the last two algorithms convergence grew slowly from the beginning,
but even in the end of the experiment it did not rise much.

Table 5.Comparison of efficiency, work time and convergence of all three algorithms

Algorithm On-line ef-
ficiency

Off-line ef-
ficiency

The best fit-
ness in last
generation

On-line con-
vergence

Convergence
in last gen-
eration

Algorithm
work time
(m:s)

EA 229.888 230.229 238.369 48.807 51.910 1:47.574
CCEA 213.069 213.071 217.629 19.145 27.147 1:50.213
CoEMAS 214.744 238.741 226.170 8.851 14.785 9:29.872

Table 6.Generalization capabilities of the algorithms

Algorithm No. of
stocks in
the group

Profit (%) per
year (stocks
from the group)

Profit (%) per year for
buy & hold strategy
(stocks from the group)

Profit (%) per
year (random
stocks)

Profit (%) per year
for buy & hold strat-
egy (random stocks)

EA

3 133.24 86.24 8.79 34.81
5 89.15 28.85 1.8 33.62
7 68.32 21.43 13.74 23.72
10 87.57 24.29 20.81 26.07

CCEA

3 115.63 46.12 3.29 21.07
5 64.82 8.83 7.39 31.36
7 85.75 45.24 14.69 24.64
10 69.06 26.37 20.75 25.14

CoEMAS

3 87.39 12.64 3.97 30.28
5 66.97 7.64 -1.93 20.72
7 86.93 39.48 19.01 34.47
10 46.67 18.67 24.6 24.98

Table 5 confirms results presented in the figures. The evolutionary algorithm had the
best efficiency and the worst results in the case of convergence, whereas the agent-based
co-evolutionary algorithm was always better than the co-evolutionary algorithm with
the exception of work time. The agent-based co-evolutionary algorithm had better off-
line efficiency than the evolutionary algorithm because it found good solutions faster,
however, those solutions were not good enough for the on-line efficiency to be better.
Considering work times of all algorithms, both evolutionary and co-evolutionary algo-
rithms came off quite well. The co-evolutionary algorithm is somewhat worse because
it processes two populations. The agent-based co-evolutionary algorithm has work time
six times longer than other algorithms. It is caused by the necessity of processing two
co-evolutionary algorithms in two threads (computations were carried out on a machine
with one processor). But the agent-based co-evolutionary algorithm can be easily dis-
tributed because of the decentralized nature of agent-based computations.



In Table 6 the results of experiments, which goal was to investigate the capability
of generalization of all compared algorithms are presented. The results show that while
generating a strategy, at least 7 stocks should be used, so that the strategy could be used
on any stock and earn profits in any situation (see Table 6). Ifthere are more stocks used
during the strategy generation, the profit will be greater inthe case of random stocks.
For random stocks, when there was 3 or 5 of them in the group, the profits are varied
and unstable. For this reason it is difficult to compare implemented algorithms withbuy
and holdstrategy. It is not so, when the number of stocks in the group is 7 or 10. In the
case of the random stocks, buy and hold strategy was always better (on average 2.67
times) than the strategies generated by all three evolutionary algorithms, but for the
stocks from the learning set generated strategies were always better (on average 1.45
times) than buy and hold strategy.

5 Summary and Conclusions

Generating investment strategies is generally very hard problem because there exist
many assumptions, parameters, conditions and objectives which should be taken into
consideration. In the case of such problems finding the globally optimal solution is
impossible in most cases and sub-optimal solution is usually quite sufficient for the de-
cision maker. In such cases some (meta-)heuristic algorithms like biologically inspired
techniques and methods can be used. In this chapter the system for generating invest-
ment strategies, which uses three types of evolutionary algorithms was presented. The
system can generate strategies with the use of “classical” evolutionary algorithm, co-
evolutionary algorithm, and agent-based co-evolutionaryalgorithm. These algorithms
were verified and compared with the use of real-life data coming from the WIG index.

The presented results show that evolutionary algorithm generated the individual
(strategy) with the best fitness, the second was agent-basedco-evolutionary algorithm,
and the third co-evolutionary algorithm. When the population diversity (convergence)
is taken into consideration, the results are quite opposite: the best was CoEMAS, the
second CCEA, and the worst results were reported in the case of EA. Such obser-
vations generally confirm that co-evolutionary and agent-based co-evolutionary algo-
rithms maintain population diversity much better than “classical” evolutionary algo-
rithms. This can lead to stronger abilities of the population to “escape” from the local
minima in the case of highly multi-modal problems. High population diversity is also
very desirable in the case of dynamic environments.

When we consider the generalization capabilities (profit gained from 7 and 10 ran-
dom stocks during one year) of the strategies generated withthe use of each evolution-
ary algorithm, the best results were obtained by CoEMAS (21.8% profit on the average),
the second was CCEA (on the average 17.7%), and the worst results were obtained in
the case of EA (17.3% on the average). Implemented algorithms provide better results
than buy and hold strategy for stocks from the learning set and worse results in the case
of the random stocks.

The future research could concentrate on additional verification of the proposed al-
gorithms, and on the implementation and testing of other co-evolutionarymechanisms—
especially in the case of the most promising technique: CoEMAS. Also, the implemen-



tation of the distributed version of the agent-based algorithm is included in the future
plans.

References

1. F. Allen and R. Karjalainen. Using genetic algorithms to find technical trading rules.Journal
of Financial Economics, 51(2):245–271, 1999.

2. T. Bäck, D. Fogel, and Z. Michalewicz, editors.Handbook of Evolutionary Computation.
IOP Publishing and Oxford University Press, 1997.

3. A. Brabazon and M. O’Neill.Biologically Inspired Algorithms for Financial Modelling.
Springer-Verlag, 2006.

4. A. Brabazon and M. O’Neill, editors.Natural Computation in Computational Finance.
Springer-Verlag, Berlin, Heidelberg, 2008.

5. R. Dreżewski. A model of co-evolution in multi-agent system. In V. Mar̆ı́k, J. Müller, and
M. Pĕchouček, editors,Multi-Agent Systems and Applications III, volume 2691 ofLNCS,
pages 314–323, Berlin, Heidelberg, 2003. Springer-Verlag.

6. R. Dreżewski and L. Siwik. Techniques for maintaining population diversity in classical and
agent-based multi-objective evolutionary algorithms. InY. Shi, G. D. van Albada, J. Don-
garra, and P. M. A. Sloot, editors,Computational Science – ICCS 2007, volume 4488 of
LNCS, pages 904–911, Berlin, Heidelberg, 2007. Springer-Verlag.

7. R. Dreżewski and L. Siwik. Co-evolutionary multi-agentsystem for portfolio optimization.
In Brabazon and O’Neill [4], pages 271–299.

8. S. G. Ficici.Solution concepts in coevolutionary algorithms. PhD thesis, Brandeis Univer-
sity, Waltham, MA, USA, 2004.

9. Historical stock data. http://www.parkiet.com/dane/daneatxt.jsp.
10. S. K. Kassicieh, T. L. Paez, and G. Vora. Investment decisions using genetic algorithms.

In Proceedings of the 30th Hawaii International Conference onSystem Sciences, volume 5.
IEEE Computer Society, 1997.

11. O. V. Pictet, et al. Genetic algorithms with collective sharing for robust optimization in
financial applications. Technical Report OVP.1995-02-06,Olsen & Associates, 1995.

12. J. Paredis. Coevolutionary algorithms. In T. Bäck, D. Fogel, and Z. Michalewicz, editors,
Handbook of Evolutionary Computation, 1st supplement. IOP Publishing and Oxford Uni-
versity Press, 1998.

13. M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to function opti-
mization. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors,Parallel Problem Solving
from Nature — PPSN III, volume 866 ofLNCS, pages 249–257, Berlin, 1994. Springer-
Verlag.

14. M. A. Potter and K. A. De Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents.Evolutionary Computation, 8(1):1–29, 2000.

15. L. M. Tertitski and A. G. Goder. Method and system for visual analysis of investment strate-
gies, December 2002. US Patent 6493681.

16. X. Yin. A fast genetic algorithm with sharing scheme using cluster analysis methods in
multimodal function optimization. In S. Forrest, editor,Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan Kaufman, 1993.


