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Abstra
t. When evolutionary algorithms for solving multi-modal op-

timization problems are applied, the 
ru
ial issue to be solved is main-

taining population diversity to avoid drifting and fo
using individuals

around single global optima. A lot of te
hniques have been used here so

far. Simultaneously for last twenty years a lot of e�ort has been made in

the area of evolutionary algorithms for multi-obje
tive optimization. As

the result at least several highly e�
ient algorithms have been proposed

su
h as NSGAII or SPEA2. Obviously, also in this 
ase maintaining of

population diversity is 
ru
ial but this time, taking the spe
i�
ity of op-

timization in the Pareto sense, there are built-in me
hanisms to solve

this issue e�e
tively. If so, the idea arises of applying of state-of-the-

art evolutionary multi-obje
tive optimization algorithms for solving not

original multi-modal (but single-obje
tive) optimization task but rather

its transformed into multi-obje
tive problem form by introdu
ing addi-

tional dispersion-oriented 
riteria. The goal of this paper is to present

some further study in this area.

1 Motivation

One of the most important issue regarding multi-modal optimization is the abil-

ity for dis
overing not only the global but also (as many as possible) lo
al optima

(modes). When evolutionary solver is applied it is inseparably 
onne
ted with

keeping population dispersed and not fo
using individuals around the global

optima. Many te
hniques responsible for maintaining population diversity have

been proposed so far. It is enough to 
all te
hniques based on modi�
ation of

me
hanism of sele
ting individuals for new generation (
rowding model), mod-

i�
ation of parent sele
tion (�tness sharing, sexual sele
tion), restri
ted appli-


ation of sele
tion and/or re
ombination me
hanisms (grouping individuals into

sub-populations, introdu
ing environment with some topography et
.) [7℄ just

to mention a few. Ea
h of them however has its own short
omings and it is not

possible to point out a single diversity-maintaining te
hnique giving evidently

the best results and to be used in all (or at least in the majority of) 
ases.

What is important their e�
ien
y and the e�e
tiveness depends often on the

optimization algorithm used.

For the last thirty years evolutionary multi-obje
tive optimization algorithms

(EMOAs) have be
ome more and more popular [4, 11℄. Histori
ally, one tried



to use 
lassi
al EAs by 
ombining all obje
tives in one single obje
tive and

repeating algorithm runs with di�erent weights assigned to parti
ular obje
tives

to obtain di�erent non-dominated solutions. The advantage of su
h an approa
h

is its simpli
ity, however it is pretty unnatural, slow (sin
e the EA has to be

(re)run at least as many times as the number of solutions should be found)

and�what is the most important�depending on the de�nitions of the obje
tive

fun
tions (and their 
ombination)�it often turns out that 
ombining obje
tives

with di�erent weights results with the same solution, what makes this approa
h

simply useless.

Also another te
hniques 
onsisting in rede�ning multi-obje
tive problem into

single-obje
tive one (and then (re)running single-obje
tive algorithms to �nd


onse
utive non-dominated solutions, one in single algorithm's run) turned out to

be useless in parti
ular 
ases. It is enough to mention for instan
e ε�
onstrains

te
hnique whi
h is useless in the 
ase of 
on
ave problems.

That is why a lot of e�ort has been made to develop e�
ient and e�e
tive

evolutionary (as general and population-based) algorithms for multi-obje
tive

optimization. It has been performed su

essfully and su
h algorithms as SPEA-

II [20, 19℄ or NSGA-II [14℄ are nowadays state-of-the-art EMOAs giving a really

high-quality results in most 
ases. Also, agent-based multi-obje
tive evolutionary

algorithms (
ombining agent-based and evolutionary paradigms) were proposed

and they proved to be quite e�e
tive in some 
ases (for example in multi-obje
tive

portfolio optimization problems) [5, 6, 8, 9℄.

What is important, when the multi-obje
tive optimization (and algorithms)

(in the Pareto sense) are being 
onsidered as one of the most important di�er-

en
e in 
omparison to single obje
tive optimization (algorithms) is the fa
t that

the solution to be found is the whole set of non-dominated alternatives 
alled

the Pareto set (or the Pareto frontier in the obje
tive spa
e). The 
ru
ial here

is the fa
t that using (weak) non-domination relation instead of simple mutual-


omparisons as a me
hanisms responsible for distinguishing �better� and �worse�

alternatives�EMOAs are dedi
ated for looking for the whole set of solutions in

one single run. One has to remember that the goal of the multi-obje
tive opti-

mization (in the Pareto sense) is to �nd (as-many-as-possible) non-dominated

solutions dispersed over the whole Pareto frontier. Sin
e EMOAs are population-

based it is obviously the more so simple and natural but�what is 
ru
ial here�

they have natural, built-in me
hanisms for maintaining population diversity as

well as the diversity of the solution itself.

The question thus arises if�in 
ontrast to histori
al modi�
ations of multi-

obje
tive optimization problems into single-obje
tive one(s)�the way for ob-

taining high-quality solutions of multi-modal optimization tasks is 
onverting

multi-modal problems into multi-obje
tive optimization problems by introdu
-

ing additional obje
tive responsible for maintaining population dispersed and

then applying for solving su
h a modi�ed problem one of the state-of-the-art

e�
ient evolutionary multi-obje
tive optimization algorithms.

Obviously su
h experiments have already been 
ondu
ted. It is enough to

mention here the work of M. Preuss, G. Rudolph and F. Tumakaka [12℄ but it



still seems to be only a putting a toe into the water and the goal of this paper

is to follow this resear
h dire
tion and to make some 
omparative assessment

of several dispersing-oriented obje
tives introdu
ed as a se
ond obje
tive while


onverting multi-modal single-obje
tive optimization task into multi-obje
tive

optimization problem with the spe
ial attention paid to 
lustering method.

The 
omputing experiments presented in this paper may be treated as pre-

liminary results, planned to be adapted and ported to ParaPhrase

1

agent-based


omputing platform, whi
h supplies hybrid CPU/GPU 
omputing infrastru
ture

via dedi
ated virtualisation tools.

2 The idea of transformation of multi-modal into

multi-obje
tive optimization problem

Typi
ally, multi-obje
tive (or multi-
riteria) optimization problem (MOOP) is

formulated as follows ([1, 19, 4℄):

MOOP ≡























Min/Max : fl(x̄), l = 1, 2 . . . , L
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2 . . . , N

The set of 
onstraints, both equalities (hk(x̄)), as well as inequalities (gj(x̄)),

and 
onstraints related to the de
ision variables, i.e. lower bounds (x
(L)
i ) and

upper bounds (x
(U)
i ), de�ne so 
alled sear
hing spa
e�feasible alternatives (D).

Be
ause of spa
e limitation it is enough to say in this pla
e that in the 
ourse

of this paper multi-obje
tive optimization in the Pareto sense is 
onsidered, so

solving of de�ned problem means determining of all feasible and non-dominated

alternatives from the set (D). Su
h de�ned set is 
alled Pareto set (P) and in

obje
tive spa
e it forms so 
alled Pareto frontier (PF).

Simultaneously, the multi-modal optimization task (assuming minimization)

means determining of all x
+ ∈ D su
h as ∃ǫ > 0∀x ∈ D ‖ x − x

+ ‖< ǫ ⇒
f(x) ≥ x

+
[2℄.

So, proposed transformation of multi-modal (but single-obje
tive) into multi-

obje
tive optimization problem 
onsists in formulating MOOP with original

multi-modal fun
tion and dispersing oriented fun
tion as the se
ond obje
tive

with preserving all original 
onstraints and bounds of 
ourse.

MOOP ≡































Min/Max : fm(x̄), original multi−modal function
Min/Max : fd(x̄), dispersing − oriented function
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2 . . . , N

1
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It 
an be said that su
h transformation unne
essarily 
ompli
ates a problem

to be solved be
ause it makes multi-obje
tive optimization problem from a single-

obje
tive one. However solving multi-modal single-obje
tive problem (�nding

all global and lo
al optima) is also not an easy task�there were lots ni
hing

te
hniques for evolutionary algorithms proposed and none of them is simple and

perfe
t. Paradoxi
ally 
onverting su
h a problem into multi-obje
tive one 
an

lead to 
onstru
ting simple and e�
ient te
hniques for evolutionary algorithms,

espe
ially that we utilize well established and very e�
ient evolutionary multi-

obje
tive algorithms.

3 Variants of dispersion�oriented obje
tive

During our experiments following variants of the se
ond obje
tive have been

tested: �tness sharing, 
entroid method, weighted dispersion 
riteria and 
lus-

tering.

Fitness sharing is 
lassi
al ni
hing te
hnique 
onsisting in (arti�
ial) de-


reasing the value of �tness fun
tion a

ording to the (higher) number of dire
t

neighbors of given individual. Obviously there are some issues and de
isions to

be made (e.g. determining the radius of the neighborhood, determining the dis-

tan
e metri
s and making a de
ision if it is 
al
ulated in the obje
tive or in a

de
ision variable spa
e, determining how �density� is 
al
ulated and what is its

in�uen
e on the �tness fun
tion value).

Dis
ussion regarding above aspe
ts 
an be found for instan
e in [4℄. In its

most popular version it is des
ribed a

ording to the formula fFS(xi) =
f(xi)
mi

,

wheremi is the sum of sharing fun
tion values de�ned asmi =
∑N

j=1 sh(d(xi, xj))
and

f(x) =







1−

(

d(xi,xj)
σsh

)α

, x > 0

0 , x = 0
(1)

where σsh is a radius of the ni
he and α parameter determines the shape of the

�tness sharing fun
tion (usually equals 1).
Centroid based method is a simple in assumption and easy in implemen-

tation method for dispersing the population. The �tness value of the spe
imen

is in
reased a

ording to its (in
reasing) distan
e to the population 
enter of

gravity 
al
ulated as

−→
xc =

∑
N
i=0

−→
xi

N
.

Weighted dispersion 
riteria te
hnique tries to address one of the most

signi�
ant problems observed in evolutionary multi-modal optimization: 
on-


entration of the whole population (whi
h is usually intensifying over the 
ourse

of time/iterations) around �strong� individuals, espe
ially individuals lo
ated

nearby the global optima. As a 
onsequen
e of this phenomena the loss of

the population diversity is observed and the 
han
e for dis
overing (as many

as possible) lo
al optima is lower and lower. So the question is if it is not a

good idea while introdu
ing the se
ond obje
tive and 
onverting multi-modal

single obje
tive problem into multi-obje
tive optimization problem introdu
ing



the se
ond 
riteria as a fun
tion whi
h value would be inversely proportional

to the value of the �rst 
riteria. In su
h a way strong individuals (from the

�rst�
ru
ial obje
tive perspe
tive) will not be able to �dominate� and to at-

tra
t the rest of the population to their neighborhood. Simultaneously those

individuals will not be lost by the population sin
e they are �strong� as regards

the �rst obje
tive (so they won't be dominated in the Pareto domination re-

lation). So assuming the �rst obje
tive as a multi-modal fun
tion F (x) with a

global optima M = F (xmax) the se
ond obje
tive Sweighted 
an be de�ned as

Sweighted = α∗(F (xi)/F (xmax)∗S(xi), where: α is a weighting 
oe�
ient, S(xi)
is the original value of dispersing fun
tion, F (xi) and F (xmax) are 
urrent and
maximum values of the original (multi-modal) fun
tion (i.e. the �rst obje
tive

in fa
t).

One of interesting and (espe
ially taking presented in se
tion 4 sele
ted pre-

liminary results) promising te
hnique is 
lustering. One of the fundamental

question that 
an be 
onsidered is whether any of dispersion-oriented te
hnique

(i.e. the se
ond obje
tive after 
onverting multi-modal into multi-obje
tive opti-

mization task) should be applied globally or �lo
ally� i.e. within windows divid-

ing the whole domain into sub-domain(s).When using 
lustering as a dispersion-

oriented te
hnique �rstly all 
lusters are identi�ed and then the �tness of individ-

uals that are lo
ated outside or at the borders of the 
lusters is in
reased and the

�tness of individuals that are lo
ated inside 
lusters is de
reased proportionally

to their distan
e from the 
enter of the 
luster.

Generally, resear
h on 
lustering te
hniques and geneti
 algorithms was 
on-

du
ted in two areas: using evolutionary algorithms as a 
lustering te
hnique [10,

17, 13, 3℄ and using a 
lustering te
hnique in evolutionary algorithm in order to

�nd multiple solutions of multi-modal (but single 
riteria) problems [16, 15℄. We

used 
lustering te
hnique together with evolutionary algorithm as the me
ha-

nism of dispersing individuals over the solution spa
e (as the se
ond obje
tive)

during solving multi-modal problems 
onverted into multi-obje
tive ones.

For the purposes of making experiments unsupervised k-windows 
lustering

algorithm has been implemented and used [18℄. It is using a window(s)-based

te
hnique for determining possible 
lusters. Algorithm initializes a given number

of 2-dimensional windows over the set of individuals. Then, it is moving on

windows and enlarges them to 
over existing 
lusters. Next, when all moving and

enlarging operations have been performed�
onsolidation is being performed. All

overlapping windows are either 
onsolidated or skipped depending on the number

of individuals belonging to the overlapped windows. In the 
onsequen
e, the

algorithm is able to redu
e reasonably the (large) number of (possible) 
lusters

identi�ed originally at the beginning.

Algorithm 
onsists of two 
ru
ial fun
tions: movement and enlargement. The

goal of movement fun
tion is setting the window as 
lose to the 
enter of the


luster as possible. Movement fun
tion is performed iteratively as long as the

distan
e of the 
enter of new window rea
hes the threshold value Θv (set exper-

imentally).



The goal of enlargement operation is to improve the number of individuals

belonging to the parti
ular window. The window is being enlarged by Θe value

in ea
h dimension. Appropriate enlargement is the one assuring improving the

number of individuals belonging to the given window with the number higher

than Θc threshold value. If the number of new individuals belonging to the given

window is smaller than Θe value then the last step of enlargement fun
tion is

being withdrawn.

The 
ru
ial issue with using 
lusters is determining the number of 
lusters


overing the whole population in the most appropriate way. In k-window algo-

rithm it is determined by the algorithm itself during its work. To a
hieve that

e�e
tively, relatively the signi�
ant number of windows is needed at the begin-

ning. After performing moving and enlarging operation pretty big number of

windows are overlapping. So merging fun
tion is performed then. To do that�

the number of �
ommon� i.e. belonging to overlapped windows individuals is

determined and then:

� if it is larger than the threshold value Θs windows are treated as parts of

the same 
luster and the smaller one is being removed;

� otherwise both windows are merged;

� if windows overlap but neither merging nor eliminating threshold is a
hieved,

it is assumed that windows (their individuals) belong to di�erent 
lusters.

Data: a, Θe,Θm,Θc,Θv ,k
Result: 
lusters c11, c12, . . .
begin

W ←− DetermineInitialWindows(k, a);
for wj ∈W do

while The 
enter or the size 
hange do

movement(Θv, wj);
enlargement(Θe, Θc, Θv, wj);

end

end

merge(Θm, Θs,W )
end

Algorithm 1: Unsupervised k-windows 
lustering algorithm

There is a pretty big number of parameters in�uen
ing signi�
antly the be-

havior of the algorithm i.e.:

� the ratio between the initial number of windows and the number of individ-

uals in population. It should be relatively high to spread windows among

all 
lusters. During experiments it was set to 10%. (For the population with

1000 individuals it was set to 100 windows);

� the initial size of the window�it was determined experimentally;



Data: k,a
Result: a set W of k d− ranges
begin

initialize k d-ranges windows wm1, . . . , wmk ea
h of size a;
sele
t k random points from the dataset and 
enter the d-ranges at these

points

end

Algorithm 2: DetermineInitialWindows

Data: a, Θv ,a d-range w

begin

while The distan
e between m and the previous 
enter of w is greater or

equal to Θv do

�nd the patterns that lie within the d-range w ;


al
ulate the mean m of these patterns ;

set the 
enter of w equal to m ;

end

end

Algorithm 3: Operation movement

� the minimum distan
e between windows at the beginning. It is important

parameter to avoid overlapping windows during initialization;

� the movement threshold (Θv)�it de�nes the minimum distan
e between

the new and the 
urrent gravity 
enter of the window during its movement.

When this value is not a
hieved movement operation is �nished;

� the enlargement in
rease ratio (Θe)�it is a per
entage ratio between the

old and the new window size in 
onse
utive steps of enlargement operation.

During experiments it was set to 10% for ea
h dimension respe
tively.

� enlargement stop ratio threshold (Θc)�the fa
tor de�ning the minimum

in
rease of the number of new individuals in the window when enlargement

operation is performed. During experiments presented in this paper it was

de�ned as enlargement_stop_threshold =
enlargement_increase_ratio

init_window_population_ratio

Data: Θe,Θv ,Θc,a, d-range w

begin

while The in
rease in number of patterns is ≥ Θc% a
ross every di do
for Ea
h 
oordinate di do

while The in
rease in number of patterns a
ross di is ≥ Θc% do

enlarge w a
ross di
movement(Θv, w)

end

end

end

end

Algorithm 4: Operation enlargement



Data: Θm,Θs,a set W of d− ranges
begin

for Ea
h not marked d− range wj ∈ W do

mark wj with label wj ;

if ∃ wi 6= wj ∈W that overlaps with wj then


ompute the number of points n that lie in the 
ommon part of

windows ;

if n/ | wi |≥ Θs and | wi |<| wj | then
disregard wj

end

if 0.5(n/ | wj | +n/ | wi |) ≥ Θm then

mark all wj labeled d-ranges in W with label wj

end

end

end

end

Algorithm 5: Operation merging

� merge ratio (Θs) is the minimum number of 
ommon individuals belonging

to two windows to merge them. During experiments it was set to 80%;

� merge disregard ratio (Θm) is the minimum ratio of 
ommon individuals

belonging to two windows to remove one of them (the smaller one). During

experiments it was set to 90%.

4 Experimental Results

As a multi-modal ben
hmarks Mi
halewi
z's, Rastrigin's and S
hwefel's fun
-

tions have been used. As a se
ond (dispersion related) obje
tive: �tness sharing,


entroids and weighted 
entroids methods have been applied. As experimental

tool jEMO framework has been used

2

. Be
ause of the spa
e limitations only a

few experimental results are here presented.

First results obtained without 
lustering me
hanism are presented. In ta-

ble 1 there are listed the most important parameters of this experiment. As one

may see in �gure 2 transforming 
lassi
al multi-modal optimization problem into

multi-obje
tive one and applying NSGA-II algorithm for solving su
h modi�ed

problem with 
entroids as a dispersion-oriented se
ond obje
tive allows for ob-

taining pretty promising results. They di�er of 
ourse depending on parti
ular

parameters used but generally speaking results are promising.

For 
omparison in table 2 there are listed parameters of sample experiment

where dispersion was applied �lo
ally� i.e. within 
lusters dis
overed by des
ribed

in se
tion 3 k-window 
lustering algorithm. This time experiment was performed

with the use of Mi
halewi
z ben
hmark and typi
al obtained results are pre-

sented in �gure 1. As one may see obtained results are also promising and en-


ouraging for further resear
h.

2


ode.google.
om/p/jemo/



Table 1. Sele
ted parameters taken in experiment 1

Parameter Value

Original fun
tion Rastrigin

Distribution fun
tion Centroid

Optimization algorithm NSGAII

Population size 1000

Number of generations 40

Mutation Radial mutation

Mutation probability 0.5

Strong mutation probability 0.15

Domain 
ontrol type Move to domain border

Spe
imen repairing None

Re
ombination Radial 
rossover

Re
ombination probability 0.5

Domain 
ontrol type Move to border

Spe
imen repairing None

Sele
tion Classi
al tournament

Tournament size ratio 80%

Tournament probability 0.8

Clustering none
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Fig. 1. Results obtained in experiment 1. Found solutions (a) and Pareto frontier (b)

5 Summary and Con
lusions

When evolutionary algorithms for solving multi-modal optimization problems

are applied the 
ru
ial issue to be solved is maintaining population diversity

to avoid drifting and fo
using individuals around single global optima. A lot of

te
hniques have been proposed and used here so far.

Simultaneously, for the last twenty years a lot of e�ort has been made in the

area of evolutionary algorithms for multi-obje
tive optimization. As the result

at least several highly e�
ient algorithms have been proposed su
h as NSGAII

or SPEA2. Obviously, also in this 
ase maintaining of population diversity is



Table 2. Sele
ted parameters taken in experiment 2

Parameter Value

Original fun
tion Mi
halewi
z

Distribution fun
tion Centroid

Optimization algorithm NSGAII

Population size 1000

Number of generations 40

Mutation Radial mutation

Mutation probability 0.5

Strong mutation probability 0.15

Domain 
ontrol type Move to domain border

Spe
imen repairing None

Re
ombination Radial 
rossover

Re
ombination probability 0.5

Domain 
ontrol type Move to border

Spe
imen repairing None

Sele
tion Classi
al tournament

Tournament size ratio 80%

Tournament probability 0.8

Clustering yes

Initial window's size [0.4℄[0.4℄

Initial number of windows 500

Movement threshold (Θv) 0.1

Enlargement in
rease step 0.08

Enlargement stop ratio threshold (Θc) 0.2

Merge ratio (ΘS) 0.9

Merge disregard ratio (Θm) 1


ru
ial but this time taking the spe
i�
ity of optimization in the Pareto sense

there are built-in me
hanisms to solve this issue e�e
tively.

If so, the idea arises of applying state-of-the-art evolutionary multi-obje
tive

optimization algorithms for solving not original multi-modal (but single-obje
tive)

optimization task but its transformed into multi-obje
tive problem form by in-

trodu
ing additional dispersion-oriented 
riteria as it is dis
ussed in se
tion 2.

One of important issues is the de�nition of the dispersion-oriented 
riteria.

In the 
ourse of this paper some of them, i.e. 
lassi
al �tness sharing, 
entroids,

weighted 
entroids have been dis
ussed.

On the basis of some observations taken during experiments the idea of ap-

plying the se
ond obje
tive not globally but lo
ally within some areas of 
on
en-

tration of individuals arose. To put this idea into pra
ti
e k-window 
lustering

algorithm has been implemented and applied and then dispersion-oriented me
h-

anisms have been applied not globally but within formed windows.

Be
ause of the spa
e limitations it is impossible to present 
omprehensive

review of obtained results espe
ially that there are many parameters in�uen
ing

the behavior and e�e
tiveness of the proposed approa
h. Nevertheless it 
an be
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Fig. 2. Results obtained in experiment 2. Found solutions of: (a) multi-modal problem

and (b) multi-obje
tive problem

said for sure that preliminary results are promising and en
ourage for further

resear
h in this area.
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