
Co-operative Co-Evolutionary Approach to
Multi-Objective Optimization

Rafał Dreżewski, Krystian Obrocki

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland

drezew@agh.edu.pl

Abstract. Co-evolutionary algorithms are evolutionary algorithms in which the
given individual’s fitness value estimation is made on the basis of interactions
of this individual with other individuals present in the population. In this paper
agent-based versions of co-operative co-evolutionary algorithms are presented
and evaluated with the use of standard multi-objective test functions. The results
of experiments are used to compare proposed agent-based co-evolutionary algo-
rithms with state-of-the-art multi-objective evolutionary algorithms: SPEA2 and
NSGA-II.

1 Introduction

Co-evolutionary algorithms [9] are particular branch of the evolutionary algorithms—
robust and effective techniques for finding approximate solutions of global and multi-
modal optimization problems. Co-evolutionary algorithms allow for solving problems
for which it is impossible to formulate explicit fitness function because of their specific
property—the fitness of the given individual is estimated on the basis of its interactions
with other individuals existing in the population. The form of these interactions—co-
operative or competitive—serves as the basic way of classifying co-evolutionary algo-
rithms. Co-evolutionary interactions also promote the population diversity and intro-
duce “arms races” among species (in the case of competitive interactions).

Many real-life decision making and optimization problems are multi-objective in
nature. Usually we have to deal with many criteria, and making better the value of one
of them usually means that other criteria values are worsening. There are quite many
techniques of solving multi-objective problems. One of them is Pareto approach, in
which we are interested in the whole set of so called “Pareto optimal” solutions (for-
mal definition of multi-objective optimization problems, Pareto optimality, domination
relation, and other basic notions, may be found for example in [2]). Evolutionary al-
gorithms are techniques, which were recently applied with great success to solving
multi-objective optimization problems—especially with the use of Pareto approach [2].

One of the problems which may occur during solving multi-objective problems with
the use of evolutionary algorithms is the loss of population diversity. It is quite harmful
in this case because the Pareto frontier would not be located properly—the algorithm
(the population) would only locate selected parts of the frontier and in the case of multi-
modal multi-objective problems (when many local Pareto frontiers exist [2]) there exists



the risk of locating local Pareto frontier instead of a global one. Co-evolution is one of
the mechanisms that can be used in order to reduce the negative impact of the loss of
population diversity.

The idea of integration of the multi-objective evolutionary algorithm and the co-
operative co-evolutionary algorithm was proposed for the first time in [8]. The algorithm
was verified with the use of standard multi-objective test problems. The experiments
showed that the application of co-operative co-evolution leads to better results when
compared to “classical” evolutionary approaches. Because of the principles of func-
tioning of the co-operative co-evolutionary algorithm—multiple populations, which in-
teract only during the fitness estimation—it is quite easy to implement its distributed
version. First such attempt was made in distributed co-operative co-evolutionary algo-
rithm (DCCEA) [10].

Agent-based evolutionary algorithms are a result of merging evolutionary computa-
tions and multi-agent systems paradigms. In fact two approaches to constructing agent-
based evolutionary algorithms are possible. In the first one the multi-agent layer of
the system serves as a “manager” for decentralized evolutionary computations. In the
second approach individuals are agents, which “live” within the environment, evolve,
compete for resources, and make independently all decisions (for example see [5]). Of
course, all kinds of hybrid approaches are also possible.

In the case of first approach each agent holds inside its own sub-population of indi-
viduals and evolves them. Each agent also manages the computations, in such a way that
it tries to minimize the communication delays, search for computational nodes which
are not overloaded and migrates to them (with the whole sub-population of individuals),
etc.

The paper starts with the presentation of agent-based co-operative co-evolutionary
algorithms utilizing multi-agent layer as a “manager” for evolutionary computations. In
the next section these algorithms are experimentally verified and compared to two state-
of-the-art multi-objective evolutionary algorithms (SPEA2 and NSGA-II) with the use
of commonly used multi-objective test problems.

2 Agent-Based Co-Operative Co-Evolutionary System for
Multi-Objective Optimization

In this section the agent-based co-operative co-evolutionary system for multi-objective
optimization is presented. In the described system agents are used rather as elements
that manage the evolutionary computations, not as individuals that evolve themselves
(see sec. 1 for the discussion of the possibilities of mixing agent-based systems and
evolutionary computations). All versions of the algorithms were implemented with the
use of agent-based evolutionary computations framework jAgE ([1])—this platform
has all mechanisms and elements needed to implement agent-based evolutionary al-
gorithms and it allows for the distributed computations. We will focus here on gen-
eral system’s architecture and implemented algorithms. Three versions of agent-based
co-evolutionary algorithms are presented: co-operative co-evolutionary multi-agent al-
gorithm (CCEA-jAgE), agent-based co-operative co-evolutionary version of NSGA-II



algorithm (CCNSGA2-jAgE), and agent-based co-operative co-evolutionary version of
SPEA2 algorithm (CCSPEA2-jAgE).

In the presented system the co-operative co-evolutionary techniques were adapted to
the demands of multi-objective problems and implemented with the use of mechanisms
supported by the jAgE platform.

Aggregate
agent

Agent n

Collaborators

Collaborators

Individual evaluation

Species n

Agent 2
Species 2

Agent 1
Species 1

Archive

Fig. 1: The architecture of agent-based co-operative co-evolutionary algorithm

Because in the co-operative co-evolutionary approach the representatives of each
species (sub-populations) have to be aggregated (in order to form the complete solution)
and also because of the necessity of storing the complete non-dominated solutions, the
central computational node (agent-aggregate) was introduced (see fig. 1). Its tasks in-
clude forming complete solutions (composed of the representatives of each species) and
evaluation of the solutions. It also maintains the set of non-dominated solutions found
so far. Each sub-population is responsible only for the selected part of the solution, and
evolved by one computational agent.

In co-operative co-evolutionary algorithm computational nodes do not have to com-
municate very often—communication is needed only during evaluation of the solutions—
thus the parallelization of the computations can be realized effectively in the decentral-
ized system, not only on parallel machines.

Co-operative co-evolutionary multi-agent algorithm (CCEA-jAgE) is the agent-
based and distributed version of multi-objective co-operative co-evolutionary algorithm
based on algorithm proposed in [8].

In the first step of this algorithm each of the computational agents performs the
initialization of its sub-population (which is associated with the selected part of the
problem—in our case this is one decision variable). Aggregate agent waits for receiv-
ing all of the sub-populations. When it receives all sub-populations, it forms com-
plete solutions and computes the contribution of individuals coming from each species
(sub-populations) to the whole solution quality. Then the aggregate sends back all sub-



Algorithm 1. Step of the computational agent

receive Pt from aggregate agent ; /*Pt is the sub-population in time t*/1
compute the fitness of individuals from Pt on the basis of their contribution to the solution2
quality;
Pt+1← ∅;3

while Pt+1 is not full do4
select parents from Pt;5
generate offspring;6
apply recombination;7

Pt+1 = Pt+1 + offspring;8

end9

mutate individuals from Pt+1;10

send Pt+1 to aggregate agent;11

Algorithm 2. Step of the aggregate agent

while stopping condition is not fulfilled do1
for a← a1 to an do2

receive Pt
a from agent a;3

end4
for a← a1 to an do5

Pt+1
a = select individuals from Pt−1

a
⋃

Pt
a;6

end7

Ct+1← complete solutions formed from Pt+1;8
calculate the contribution of individuals coming from different species to the whole9
solution quality;
for a← a1 to an do10

send Pt+1
a to the agent a;11

end12

update the set of non-dominated solutions At+1 with the use of Ct+1;13

end14

populations and puts copies of all non-dominated solutions to the set of non-dominated
solutions found so far.

Following step of computational agents is presented in the alg. 1. Actions performed
by the aggregate agent in the following steps are presented in alg. 2.

The process of creating complete solutions (aggregating individuals) and computing
the contribution of the given individual to the quality of the whole solution is made with
the use of standard co-operative co-evolutionary schema. Firstly representatives rs of all
species are chosen, and then for subsequent individuals is from subsequent species s the
pool cpool of complete solutions is created. For every solution from the pool (which is
composed of the given individual is and representatives of all other species) the values
of all criteria are computed. From the pool one solution is chosen and inserted into the
set C of currently generated solutions. The vector of values F(x) of the chosen solution
is the measure of contribution of the given individual is to the quality of the solution.



As a result of integration of the previously described CCEA-jAgE algorithm and
NSGA-II ([3]) the agent-based co-operative version of NSGA-II (CCNSGA2-jAgE)
was created. CCNSGA2-jAgE is possible to obtain via the proper configuration of the
CCEA-jAgE (very similar solution was in fact applied in non-dominated sorting co-
operative co-evolutionary genetic algorithm [7]). Thanks to the computed contribution
of the given individual to the quality of the complete solution, the fitness computation in
agent-based co-evolutionary NSGA-II is realized with the use of non-dominated sort-
ing and crowding distance metric (see [3]). Additionally, the aggregate agent joins the
populations of parents and offspring, and chooses (on the basis of elitist selection and
within each sub-population separately) individuals which will form the next generation
sub-population used for the creation of complete solutions. The applied schema implies
that N best (according to non-dominated sorting and crowding distance metric) indi-
viduals survive. Other parts of algorithm are realized in the same way as in the case of
previously described agent-based co-operative algorithm.

In the case of agent-based co-operative co-evolutionary version of SPEA2 algo-
rithm (CCSPEA2-jAgE) some modifications of the algorithms presented previously
had to be done. It was caused mainly by the fact that SPEA2 uses additional external
set of solutions during the process of evaluating individuals (compare [11]). In the de-
scribed agent-based co-evolutionary version of SPEA2 algorithm each computational
agent has its own, local, external set of solutions (lA) used during the fitness estima-
tion. This set is also sent to the aggregate agent, along with the sub-population which is
evolved by the given computational agent.

First step of aggregate agent and computational agents is the same as in the case of
CCEA-jAgE. Next steps of the algorithm of computational agents begin with the receiv-
ing of sub-population Pt and local external set of solutions lAt from the aggregate agent.
On the basis of the contributions of the individuals to the quality of the complete so-
lutions (computed by the aggregate agent), the fitness of individuals is computed. Next
the archive lAt+1 is updated with the use of mechanisms from SPEA2 ([11]). Parents
are selected from lAt+1 and children generated with the use of recombination operator
are inserted into Pt+1 (offspring population). Then mutation is applied to the individuals
from set Pt+1 and it is sent to aggregate agent together with the individuals from lAt+1.

In the case of aggregate agent, the changes include receiving and sending additional
sets of individuals lAt. Due to the fact that lAt is the set of parents, now the step of
selecting individuals to the next generation sub-population may be omitted.

3 The Experiments

The system presented in the previous section was experimentally verified with the use of
commonly used test problems: DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, and DTLZ6
[4]. The system was also applied to multi-objective portfolio optimization problem—
results can be found in [6]. The main goal of the experiments was to compare three
agent-based co-operative co-evolutionary algorithms with two state-of-the-art multi-
objective evolutionary algorithms: NSGA-II and SPEA2.

In all five compared algorithms (CCEA-jAgE, CCNSGA2-jAgE, CCSPEA2-jAgE,
NSGA-II and SPEA2) the binary representation was used (32 bits per decision vari-



able). One point crossover and bit inversion was used as genetic operators. Probability
of crossover was 0.9. The probability of mutation was 10/L, where L is the length of the
chromosome. Tournament selection with elitism was used in CCEA-jAgE, CCNSGA2-
jAgE, NSGA-II algorithms and tournament selection without elitism in the case of
CCSPEA2-jAgE and SPEA2. The size of the tournament was 3. The size of the pop-
ulation was set to 50. Maximal size of the set of non-dominated individuals was set to
50. Values presented in the figures are averages from 15 runs of each algorithm against
each test problem. Due to space limitations only values of hypervolume metrics ([2])
are presented.

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 
CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 

CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(b)

Fig. 2: Average values of hypervolume metric for DTLZ1 (a) and DTLZ2 (b) problems

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 

CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 

CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(b)

Fig. 3: Average values of hypervolume metric for DTLZ3 (a) and DTLZ4 (b) problems



0 2000 4000 6000 8000 10000 12000 14000
0

0.05

0.1

0.15

0.2

0.25

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 

CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(a)

0 2 4 6 8 10 12

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Function evaluations

H
yp
e
rv
o
lu
m
e
 m

e
tr
ic

 

 

CCEA‐jAgE

CCNSGA2‐jAgE

CCSPEA2‐jAgE

NSGA2

SPEA2

(b)

Fig. 4: Average values of hypervolume metric for DTLZ5 (a) and DTLZ6 (b) problems

In the figures 2-4 values of hypervolume metric are presented for all six test prob-
lems. In the case of DTLZ1 and DTLZ3 (fig. 2a and 3a) problems the best results were
obtained with the use of proposed agent-based co-evolutionary algorithms. Also results
of slightly slower in this case CCSPEA2-jAgE are better than those of SPEA2 and,
the worst in this case, NSGA-II. In the case of DTLZ2 problem (fig. 2b) the best results
were obtained by SPEA2 and slightly worse by CCEA-jAgE and NSGA-II. Results gen-
erated by CCNSGA2-jAgE and CCSPEA2-jAgE are less satisfying in this case. In the
case of problem DTLZ4 (see fig. 3b) all algorithms generated comparable results, with
the exception of SPEA2. The quality of the solutions generated for DTLZ5 problem
(fig. 4a) is comparable in the case of all algorithms—only in the case of CCSPEA2-
jAgE the average value of hypervolume metric is slightly lower than values for other
algorithms. In the case of DTLZ6 function (fig. 4b) the Pareto frontier was not prop-
erly localized only by CCSPEA2-jAgE. The solutions obtained by other algorithms are
of comparable quality, but NSGA-II and SPEA2 required about two times less fitness
function evaluations to obtain such results.

4 Summary and Conclusions

In this paper agent-based co-operative co-evolutionary algorithm (CCSPEA2-jAgE)
was proposed. In such system agents are used generally as the layer which manages
the evolutionary computations. Thanks to the properties of co-operative co-evolutionary
approach (interaction of individuals only at the stage of fitness evaluation of complete
solutions) and properties of multi-agent approach, proposed algorithm was parallelized.
The implementation was realized with the use of jAgE agent-based evolutionary frame-
work, which allows for distributed computations. Also, within the same system, agent-
based co-operative co-evolutionary versions of SPEA2 and NSGA-II algorithms were
implemented.



Three proposed agent-based algorithms were experimentally verified with the use
of DTLZ problems and compared to SPEA2 and NSGA-II algorithms. Presented results
show that proposed CCSPEA2-jAgE obtained very satisfying results, comparable—and
in the case of some problems even better—to those obtained by state-of-the-art SPEA2
and NSGA-II algorithms. Slightly less satisfying were the results obtained by proposed
agent-based co-operative versions of SPEA2 and NSGA-II.

Future research will certainly include experiments with other multi-objective prob-
lems, not only with test functions but also with some real life problems. It will allow
for additional verification of the proposed algorithms and will probably result in some
improvements. On the other hand, different approach to agent-based realization of co-
operative co-evolution will be further developed—the approach which utilizes agents
as individuals living within the environment and independently forming co-operations
(complete solutions).

References

1. Agent-based evolution platform (jAgE). http://age.iisg.agh.edu.pl.
2. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,

2001.
3. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Proceedings of the
Parallel Problem Solving from Nature VI Conference, pages 849–858. Springer, 2000.

4. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolutionary
multi-objective optimization. Technical report, Computer Engineering and Networks Labo-
ratory, Swiss Federal Institute of Technology, 2001.

5. R. Dreżewski. A model of co-evolution in multi-agent system. In V. Mar̆ı́k, J. Müller, and
M. Pĕchouček, editors, Multi-Agent Systems and Applications III, volume 2691 of LNCS,
pages 314–323, Berlin, Heidelberg, 2003. Springer-Verlag.

6. R. Dreżewski, K. Obrocki, and L. Siwik. Comparison of multi-agent co-operative co-
evolutionary and evolutionary algorithms for multi-objective portfolio optimization. In Ap-
plications of Evolutionary Computing. Springer-Verlag, 2009.

7. A. Iorio and X. Li. A cooperative coevolutionary multiobjective algorithm using non-
dominated sorting. In K. Deb and R. Poli, et al., editors, Genetic and Evolutionary Compu-
tation - GECCO 2004, volume 3102-3103 of LNCS, pages 537–548. Springer-Verlag, 2004.

8. N. Keerativuttitumrong, N. Chaiyaratana, and V. Varavithya. Multi-objective co-operative
co-evolutionary genetic algorithm. In J. J. Merelo, P. Adamidis, and H.-G. Beyer, editors,
Parallel Problem Solving from Nature - PPSN VII, volume 2439 of LNCS, pages 288–297.
Springer-Verlag, 2002.

9. J. Paredis. Coevolutionary algorithms. In T. Bäck, D. Fogel, and Z. Michalewicz, editors,
Handbook of Evolutionary Computation, 1st supplement. IOP Publishing and Oxford Uni-
versity Press, 1998.

10. K. C. Tan, Y. J. Yang, and T. H. Lee. A Distributed Cooperative Coevolutionary Algorithm
for Multiobjective Optimization. In Proceedings of the 2003 Congress on Evolutionary Com-
putation (CEC’2003), pages 2513–2520. IEEE Press, 2003.

11. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evolutionary
algorithm. Technical Report TIK-Report 103, Computer Engineering and Networks Labora-
tory, Swiss Federal Institute of Technology, 2001.


