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A Review of Agent-Based
Co-Evolutionary Algorithms for
Multi-Objective Optimization

Rafa l Dreżewski, Leszek Siwik

Abstract Agent-based evolutionary algorithms are a result of mixing two
paradigms: multi-agent systems and evolutionary algorithms. Agent-based
co-evolutionary algorithms allow for existing many species and sexes of agents
within the system as well as for defining co-evolutionary interactions be-
tween species and sexes. Algorithms based on the model of co-evolutionary
multi-agent system have been already applied in many domains, like multi-
modal optimization, generation of investment strategies, portfolio optimiza-
tion, and multi-objective optimization. In this chapter we present an overview
of selected agent-based co-evolutionary algorithms, their formal models, and
results of experiments with standard test problems and financial problem,
aimed at making comparison of agent-based and “classical” state-of-the-art
multi-objective algorithms. Presented results show that, depending on the
problem being solved, agent-based algorithms obtain comparable, and some-
times even better, results than “classical” algorithms, however of course they
are not the universal solver for all multi-objective optimization problems.

1.1 Introduction

In spite of a huge potential dozing in evolutionary algorithms and a lot of
successful applications such algorithms for solving difficult problem of op-
timization and searching, very frequently such methods have not been able
to deal with defined problem and obtained results have not been satisfying.
Among the reasons of such a situation the following can be mentioned:
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• centralization of evolutionary process where the process of selection as
well as the process of generation of new generations are controlled by one
single algorithm;

• reducing of specimen to the (system of) genes without capabilities of
exerting of any influence on the process of evolution;

• omitting some crucial—from the evolution and adaptation capabilities
point of view—operations and processes observable in the nature. More-
over, in the literature there are opinions that crossover and mutation they
are only the kinds of one single—destructive and exploration-oriented—
operator and there is no agreement if (and if so—when) they should be
used or even if they should be distinguished [17];

• to realize their own goals, during decision-making process, specimens are
able neither to gather nor to utilize any kind of information from the
environment;

• depriving specimens of such—absolutely natural and obvious in nature—
biological and social behaviors like competition, rivalry, cooperation etc.;

• in the consequence of previous point (limited number of operators) it
is almost impossible to define in classical evolutionary algorithms more
sophisticated (and more effective simultaneously), advanced algorithms
and computational methods.

In the consequence, in the literature, there are being raised arguments
that classical evolutionary algorithms are methods of adapting and fitting
of algorithm’s parameters to defined conditions rather than really creative
methods of searching and optimization.

It is nothing strange so, that intensive research is being performed on
methods utilizing ideas and conceptions of computer models of observable in
nature Darwinian evolution but at the same time, on methods that should
be devoid of mentioned above shortcomings, and which could be perceived
as a full analogy to natural processes.

During the research, decentralization and autonomy have been in the
limelight. Proposed, as a result, method called Evolutionary Multi-Agent
System—EMAS [2] should be perceived as a new trend among evolutionary
algorithms allowing for realization of defined postulates by utilizing advan-
tages simultaneously of both: evolutionary and agent-based approaches.

Proposed paradigm of evolutionary multi-agent system is characterized
by the following—crucial, taking the shortcomings of classical evolutionary
algorithms into account—features:

• in the process of evolution autonomous agents are taking a part. Agents
are able to make decisions to realize their own goals and they are not pas-
sive units of global and central evolution which are limited and reduced
to the role of (group of) genes;

• the prices of evolution is decentralized and agents taking the part in that
are able to create advanced social structures and to realize sophisticated



strategies of cooperation, competition, interactions and reciprocal rela-
tions

• agents taking the part in the process of evolution are able to observe
the environment (and occurring changes) and to make appropriate deci-
sions and actions what additionally enrich the spectrum of possible for
realization complex and effective computational methods and algorithms.

During further research on realizing advanced, complex social and biolog-
ical mechanisms within the confines of EMAS—general model of so called
CoEMAS Co-evolutionary multi-agent systems (CoEMAS) [8] has been pro-
posed and it has turned out that with the use of such a model almost any
kind of interaction, cooperation or competition among many species or sexes
of co-evolving agents is possible what allows for improving the quality of ob-
tained result. Such improvement results mainly from better maintenance of
population diversity—what is especially important in the case of applying
such systems for solving multi-modal or multi-objective optimization tasks.

In the course of this chapter we are focusing on applying co-evolutionary
multi-agent systems for solving multi-objective optimization tasks.

Following [5]—multi-objective optimization problem—MOOP in its general
form is being defined as follows:

MOOP ≡


Minimize/Maximize fm(x̄), m = 1, 2 . . . ,M
Subject to gj(x̄) ≥ 0, j = 1, 2 . . . , J

hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2 . . . , N

Authors of this chapter assume that readers are familiar with at least
fundamental concepts and notions regarding multi-objective optimization in
the Pareto sense (relation of domination, Pareto frontier and Pareto set etc.)
and their explanation is omitted in this paper (interested readers can find
definitions and deep analysis of all necessary concepts and notions of Pareto
multi-objective optimization for instance in [3, 5]).

This chapter is organized as follows:

• in Section 1.2 formal model as well as detailed description of Co-
Evolutionary Multi-Agent System—CoEMAS is presented;

• in Section 1.3 detailed description and formal model of two realization
of CoEMAS applied for solving MOOP is given. In this section Co-
Evolutionary Multi-Agent System with Predator-Prey interactions (PP-
CoEMAS ) as well as Co-Evolutionary Multi-Agent System with Cooper-
ation (CCoEMAS) are discussed;

• in Section 1.4 we discuss shortly test suite and performance metric
used during experiments, and next we glance at results obtained by
both systems presented in the course of this chapter (PPCoEMAS and
CCoEMAS);



• in Section 1.5 the most important remarks, conclusions and comments
are given.

1.2 Model of Co-Evolutionary Multi-Agent System

Agent-based models of evolutionary algorithms are the result of mixing two
paradigms: multi-agent systems and evolutionary algorithms. The result is
decentralized evolutionary system, in which agents “live” within the environ-
ment of the system, compete for limited resources, reproduce, die, migrate
from one computational node to another, observe the environment and other
agents, and can communicate with other agents and change the environment.

Basic model of agent-based evolutionary algorithm (so called evolution-
ary multi-agent system—EMAS model) was proposed in [2]. EMAS model
included all the features which were mentioned above. However in the case
of some problems, for example multi-modal optimization or multi-objective
optimization, it turned out that these mechanisms are not sufficient. Such
types of problems require maintaining of population diversity mechanisms,
speciation mechanisms and possibilities of introducing additional biologically
and socially inspired mechanisms in order to solve a problem and obtain
satisfying results.

Mentioned above limitations of the basic EMAS model and research aimed
at applying agent-based evolutionary algorithms to multi-modal and multi-
objective problems led to the formulation of the model of co-evolutionary
multi-agent system—CoEMAS [8]. This model included the possibilities of
existing different species and sexes in the system and allowed for defining
co-evolutionary interactions between them. Below we present basic ideas and
notions of CoEMAS model, which we will use in Section 1.3 when the systems
used in experiments will be described.

1.2.1 Co-Evolutionary Multi-Agent System

The CoEMAS is described as 4-tuple:

CoEMAS = ⟨E,S, Γ,Ω⟩ (1.1)

where E is the environment of the CoEMAS, S is the set of species (s ∈ S)
that co-evolve in CoEMAS, Γ is the set of resource types that exist in the
system, the amount of type γ resource will be denoted by rγ , Ω is the set of
information types that exist in the system, the information of type ω will be
denoted by iω.



Fig. 1.1: Co-evolutionary multi-agent system

1.2.2 Environment

The environment of CoEMAS may be described as 3-tuple:

E =
⟨
TE , ΓE , ΩE

⟩
(1.2)

where TE is the topography of environment E, ΓE is the set of resource types
that exist in the environment, ΩE is the set of information types that exist
in the environment. The topography of the environment is given by:

TE = ⟨H, l⟩ (1.3)

where H is directed graph with the cost function c defined: H = ⟨V,B, c⟩, V
is the set of vertices, B is the set of arches. The distance between two nodes
is defined as the length of the shortest path between them in graph H.

The l function makes it possible to locate particular agent in the environ-
ment space:

l : A → V (1.4)

where A is the set of agents, that exist in CoEMAS.
Vertice v is given by:

v = ⟨Av, Γ v, Ωv, φ⟩ (1.5)



Av is the set of agents that are located in the vertice v, Γ v is the set of resource
types that exist within the v (Γ v ⊆ ΓE), Ωv is the set of information types
that exist within the v (Ωv ⊆ ΩE), φ is the fitness function.

1.2.3 Species

Species s ∈ S is defined as follows:

s = ⟨As, SXs, Zs, Cs⟩ (1.6)

where:

• As is the of agents of species s (by as we will denote the agent, which is
of species s, as ∈ As);

• SXs is the set of sexes within the s;
• Zs is the set of actions, which can be performed by the agents of species

s (Zs =
∪

a∈As

Za, where Za is the set of actions, which can be performed

by the agent a);
• Cs is the set of relations with other species that exist within CoEMAS.

The set of relations of si with other species (Csi) is the sum of the following
sets of relations:

Csi =
{

si,z−−−−→: z ∈ Zsi
}
∪
{

si,z+−−−→: z ∈ Zsi
}

(1.7)

where
si,z−−−−→ and

si,z+−−−→ are relations between species, based on some actions
z ∈ Zsi , which can be performed by the agents of species si:

si,z−−−−→=
{
⟨si, sj⟩ ∈ S × S : agents of species si can decrease the fitness of

agents of species sj by performing the action z ∈ Zsi
}

(1.8)

si,z+−−−→=
{
⟨si, sj⟩ ∈ S × S : agents of species si can increase the fitness of

agents of species sj by performing the action z ∈ Zsi
}

(1.9)

If si
si,z−−−−→ si then we are dealing with the intra-species competition, for

example the competition for limited resources, and if si
si,z+−−−→ si then there

is some form of co-operation within the species si.
With the use of the above relations we can define many different co-

evolutionary interactions, e.g., mutualism, predator-prey, host-parasite, etc.



For example mutualism between two species si and sj (i ̸= j) takes place if

and only if ∃zk ∈ Zsi ∃zl ∈ Zsj , such that si
si,zk+−−−−→ sj and sj

sj ,zl+−−−−→ si and
these two species live in tight co-operation.

Predator-prey interactions between two species, si (predators) and sj
(preys) (i ̸= j), takes place if and only if ∃zk ∈ Zsi ∃zl ∈ Zsj , such that

si
si,zk−−−−−→ sj and sj

sj ,zl+−−−−→ si, where zk is the action of killing the prey (kill),
and zl is the action of death (die).

1.2.4 Sex

The sex sx ∈ SXs which is within the species s is defined as follows:

sx = ⟨Asx, Zsx, Csx⟩ (1.10)

where Asx is the set of agents of sex sx and species s (Asx ⊆ As):

Asx = {a : a ∈ As ∧ a is the agent of sex sx} (1.11)

With asx we will denote the agent of sex sx (asx ∈ Asx). Zsx is the set of
actions which can be performed by the agents of sex sx, Zsx =

∪
a∈Asx

Za,

where Za is the set of actions which can be performed by the agent a. And
finally Csx is the set of relations between the sx and other sexes of the species
s.

Analogically as in the case of species, we can define the relations between
the sexes of the same species. The set of all relations of the sex sxi ∈ SXs

with other sexes of species s (Csxi) is the sum of the following sets of relations:

Csxi =
{

sxi,z−−−−−→: z ∈ Zsxi

}
∪
{

sxi,z+−−−−→: z ∈ Zsxi

}
(1.12)

where
sxi,z−−−−−→ and

sxi,z+−−−−→ are the relations between sexes, in which some
actions z ∈ Zsxi are used:

sxi,z−−−−−→=
{
⟨sxi, sxj⟩ ∈ SXs × SXs : agents of sex sxi can decrease the

fitness of agents of sex sxj by performing the action z ∈ Zsxi
}

(1.13)

sxi,z+−−−−→=
{
⟨sxi, sxj⟩ ∈ SXs × SXs : agents of sex sxi can increase the

fitness of agents of sex sxj by performing the action z ∈ Zsxi
}

(1.14)



With the use of presented relations between sexes we can model for exam-
ple sexual selection interactions, in which agents of one sex choose partners
for reproduction from agents of the other sex within the same species, taking
into account some preferred features (see [10]).

1.2.5 Agent

Fig. 1.2: Agent in the CoEMAS

Agent a (see Fig. 1.2) of sex sx and species s (in order to simplify the
notation we assume that a ≡ asx,s) is defined as follows:

a = ⟨gna, Za, Γ a, Ωa, PRa⟩ (1.15)

where:

• gna is the genotype of agent a, which may be composed of any number
of chromosomes (for example: gna = ⟨(x1, x2, . . . , xk)⟩, where xi ∈ R,
gna ∈ Rk);

• Za is the set of actions, which agent a can perform;
• Γ a is the set of resource types, which are used by agent a (Γ a ⊆ Γ );
• Ωa is the set of information, which agent a can possess and use (Ωa ⊆ Ω);
• PRa is partially ordered set of profiles of agent a (PRa ≡ ⟨PRa,E⟩) with

defined partial order relation E.



Algorithm 1. Basic activities of agent a in CoEMAS

rγ ← rγinit ; /* rγinit is the initial amount of resource given to the1

agent */
while rγ > 0 do2

activate the profile pri ∈ PRa with the highest priority and with the3

active goal gl∗j ∈ GLpri ;
if pri is the resource profile then4

if 0 < rγ < rγmin then ; /* rγmin is the minimal amount of5

resource needed by the agent to realize its activities */
6

choose the strategy stk ∈ ST pri with the highest priority that can7

be used to take some resources from the environment or other
agent;
perform actions contained within the stk;8

else if rγ = 0 then9

execute ⟨die⟩ strategy;10

end11

else if pri is the reproduction profile then12

if rγ > rrep,γmin then ; /* rrep,γmin is the minimal amount of13

resource needed for reproduction */
14

choose the strategy stk ∈ ST pri with the highest priority that can15

be used to reproduce;
perform actions contained within the stk;16

end17

else if pri is the migration profile then18

if rγ > rmig,γ
min then ; /* rmig,γ

min is the minimal amount of19

resource needed for migration */
20

choose the strategy stk ∈ ST pri with the highest priority that can21

be used to migrate;
perform actions contained within the stk;22

give rmig,γ
min amount of resource to the environment;23

end24

end25

end26

Relation E is defined in the following way:

E =
{
⟨pri, prj⟩ ∈ PRa × PRa : realization of active goals of profile pri

has equal or higher priority than the realization of

active goals of profile prj
}

(1.16)

The active goal (which is denoted as gl∗) is the goal gl, which should be
realized in the given time. The relation E is reflexive, transitive and antisym-
metric and partially orders the set PRa:



pr E pr for every pr ∈ PRa (1.17a)

(pri E prj ∧ prj E prk) ⇒ pri E prk for every pri, prj , prk ∈ PRa (1.17b)

(pri E prj ∧ prj E pri) ⇒ pri = prk for every pri, prj ∈ PRa (1.17c)

The set of profiles PRa is defined in the following way:

PRa = {pr1, pr2, . . . , prn} (1.18a)

pr1 E pr2 E · · · E prn (1.18b)

Profile pr1 is the basic profile—it means that the realization of its goals has
the highest priority and they will be realized before the goals of other profiles.

Profile pr of agent a (pr ∈ PRa) can be the profile in which only resources
are used:

pr = ⟨Γ pr, ST pr, RST pr, GLpr⟩ (1.19)

in which only information are used:

pr = ⟨Ωpr,Mpr, ST pr, RST pr, GLpr⟩ (1.20)

or resources and information are used:

pr = ⟨Γ pr, Ωpr,Mpr, ST pr, RST pr, GLpr⟩ (1.21)

where:

• Γ pr is the set of resource types, which are used within the profile pr
(Γ pr ⊆ Γ a);

• Ωpr is the set of information types, which are used within the profile pr
(Ωpr ⊆ Ωa);

• Mpr is the set of information representing the agent’s knowledge about
the environment and other agents (it is the model of the environment of
agent a);

• ST pr is the partially ordered set of strategies (ST pr ≡ ⟨ST pr,2⟩), which
can be used by agent within the profile pr in order to realize an active
goal of this profile;

• RST pr is the set of strategies that are realized within the profile pr—
generally, not all of the strategies from the set ST pr have to be realized
within the profile pr, some of them may be realized within other profiles;

• GLpr is partially ordered set of goals (GLpr ≡ ⟨GLpr,4⟩), which agent
has to realize within the profile pr.

The relation 2 is defined in the following way:

2 =
{
⟨sti, stj⟩ ∈ ST pr × ST pr : strategy sti has equal or higher

priority than strategy stj
} (1.22)



This relation is reflexive, transitive and antisymmetric and partially orders
the set ST pr. Every single strategy st ∈ ST pr is consisted of actions, which
ordered performance leads to the realization of some active goal of the profile
pr:

st = ⟨z1, z2, . . . , zk⟩, st ∈ ST pr, zi ∈ Za (1.23)

The relation 4 is defined in the following way:

4 =
{
⟨gli, glj⟩ ∈ GLpr ×GLpr : goal gli has equal or higher

priority than the goal glj
} (1.24)

This relation is reflexive, transitive and antisymmetric and partially orders
the set GLpr.

The partially ordered sets of profiles PRa, goals GLpr and strategies ST pr

are used by the agent in order to make decisions about the realized goal and
to choose the appropriate strategy in order to realize that goal. The basic
activities of the agent a are shown in Algorithm 1.

In CoEMAS systems the set of profiles is usually composed of resource
profile (pr1), reproduction profile (pr2), and migration profile (pr3):

PRa = {pr1, pr2, pr3} (1.25a)

pr1 E pr2 E pr3 (1.25b)

The highest priority has the resource profile, then there is reproduction pro-
file, and finally migration profile.

1.3 Co-Evolutionary Multi-Agent Systems for
Multi-Objective Optimization

In this section we will describe two co-evolutionary multi-agent systems used
in the experiments. Each of these systems uses different co-evolutionary mech-
anism: co-operation and predator-prey interactions. All of the systems are
based on general model of co-evolution in multi-agent system described in
Section 1.2—in this section only such elements of the systems will be de-
scribed that are specific for these instantiations of the general model. In all the
systems presented below, real-valued vectors are used as agents’ genotypes.
Mutation with self-adaptation and intermediate recombination are used as
evolutionary operators [1].



1.3.1 Co-Evolutionary Multi-Agent System with
Co-Operation Mechanism (CCoEMAS)

The co-evolutionary multi-agent system with co-operation mechanism is de-
fined as follows (see Eq. (1.1)):

CCoEMAS = ⟨E,S, Γ,Ω⟩ (1.26)

The number of species corresponds with the number of criteria (n) of the
multi-objective problem being solved S = {s1, . . . , sn}. Three information
types (Ω = {ω1, ω2, ω3}) and one resource type (Γ = {γ}) are used. Infor-
mation of type ω1 denotes nodes to which agent can migrate. Information of
type ω2 denotes (for the agent of given species) all agents from other species
that are located within the same node in time t. Information of type ω3 de-
notes (for the given agent) all agents from the same species located within
the same node.

1.3.1.1 Species

The species s is defined as follows:

s = ⟨As, SXs = {sx} , Zs, Cs⟩ (1.27)

where SXs is the set of sexes which exist within the s species, Zs is the set
of actions that agents of species s can perform, and Cs is the set of relations
of s species with other species that exist in the CCoEMAS.

Actions

The set of actions Zs is defined as follows:

Zs = {die, seek, get, give, accept, seekPartner, clone, rec,mut,migr}
(1.28)

where:

• die is the action of death (agent dies when it is out of resources);
• seek is the action of finding a dominated agent from the same species in

order to take some resources from it;
• get action gets some resource from another agent located within the same

node, which is dominated by the agent that performs get action;
• give action gives some resources to the agent that performs get action;
• accept action accepts partner for reproduction when the amount of re-

source possessed by the agent is above the given level;



• seekPartner action seeks for partner for reproduction, such that it comes
from another species and has the amount of resource above the minimal
level needed for reproduction;

• clone is the action of producing offspring (parents give some of their
resources to the offspring during this action);

• rec is the recombination operator (intermediate recombination is used
[1]);

• mut is the mutation operator (mutation with self-adaptation is used [1]);
• migr is the action of migrating from one node to another. During this

action agent loses some of its resource.

Relations

The set of relations of si species with other species that exist within the
system is defined as follows:

Csi =
{

si,get−−−−−−→,
si,accept+−−−−−−−→

}
(1.29)

The first relation models intra species competition for limited resources:

si,get−−−−−−→= {⟨si, si⟩} (1.30)

The second one models co-operation between species:

si,accept+−−−−−−−→= {⟨si, sj⟩} (1.31)

1.3.1.2 Agent

Agent a of species s (a ≡ as) is defined as follows:

a = ⟨gna, Za = Zs, Γ a = Γ,Ωa = Ω,PRa⟩ (1.32)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-
coded decision parameters’ values and σ of standard deviations’ values, which
are used during mutation with self-adaptation. Agents of the given species are
evaluated according to only one criteria associated with this species. Za = Zs

(see Eq. (1.28)) is the set of actions which agent a can perform. Γ a is the
set of resource types used by the agent, and Ωa is the set of information
types. Basic activities of agent a in CCoEMAS with the use of profiles are
presented in Alg. 2.



Algorithm 2. Basic activities of agent a in CCoEMAS

rγ ← rγinit;1

while rγ > 0 do2

activate the profile pri ∈ PRa with the highest priority and with the3

active goal gl∗j ∈ GLpri ;
if pr1 is activated then4

if 0 < rγ < rγmin then5

⟨seek, get⟩;6

rγ ←
(
rγ + rγget

)
;7

else if rγ = 0 then8

⟨die⟩;9

end10

else if pr2 is activated then11

if rγ > rrep,γmin then12

⟨seekPartner, clone, rec,mut⟩;13

rγ ←
(
rγ − rrep,γgive

)
;14

end15

else if pr3 is activated then16

if ⟨accept⟩ is activated then17

rγ ←
(
rγ − rrep,γgive

)
;18

else if ⟨give⟩ is activated then19

rγ ←
(
rγ − rγget

)
;20

end21

else if pr4 is activated then22

if rγ > rmig,γ
min then23

⟨migr⟩;24

rγ ←
(
rγ − rmig,γ

min

)
;25

end26

end27

end28

Profiles

The partially ordered set of profiles includes resource profile (pr1), repro-
duction profile (pr2), interaction profile (pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (1.33a)

pr1 E pr2 E pr3 E pr4 (1.33b)

The resource profile is defined in the following way:

pr1 =
⟨
Γ pr1 = Γ,Ωpr1 = {ω3} ,Mpr1 = {iω3} ,
ST pr1 , RST pr1 = ST pr1 , GLpr1

⟩ (1.34)

The set of strategies include two strategies:

ST pr1 = {⟨die⟩, ⟨seek, get⟩} (1.35)



The goal of the pr1 profile is to keep the amount of resources above the
minimal level or to die when the amount of resources falls to zero. This
profile uses the model Mpr1 = {iω3}.

The reproduction profile is defined as follows:

pr2 =
⟨
Γ pr2 = Γ,Ωpr2 = {ω2} ,Mpr2 = {iω2} ,
ST pr2 , RST pr2 = ST pr2 , GLpr2

⟩ (1.36)

The set of strategies include one strategy:

ST pr2 = {⟨seekPartner, clone, rec,mut⟩} (1.37)

The only goal of the pr2 profile is to reproduce. In order to realize this
goal agent can use strategy of reproduction: ⟨seekPartner, clone, rec,mut⟩.
During the reproduction agent transfers the amount of rrep,γgive resources to the
offspring.

The interaction profile is defined as follows:

pr3 =
⟨
Γ pr3 = Γ,Ωpr3 = {ω2, ω3} ,Mpr3 = {iω2 , iω3} ,
ST pr3 = {⟨accept⟩, ⟨give⟩} , RST pr3 = ST pr3 , GLpr3

⟩ (1.38)

The goal of the pr3 profile is to interact with agents from another species
with the use of ⟨accept⟩ and ⟨give⟩ strategies.

The migration profile is defined as follows:

pr4 =
⟨
Γ pr4 = Γ,Ωpr4 = {ω1} ,Mpr4 = {iω1} ,
ST pr4 =

{⟨
migr

⟩}
, RST pr4 = ST pr4 , GLpr4

⟩ (1.39)

The goal of the pr4 profile is to migrate within the environment. In order
to realize such a goal the migration strategy

⟨
migr

⟩
is used, which firstly

chooses the node on the basis of information {iω1} and then realizes the
migration. As a result of migrating agent loses some of its resources.

1.3.2 Co-Evolutionary Multi-Agent System with
Predator-Prey Interactions (PPCoEMAS)

The co-evolutionary multi-agent system with predator-prey interactions (PP-
CoEMAS ) is defined as follows (see Eq. (1.1)):

PPCoEMAS = ⟨E,S, Γ,Ω⟩ (1.40)

The set of species includes two species, preys and predators S = {prey, pred}.
Two information types (Ω = {ω1, ω2}) and one resource type (Γ = {γ})
are used. Information of type ω1 denote nodes to which agent can migrate.



Information of type ω2 denote such prey that are located within the particular
node in time t.

1.3.2.1 Prey Species

The prey species (prey) is defined as follows:

prey = ⟨Aprey, SXprey = {sx} , Zprey, Cprey⟩ (1.41)

where SXprey is the set of sexes which exist within the prey species, Zprey is
the set of actions that agents of species prey can perform, and Cprey is the set
of relations of prey species with other species that exist in the PPCoEMAS.

Actions

The set of actions Zprey is defined as follows:

Zprey =
{
die, seek, get, give, accept, seekPartner,

clone, rec,mut,migr
} (1.42)

where:

• die is the action of death (prey dies when it is out of resources);
• seek action seeks for another prey agent that is dominated by the prey

performing this action or is too close to it in criteria space.
• get action gets some resource from another aprey agent located within

the same node, which is dominated by the agent that performs get action
or is too close to it in the criteria space;

• give action gives some resource to another agent (which performs get
action);

• accept action accepts partner for reproduction when the amount of re-
source possessed by the prey agent is above the given level;

• seekPartner action is used in order to find the partner for reproduction
when the amount of resource is above the given level and agent can
reproduce;

• clone is the action of producing offspring (parents give some of their
resources to the offspring during this action);

• rec is the recombination operator (intermediate recombination is used
[1]);

• mut is the mutation operator (mutation with self-adaptation is used [1]);
• migr is the action of migrating from one node to another. During this

action agent loses some of its resource.



Relations

The set of relations of prey species with other species that exist within the
system is defined as follows:

Cprey =
{

prey,get−−−−−−−→,
prey,give+−−−−−−−→

}
(1.43)

The first relation models intra species competition for limited resources:

prey,get−−−−−−−→= {⟨prey, prey⟩} (1.44)

The second one models predator-prey interactions:

prey,give+−−−−−−−→= {⟨prey, pred⟩} (1.45)

1.3.2.2 Predator Species

The predator species (pred) is defined as follows:

pred =
⟨
Apred, SXpred = {sx} , Zpred, Cpred

⟩
(1.46)

Actions

The set of actions Zpred is defined as follows:

Zpred = {seek, getFromPrey,migr} (1.47)

where:

• The seek action allows finding the “worst” (according to the criteria
associated with the given predator) prey located within the same node
as the predator;

• getFromPrey action gets all resources from the chosen prey,
• migr action allows predator to migrate between nodes of the graph H—

this results in losing some of the resources.

Relations

The set of relations of pred species with other species that exist within the
system are defined as follows:

Cpred =
{

pred,getFromPrey−−−−−−−−−−−−−−→
}

(1.48)



This relation models predator-prey interactions:

pred,getFromPrey−−−−−−−−−−−−−−→= {⟨pred, prey⟩} (1.49)

As a result of performing getFromPrey action and taking all resources from
selected prey, it dies.

1.3.2.3 Prey Agent

Algorithm 3. Basic activities of agent a ≡ aprey in PPCoEMAS

rγ ← rγinit;1

while rγ > 0 do2

activate the profile pri ∈ PRa with the highest priority and with the3

active goal gl∗j ∈ GLpri ;
if pr1 is activated then4

if 0 < rγ < rγmin then5

⟨seek, get⟩;6

rγ ←
(
rγ + rγget

)
;7

else if rγ = 0 then8

⟨die⟩;9

end10

else if pr2 is activated then11

if rγ > rrep,γmin then12

if ⟨seekPartner, clone, rec,mut⟩ is performed then13

rγ ←
(
rγ − rclone,γ

give

)
;14

else if ⟨accept⟩ is performed then15

rγ ←
(
rγ − raccept,γgive

)
;16

end17

end18

else if pr3 is activated then19

if ⟨get⟩ is performed by prey agent then20

⟨give⟩;21

rγ ←
(
rγ − rγgive

)
;22

else if ⟨get⟩ is performed by predator agent then23

⟨give⟩;24

rγ ← 0;25

end26

else if pr4 is activated then27

if rγ > rmig,γ
min then28

⟨migr⟩;29

rγ ←
(
rγ − rmig,γ

min

)
;30

end31

end32

end33

Agent a of species prey (a ≡ aprey) is defined as follows:



a = ⟨gna, Za = Zprey, Γ a = Γ,Ωa = Ω,PRa⟩ (1.50)

Genotype of agent a is consisted of two vectors (chromosomes): x of real-
coded decision parameters’ values and σ of standard deviations’ values, which
are used during mutation with self-adaptation. Za = Zprey (see Eq. (1.42)) is
the set of actions which agent a can perform. Γ a is the set of resource types
used by the agent, and Ωa is the set of information types. Basic activities of
agent a are presented in Alg. 3.

Profiles

The partially ordered set of profiles includes resource profile (pr1), repro-
duction profile (pr2), interaction profile (pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (1.51a)

pr1 E pr2 E pr3 E pr4 (1.51b)

The resource profile is defined in the following way:

pr1 =
⟨
Γ pr1 = Γ,Ωpr1 = {ω2} ,Mpr1 = {iω2} ,
ST pr1 , RST pr1 = ST pr1 , GLpr1

⟩ (1.52)

The set of strategies include two strategies:

ST pr1 = {⟨die⟩, ⟨seek, get⟩} (1.53)

The goal of the pr1 profile is to keep the amount of resources above the
minimal level or to die when the amount of resources falls to zero. This
profile uses the model Mpr1 = {iω2}.

The reproduction profile is defined as follows:

pr2 =
⟨
Γ pr2 = Γ,Ωpr2 = {ω2} ,Mpr2 = {iω2} ,
ST pr2 , RST pr2 = ST pr2 , GLpr2

⟩ (1.54)

The set of strategies include two strategies:

ST pr2 = {⟨seekPartner, clone, rec,mut⟩, ⟨accept⟩} (1.55)

The only goal of the pr2 profile is to reproduce. In order to realize this goal
agent can use strategy of reproduction ⟨seekPartner, clone, rec,mut⟩ or can
accept partners for reproduction (⟨accept⟩).

The interaction profile is defined as follows:



pr3 =
⟨
Γ pr3 = Γ,Ωpr3 = ∅,Mpr3 = ∅, ST pr3 = {⟨give⟩} ,
RST pr3 = ST pr3 , GLpr3

⟩ (1.56)

The goal of the pr3 profile is to interact with predators and preys with the
use of strategy ⟨give⟩.

The migration profile is defined as follows:

pr4 =
⟨
Γ pr4 = Γ,Ωpr4 = {ω1} ,Mpr4 = {iω1} ,
ST pr4 =

{⟨
migr

⟩}
, RST pr4 = ST pr4 , GLpr4

⟩ (1.57)

The goal of the pr4 profile is to migrate within the environment. In order
to realize such a goal the migration strategy is used, which firstly chooses
the node and then realizes the migration. As a result of migrating prey loses
some amount of resource.

1.3.2.4 Predator Agent

Algorithm 4. Basic activities of agent a ≡ apred in PPCoEMAS

rγ ← rγinit;1

while rγ > 0 do2

activate the profile pri ∈ PRa with the highest priority and with the3

active goal gl∗j ∈ GLpri ;
if pr1 is activated then4

if 0 < rγ < rγmin then5

⟨seek, getFromPrey⟩;6

rγ ←
(
rγ + rprey,γget

)
; /* rprey,γget are all resources of the7

prey agent that was chosen by a */
end8

else if pr2 is activated then9

if rγ > rmig,γ
min then10

⟨migr⟩;11

rγ ←
(
rγ − rmig,γ

min

)
;12

end13

end14

end15

Agent a of species pred is defined analogically to prey agent (see eq. (1.50)).
There exist two main differences. Genotype of predator agent is consisted only
of the information about the criterion associated with the given agent. The
set of profiles is consisted only of two profiles, resource profile (pr1), and
migration profile (pr2): PRa = {pr1, pr2}, where pr1 E pr2. Basic activities
of agent a are presented in Alg. 4.



Profiles

The resource profile is defined in the following way:

pr1 =
⟨
Γ pr1 = Γ,Ωpr1 = {ω2} ,Mpr1 = {iω2} ,
ST pr1 = {⟨seek, getFromPrey⟩} , RST pr1 = ST pr1 , GLpr1

⟩ (1.58)

The goal of the pr1 profile is to keep the amount of resource above the minimal
level with the use of strategy ⟨seek, getFromPrey⟩.

The migration profile is defined as follows:

pr2 =
⟨
Γ pr2 = Γ,Ωpr2 = {ω1} ,Mpr2 = {iω1} ,
ST pr2 =

{⟨
migr

⟩}
, RST pr2 = ST pr2 , GLpr2

⟩ (1.59)

The goal of pr2 profile is to migrate within the environment. In order to
realize this goal the migration strategy

⟨
migr

⟩
is used. The realization of

the migration strategy results in losing some of the resource possessed by the
agent.

1.4 Experimental Results

Presented formally in section 1.3 agent-based co-evolutionary approaches for
multi-objective optimization have been tentatively assessed. Obtained during
experiments preliminary results were presented in some of our previous papers
and in this section they are shortly summarized.

1.4.1 Test suite, performance metric and
state-of-the-art algorithms

As a test problem firstly, slightly modified so-called Laumanns multi-objective
problem was used, which is defined as follows [15, 18]:

Laumanns =

 f1(x) = x2
1 + x2

2

f2(x) = (x1 + 2)2 + x2
2

−5 ≤ x1, x2 ≤ 5
(1.60)

Secondly the so-called Kursawe problem was used. Its definition is as fol-
lows [18]:



Kursawe =


f1(x) =

∑n−1
i=0

(
−10 exp

(
−0.2

√
x2
i + x2

i+1

))
f2(x) =

∑n
i=1 |xi|0.8 + 5 sinx3

i

n = 3 − 5 ≤ x1, x2, x3 ≤ 5

(1.61)

In one of our experiments discussed shortly in this chapter building effec-
tive portfolio problem was used. Assumed definition as well as true Pareto
frontier for such a problem can be found in [16].

Obviously during our experiments also well known and commonly used
test suites were used. Inter alia such problems as ZDT test suite was used
([19, p. 57–63], [21], [5, p. 356–362], [4, p. 194–199]).

f1

f2

max

m
a
x True Pareto frontier

Dispersing solutions over 

the whole approximation 

of the true Pareto frontier

Drifting towards 

the true Pareto 

frontier

Fig. 1.3: Two goals of multi-objective optimization

Two main distinguishing features of high-quality solution of MOOPs are:
closeness to the true Pareto frontier as well as dispersion of found non-
dominated solution over the whole (approximation) of the Pareto frontier
(see Figure 1.3).

In the consequence, despite that using only one single measure during
assessing the effectiveness of (evolutionary) algorithms for multi-objective
optimization is not enough [23], since Hypervolume Ratio measure (HVR)
[20] allows for estimating both of these aspects—in this chapter discussion
and presentation of obtained results is based on this very measure.

Hypervolume or Hypervolume ratio (HVR), describes the area covered by
solutions of obtained result set. For each solution, hypercube is evaluated
with respect to the fixed reference point. In order to evaluate hypervolume
ratio, value of hypervolume for obtained set is normalized with hypervolume
value computed for true Pareto frontier. HV and HVR are defined as follows:



HV = v(

N∪
i=1

vi) (1.62a)

HVR =
HV(PF ∗)

HV(PF )
(1.62b)

where vi is hypercube computed for i − th solution, PF ∗ represents ob-
tained Pareto frontier and PF is the true Pareto frontier.

To assess (in a quantitative way) PPCoEMAS and CCoEMAS the com-
parison with results obtained with the use of state-of-the-art algorithms has
to be made. That is why we are comparing results obtained by discussed
in this chapter approaches with results obtained by NSGA-II [6, 7] and
SPEA2 [12, 22] algorithms since these very algorithms are the most effi-
cient and most commonly used evolutionary multi-objective optimization al-
gorithms. Additionally, obtained results are compared also with NPGA [13]
and PPES [15] algorithms.

1.4.2 A glance at assessing co-operation based
approach (CCoEMAS)

Presented in section 1.3.1 co-evolutionary multi-agent system with co-operation
mechanism (CCoEMAS) was assessed tentatively using inter alia ZDT test-
suite. The size of population of CCoEMAS and the size of benchmarking al-
gorithms (NSGA-II and SPEA2) assumed during presented experiments were
as follows: CCoEMAS—200, NSGA-II—300 and SPEA—100. Next, selected
parameters and their values assumed during those experiments are as follows:
rγinit = 50 (it represents the level of resources possessed initially by individ-
ual just after its creation), rγget = 30 (it represents the amount of resources
transferred in the case of domination), rrep,γmin = 30 (it represents the level of
resources required for reproduction), pmut = 0.5 (mutation probability).

As one may see after the analysis of results presented in figures 1.4 and
1.5—CCoEMAS, as not so complex algorithm as NSGA-II or SPEA2, initially
allows for obtaining better solutions, but with time classical algorithms—
especially NSGA-II—are the better alternatives. It is however worth to
mention that in the case of ZDT4 problem this characteristic seems to be
reversed—i.e. initially classical algorithms seem to be better alternatives, but
finally CCoEMAS allows for obtaining better solutions (observed as higher
values of HVR metrics). Deeper analysis of obtained during presented exper-
iments results can be found in [11].
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Fig. 1.4: HVR values obtained by CCoEMAS, SPEA2, and NSGA-II run
against Zitzler’s problems ZDT1 (a) and ZDT2 (b) [11]
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Fig. 1.5: HVR values obtained by CCoEMAS, SPEA2, and NSGA-II run
against Zitzler’s problems ZDT3 (a) ZDT4 (b) and ZDT6 (c) [11]



1.4.3 A glance at assessing predator-prey based
approach (PPCoEMAS)

In this section some selected results regarding presented in section 1.3.2
co-evolutionary multi-agent system with predator-prey interactions are pre-
sented. Among the others, PPCoEMAS was assessed with the use of some
presented in section 1.4.1 classical benchmarking problems: firstly Laumanns
[15] and Kursawe [14] test problems were used. Also the other than NSGA-II
and SPEA2 classical algorithms were used during experiments with predator-
prey approach. This time predator-prey evolutionary strategy (PPES) and
niched-pareto genetic algorithm (NPGA) were used. In this section only a
kind of summary of obtained results is given. More detailed analysis can be
found in [9, 16].
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Fig. 1.6: Pareto frontier approximations obtained by PPCoEMAS (a) and
PPES (b) algorithms for Laumanns problem after 6000 steps [9]

In the very first experiments with PPCoEMAS relatively simple Laumanns
test problem was used. In Figure 1.6 there are presented Pareto frontier
approximations obtained by PPCoEMAS and PPES algorithms and in Figure
1.7 there are presented values of HV and HVR metrics for all three algorithms
being compared (PPCoEMAS, PPES and NPGA). As it can be seen—the
differences between algorithms being analyzed are not so distinct, however
proposed PPCoEMAS system seems to be the best alternative.

The second problem used was more demanding multi-objective Kursawe
problem with disconnected both Pareto set and Pareto frontier. In Figure 1.9
there are presented final approximations of Pareto frontier obtained by PP-
CoEMAS and by reference algorithms after 6000 time steps. As one may
notice, there is no doubt that PPCoEMAS is definitely the best alternative
since it is able to obtain Pareto frontier that is located very close to the model
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Fig. 1.7: The value of HV (a) and HVR (b) measure for Laumanns problem
obtained by PPCoEMAS, PPES and NPGA after 6000 steps
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Fig. 1.8: The value of HV (a) and HVR (b) measure for Kursawe problem
obtained by PPCoEMAS, PPES and NPGA after 6000 steps

solution, that is very well dispersed and what is also very important—it is
more numerous than PPES and NPGA-based solutions. The above observa-
tions are fully confirmed by the values of HV and HVR metrics presented in
Figure 1.8.

Proposed co-evolutionary multi-agent system with predator-prey interac-
tions was also assessed with the use of building effective portfolio problem.
In this case, each individual in the prey population is represented as a p-
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Fig. 1.9: Pareto frontier approximations for Kursawe problem obtained by
PPCoEMAS (a), PPES (b) and NPGA (c) after 6000 steps [9]

dimensional vector. Each dimension represents the percentage participation
of i-th (i ∈ 1 . . . p) share in the whole portfolio.

During presented experiments—Warsaw Stock Exchange quotations from
2003-01-01 until 2005-12-31 were taken into consideration. Simultaneously,
the portfolio consists of the following three (experiment I) or seventeen (ex-
periment II) stocks quoted on the Warsaw Stock Exchange: in experiment
I: RAFAKO, PONARFEH, PKOBP, in experiment II: KREDYTB, COM-
PLAND, BETACOM, GRAJEWO, KRUK, COMARCH, ATM, HAND-
LOWY, BZWBK, HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,
GANT, PROKOM, BPHPBK. As the market index, WIG20 has been taken
into consideration.

In Figure 1.10 there are presented final Pareto frontiers obtained using
PPCoEMAS, NPGA and PPES algorithm after 1000 steps in experiment I.
As one may notice, in this case frontier obtained by PPCoEMAS is more
numerous than NPGA-based and as numerous as PPES-based one. Unfortu-
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Fig. 1.10: Pareto frontier approximations after 1000 steps obtained by PP-
CoEMAS (a), PPES (b), and NPGA (c) for building effective portfolio con-
sisting of 3 stocks [16]

nately, in this case, diversity of population in PPCoEMAS approach is visibly
worse than in the case of NPGA or PPES-based frontiers.

Similar situation can be also observed in Figure 1.11 presenting Pareto
frontiers obtained by PPCoEMAS, NPGA and PPES—but this time portfolio
that is being optimized consists of 17 shares. Also this time PPCoEMAS-
based frontier is quite numerous and quite close to the true Pareto frontier but
the tendency for focusing solutions around only selected part(s) of the whole
frontier is very distinct. The explanation of observed tendency can be found
in [9, 16] and on the very general level it can be said that it is caused by the
stagnation of evolution process in PPCoEMAS. Hypothetical, non-dominated
average portfolios for experiment I and II are presented in Figure 1.12 and
in Figure 1.13 respectively (in Figure 1.13 shares are presented from left to
right in the order in which they were mentioned above).
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Fig. 1.11: Pareto frontier approximations after 1000 steps obtained by PP-
CoEMAS (a), PPES (b), and NPGA (c) for building effective portfolio con-
sisting of 17 stocks [16]
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Fig. 1.12: Effective portfolio consisting of three stocks proposed by PP-
CoEMAS [16]



 0

 0.2

 0.4

 0.6

 0.8

 1

pe
rc

en
ta

ge
 s

ha
re

 in
 th

e 
po

rt
fo

lio

share name

PPCoEMAS portfolio after 1 step

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

pe
rc

en
ta

ge
 s

ha
re

 in
 th

e 
po

rt
fo

lio

share name

PPCoEMAS portfolio after 900 steps

(b)

Fig. 1.13: Effective portfolio consisting of seventeen stocks proposed by PP-
CoEMAS [16]

1.5 Summary and Conclusions

Agent-based (co-)evolutionary algorithms have been applied already in many
different domains, including multi-modal optimization, multi-objective opti-
mization, and financial problems. Agent-based models of evolutionary al-
gorithms allows for mixing and using simultaneously different bio-inspired
techniques and algorithms within one coherent agent model, and adding new
biologically and socially inspired operators and mechanisms in a very natural
way. Agent-based models of evolutionary algorithm also allow for using par-
allel and decentralized computations without any additional changes because
these models are decentralized and use asynchronous computations.

In this chapter we have presented two selected agent-based co-evolutionary
algorithms for multi-objective optimization—one of them used co-operative
mechanisms and the other one used predator-prey mechanism. Formal mod-
els of these systems as well as results of experiments with standard multi-
objective test problems and financial problem of multi-objective portfolio
optimization were presented. The results of experiments show that agent-
based algorithms may obtain quite satisfactory results, comparable or in the
case of some problems even better than state-of-the-art multi-objective evo-
lutionary algorithms, however of course there is still place for improvement
and further research. Presented results also lead to conclusion that none of
the existing evolutionary algorithms for multi-objective optimization can not
alone solve all problems in a best way—there is, and always will be, space
for new algorithms and improvements suited for some particular problems.

Future research on the agent-based models will concentrate on improve-
ments to the already proposed algorithms as well as on new algorithms and
techniques. Examples of new techniques which may be incorporated into
agent-based models of evolutionary algorithms include cultural and immuno-



logical mechanisms. Another way of development would be adding social and
economical layer to the existing biological one and using such agent-based
models for modeling and simulation of complex and emergent phenomena
from social and economical life.
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