Comparison of Data Mining Techniques for Money
Laundering Detection System

Rafat Drezewski, Grzegorz Dziuban, Lukasz Hernik, Michat Paczek
AGH University of Science and Technology, Department of Computer Science, Krakéw, Poland
Email: drezew @agh.edu.pl, grzegorz.dziuban4 @ gmail.com, lukaszhernik @ gmail.com, michal.paczek @hotmail.com

Abstract—The work of a police analyst, who inspects money
laundering cases, is strongly based on ability to find patterns
in a large amounts of financial data, consisting of entries
describing bank accounts and money transfers. Out of the need
for tools simplifying process of analyzing such data, came the
Money Laundering Detection System (MLDS). The mechanisms
of money laundering and the system itself are shortly presented
in this paper. The main part focuses on implemented algorithms
that help finding suspicious patterns in the money flow. Two
independent sets of experiments were performed focusing on
different algorithms implemented in MLDS, in which their
performance was measured, compared and summarized.

Keywords—decision support systems; data mining; pattern
analysis

I. INTRODUCTION

The term “money laundering” originated in the twenties
of the previous century, and describes the process of turning
profit from criminal activity into money that seems to originate
from legal sources. Through the following years this process
changed its shape, matured into a precise and complicated
mechanism, consisting of many different techniques. Parallel
to it, police criminal analysis was also perfected in a constant
struggle to keep up with the creativity of criminals.

Nowadays, complexity of analyzing huge amounts of data,
which are used as a basis of investigations, requires use of
dedicated software. The whole process of money laundering
can be described as a procedure in which the offenders make
large number of small money transfers between hundreds of
entities or individuals. Bank records of such activities are the
main source of data for police analysts, but it has been proven
almost impossible to keep track of investigation with use of
simple spreadsheets. Such situation led to creating a new kind
of software, which was based on algorithms that could operate
on vast amount of data, from which only a small part might
be of any importance.

Money Laundering Detection System (MLDS) was devel-
oped as a solution for problems mentioned above. Its main
goal is to analyze large amounts of bank statements and
find patterns that may resemble criminal activity. The whole
process is interactive and iterative, giving the user control over
shape of the search. MLDS was implemented as a module of
CAST/LINK system developed at AGH University of Science
and Technology in cooperation with Polish Police and is
described in more details in [1]-[3].

There are three main steps that need to be done to obtain
any search results—that is importing data, clustering, and
frequent pattern mining. From these, the last one may be
considered a bottleneck, being the most demanding in matter
of computational power, and its implementation is crucial
to the overall performance. In this paper we present four
different algorithms that can be used to obtain valid results. In
section III we present their characteristics and in section IV
the comparison of their performance.

II. AUTOMATIC ANALYSIS OF BANK TRANSFERS

Methods of artificial intelligence include wide area of
techniques for data mining. Wherever there is already a
database, there is a need to analyze these data in order to
discover previously unknown knowledge. The idea of data
mining involves using computer’s computational power to find
patterns in the data that are hidden to a man.

The basis for the software designed to analyze bank trans-
fers is the platform named CAST/LINK, for which plug-
ins with analytical algorithms were implemented [1], [3].
This tool will help criminal analyst, simplifying analysis of
data describing banking operations performed. One of the
extensions of the platform is able to import the data supplied in
form of electronic bank statements, which is then checked for
any suspicious activity (i.e. repetitive sequences of operations
on the accounts), in an attempt to detect money laundering
processes. Mechanisms implemented to perform these func-
tions are based on the use of artificial intelligence methods
for mining large data sets—"data mining” techniques.

The term data mining is often used as a synonym for the
process of knowledge discovery in databases [4]. Methods of
data mining can be divided, very broadly, into six main groups:
discovering associations, clustering, exploring the sequence
patterns, discovering classification, discovering similarities in
the time sequences, detection of changes and variations.

Among the six methods for data mining the most interesting
(from the analysis of bank transfers perspective) is exploring
the sequence patterns that will allow to discover repeated
operations that will be the subject of further analysis.

III. DATA MINING TECHNIQUES

Data mining techniques are algorithms which purpose is to
find a pattern in a large amount of data, from which only a
small amount (or even none in case in which no pattern is

978-1-4799-8386-5/15/$31.00 (© 2015 IEEE

present), might be of any importance [4]. It is easy to imagine
that when dealing with such a problem, deterministic approach
would cause exponential rise of the numerical complexity. Out
of the whole process of analyzing data, which can contain
evidence of criminal activity, finding patterns is the most
crucial step, so it is very natural, that we must be very cautious
in choosing specific implementation of algorithms.

In this paper we present four different algorithms, which
lay at the core of MLDS analytical functionality: Apriori,
PrefixSpan, FP-growth and Eclat.

A. Apriori Algorithm

The Apriori algorithm is one of the first data mining proce-
dures ever created [5]. To fully understand its functionality we
must introduce a few terms. Transaction is an ordered itemset
of elements meeting specified prerequisites. Money transfers
can be divided into transactions on the basis of two criteria—
operations performed in a certain period of time, or within
a specific boundary of value. We can say that a transaction
supports an itemset if its elements occur in that particular
transaction. Sequence is an ordered list of transactions. Support
is a number of transactions supporting a set. Frequent itemset
is a set with support equal or greater to the assumed minimal
support. Elements of an itemset must be unique. Frequent
sequence is a sequence with support equal or greater to an
assumed minimal support. Elements can recur, but the order
must be preserved. Subsequence is a set of items which are
part of a specific sequence. Elements in the set must occur in
the same order as in the sequence, and can not contain any
additional spaces.

The purpose of all pattern-seeking algorithms is to find as
much frequent sequences as possible [5]. The basis for the
Apriori procedure is a discovery that if a set is infrequent, any
superset created from it also is infrequent. This leads us to an
observation that if we tried to build every possible set starting
from one element and adding one element per step, we would
only need to remember in each iteration these sets (or in a more
narrow definition—sequences) which are already frequent.
This simplifies the whole process, reducing complexity, and
giving opportunity to obtain results in a reasonable time.

We can divide the Apriori algorithm into two simple
steps [5]:

1) Finding all frequent itemsets (sets which meet the re-
quired minimal support). If it is the first iteration of
algorithm, we extract all one element itemsets and check
their support.

2) On the basis of itemsets found so far we create candidate
itemsets by adding one element. We then check their
support, and if the set turns out to be frequent we append
them to our solution set.

In a single iteration of the Apriori algorithm we acquire
sequences that are one element longer, so to search the
database for a pattern of length N we need only N iterations.
The most important part of Apriori procedure is generating
candidate itemsets. These are created on the basis of frequent
sequences acquired so far, by combining two rules with the

same prefix, which spares us time spent on searching for every
possible combination of sequences with new elements.

Summarizing, the Apriori algorithm is a simple, yet effec-
tive, procedure, which we can be used for finding patterns in
a large amount of data.

B. PrefixSpan Algorithm

Another approach to data mining problem applied in MLDS
system is the PrefixSpan algorithm [6]. Its main idea is to
divide a database which we are processing into a number of
projections in order to reduce the problem.

PrefixSpan is a variation of previously invented FreeSpan
algorithm, which was an attempt to overcome a few of
disadvantages of Apriori-derived procedures: large number of
candidate sequences, multiple database scans and deteriorating
performance when mining longer sequences [6].

The idea that was introduced in FreeSpan was to recur-
sively project sequence databases to smaller ones, based on
fragments of sequences. Using this approach one could grow
subsequences in logically separated areas that divided data
and frequent sets. Unfortunately, substrings were generated
using any combination in a sequence, which led to a large
performance overhead.

PrefixSpan evolved the mechanism of FreeSpan by taking
into account only prefixes of sequences, and projecting into
new databases only postfix subsequences. This algorithm can
be described in three steps [6]:

1) Finding all sequence patterns with length and size of
one. We avoid sequences with length one, but of a larger
size—these will be found in the next steps. In this part
of procedure we also perform a initial transformation
of database DS, to a form devoided of any infrequent
elements.

2) Second step is based on an observation that any sequence
must begin with one of the elements isolated in previous
step. Keeping this in mind we can partition the database
into N parts (projections), where N is the number of
elements found in the first step.

3) The last part of the procedure analyzes subsets of se-
quences kept in created partitions. For any one-element
sequence with length of one we create a projection of
database with its postfixes. Everyone of these partitions
is then recursively explored to generate sequence pat-
terns. We try to find multi-element frequent sequences
of length one or two, create new projections of database,
and then explore them, until the algorithm terminates.

C. FP-growth Algorithm

FP-growth algorithm is one of the fastest and most popular
methods of discovering frequent sets [4], [7]. It displays better
performance than Apriori algorithm for small minimal support
values and in the case of very dense data sets.

FP-growth algorithm is based on a structure called FP-
tree, to which we must transform our database in order to
execute the procedure. To achieve this we must carry out a
few steps [7]:

1) Find all one-element frequent sets.

2) Compress all transactions by deleting all non-frequent
elements.

3) Sort elements of transactions in a descending support
order.

4) Transform to FP-tree.

FP-tree is a compact and coherent data structure that keeps
information about frequent patterns. Every vertex of a FP-tree
consists of three attributes: name, telling which element does
it represent, number of transactions leading to this particular
vertex and connections to next vertexes with the same names
(or a null element).

When transformation of transaction database to FP-tree is
completed, the FP-growth algorithm analyzes created graph in
order to find frequent sets. In the first step we must find all
paths for a one-element frequent set o, which supersets are
represented by paths that contain at least one vertex «. That
means that for each one-element frequent set « all prefix paths
of the FP-tree, in which set « is the last vertex, must be found.

Main advantages of FP-growth algorithm are [4], [7]:

o Transparent structure of FP-tree, which reduces the ne-
cessity of subsequent database access.

o FP-tree will never become larger than original data set.
Usually data undergoes lossless conversion in the process
of searching for sequences.

e Divide and Conquer—Ileads to partitioning the whole
process of searching into smaller ones, operating on
reduced amount of data.

e No need to re-scan the data set during generation of
candidates, which leads to a large enhancement in per-
formance.

o Usually faster than Apriori algorithm.

e Good for use on transactional data sets, in which there
are no relations between elements.

D. Eclat Algorithm

Eclat is one of the best association rule finding algorithms
in the case of dense databases [8]. It fulfilled the need for a
quick association rule finding algorithm, with a single database
reading, which significantly reduces usage of resources.

Most of association rule finding algorithms, i.e. Apriori
and Eclat, utilize the alphabetical ordering of data sets P(A)
in order to avoid additional, unnecessary checks and conse-
quently eliminate redundant calculations. Order of elements is
defined by their prefixes, which are arranged in a lexicographic
succession.

Eclat algorithm utilizes vertical orientation of data in a
database, where every important information is stored in
a tid-list (sorted list of transaction identifiers, in which a
particular element exists) [8]. A vertical arrangement of data
does not include any additional calculation costs related to
finding potential candidates, as it is in the case of horizontal
orientation of database.

In the case of a parallel version of Eclat algorithm, every
processor calculates all frequent sets in a single equivalency
class before going to another. Thanks to that, local database

is scanned only once. Eclat does not require additional calcu-
lations during building and searching complex data structures,
neither does it generate all subsets of every transaction. It
must be noted, that tid-lists automatically drop unimportant
transactions and with the growth of number of elements
the size of the tid-list shrinks. It is also worth noting that
conversion of a database from vertical to horizontal orientation
proceeds in a very simple way and we can always recover our
initial database.

Eclat algorithm utilizes new clustering techniques for ap-
proximating a set of potentially maximal frequent sets and
finding frequent sets contained within every cluster. Its search-
ing techniques are based on bottom-up strategy.

To calculate support of any set, common part of tid-lists
from its two subsets must be calculated. Frequent sets are
generated by discovering common parts of tid-lists of all
pairs of different atoms and by checking their support. In
a bottom-up approach we recursively repeat this procedure
for subsequent levels of frequent sets found. This process is
executed until all frequent sets are found.

It must be mentioned, that frequent sets are sorted in
ascending order based on their support value, calculated from
tid-list. It reduces number of generated candidate sets. In
Eclat algorithm sorting is executed in each recursive call of
procedure.

Generally speaking, Eclat is one of the best currently avail-
able algorithms for frequent sets mining. Its only downside
is the need to remember (sometimes quite large) amount of
intermediate tid-lists, but rarely we can experience effects of
this flaw.

E. Utilization of Algorithms in MLDS

Money Laundering Detection System uses the above de-
scribed algorithms to find recurring pattern sequences. Data
mining algorithm returns as a result a tree, which presents
sequences that fulfill conditions imposed by parameters sup-
plied by user. List of operations in this structure is a represen-
tation of connections between two bank accounts, which are
elements of a sequence. As we can see in Fig. 1 existence
of transfer between accounts ending with 0057 and 6902
is directly related to operation between accounts 9604 and
5188. Graphical presentation of results should allow police
analyst to discover any suspicious operations. This should also
help tracking numerous transactions which seem to be not
connected with each other but in reality may be linked with a
money laundering process.

An important factor of searching for frequent sequences is
the fact, that order of operations in a single transaction does
not matter. Presented order is provisional and is only supposed
to point out to a narrower area of analysis.

Criminal analyst builds his project in many stages, unfortu-
nately, he often does not have access to all the necessary data
but has to repeatedly ask banks or other officials for them. On
the basis of provided data he can then adapt analysis scope,
and formulate conclusions.

4965294134089116230550057

7553732375 1640686 18266902

9252300468210576888809504 9582069656415678575275188

Fig. 1. Graph of frequent sequences

IV. EXPERIMENTAL COMPARISON OF ALGORITHMS
A. First Study: Apriori and PrefixSpan

In the first study, the comparison of the characteristics of
algorithms was based on additional software module, which
allows to run algorithms in a sequence with parameters chosen
for the analysis. These values of parameters are set on the
basis of supplied value of incremental factor and are always
contained within provided boundaries.

Comparison was based on the following parameters: desired
minimal support for frequent sequences, size of the input file
with the data for analysis, diversity of connections (number of
existing accounts) and type of the algorithm that performs the
analysis.

Experiments were also conducted on the basis of changing
diversity of test data. The third parameter—the diversification
of ties—had an effect on the input files (that had always the
same number of transactions), but also changed the internal
links between the operations and thus changed the number of
existing accounts.

During the next step, algorithm comparing mechanism
presents in tabular form the following data: run-time, memory
usage, volume of input set, logs or algorithms’ run parameters.

Experimental comparison of time performance of algo-
rithms depending on the specified minimum support was made.
In the case of lesser minimal support the candidate set is
greater. Results presented in Fig. 2 shows that in the case
when minimal support is small and thus number of candidates
is larger in consecutive iterations, the Apriori algorithm is
considerably slower than PrefixSpan. The difference is almost
sevenfold with support set to 0.02.

800
700
600
500 -
400 - PrelflxtSpan
200 —=— Apriori
200
100
0

Executlon time (In seconds)

0,020/0,025|0,030(0,035 |0,040|0,045 |0,050
|+ PrefixSpan | 92 2 1 08 | 06|04 |03

|+ Apriori 700 | 50 15 10 8 7 6
Support

Fig. 2. Relationship between run-time and minimal support value

The presented results show that PrefixSpan is characterized
by a much higher efficiency than the basic Apriori algorithm

in the case of discovering sequence patterns. There are two
main reasons:

1) In contrast to methods for pattern discovery based on
the idea of Apriori algorithm, PrefixSpan builds frequent
sequences incrementally on the basis of previously dis-
covered ones.

2) In the step in which we search for frequent sequences,
PrefixSpan analyzes projections of database, which are
considerably smaller than the original one. Moreover, in
subsequent iterations of the algorithm, the size of these
databases significantly diminishes.

It is easy to note, however, that the main cost of PrefixSpan
algorithm lies in the construction of projection databases. If we
could reduce the size and the number of projection data bases
generated by the algorithm, it would significantly improve the
efficiency of the algorithm.

One way to reduce the number and size of projection
databases generated by the algorithm is to use two levels
PrefixSpan projection scheme (called bi-level projection).

Next experiment was aimed at finding out how diversifica-
tion of the number of elements in the transaction impacts the
efficiency and speed of algorithms. The goal was to show the
effects of variation in the number of elements of transactions.
Differentiation of the transaction was carried out on the basis
of the number of underlying accounts, which continue to be
generated by a set of fixed-length transaction. Diversification
has an impact on the length of the candidate sets, and thus
affects the size of candidate sets and the use of memory, and
finally run time.

700
600
500

300 —=— Apriori
200
100

0,020(0,030(0,035(0,040 0,045 0,050 |0,055

Executlon time (In seconds)

‘+Prefix$pan 40 |24 | 15111104 (02 |02
‘*Apricri 600 | 70 | 21 17 | 13 9 6

Fig. 3. Relationship between run time and elements diversification (maximum
100 elements in the transaction)

In Fig. 4 we can see clearly that diversity has an impact
on performance of algorithms. Execution time was greatly
extended when diversity reached 500, due to the long amount
of candidate sets, which directly affect the performance of the
algorithms.

After an increase of the number of elements that could be
appended to a transaction, run times of algorithms significantly
increased. However, we note that the PrefixSpan algorithm,
due to the cutting of branches of early-generated sets of can-
didates behaved much more efficiently than Apriori algorithm.

B. Second Study: Apriori, FP-growth and Eclat

For the second study a number of tests utilizing proprietary
testing software were executed. In each case a random trans-

@
=4
c
8
2 2000
£
=~ 1500 — -
£
= —=— PrefixSpan
E
5 priori
5 500
o
@
<
[in] 0

0,020 | 0,025 | 0,030 [0,035 [0,040 | 0,045 | 0,050
[C=Prefspan| 160 | 114 | e 54 40 32 z
[priori 1526 | 1370 | 684 | 427 | 300 [110 | 50

Support

Fig. 4. Relationship between run time and support value (diversity set to 500)

action database was generated. Tests were focused on number
of elements in a single transaction, number of transactions
and minimal support. Each transaction element was a number
randomly generated in a range from O to a set number. In
Tab. I values of parameters are shown.

TABLE I
VALUES OF PARAMETERS USED IN THE SECOND SET OF EXPERIMENTS

Parameters Frequent sets

No.
of Range|
No. ele- |of

ExpyMin. fof) on vl [L1 L2 L3 |14 |15 |Le |17
no. | support | trans. | o

trans.

0.002
1 (2/1000)[1000 [1-3 | 0-10 |10 |45 |68 |- - - -

0.002
2 |(2/1000)[1000 | 1-4 |0-10 |10 |45 |116 |27 |- - -

0.002
3 [(2/1000){ 1000 | 1-5 |[0-10 |10 (45 |120 | 156 |11 |- -

0.002
4 | (2/1000)| 1000 | 1-8 | 0-10 | 10 |45 |120 |210 |251 107 |8

0.0007
5](2/3000){ 3000 | 1-3 |0-10 [10 |45 |119 |- - - -

0.0007
6 |(2/3000){ 3000 | 14 [0-10 |10 |45 |120 |I121 |- - -

TABLE I
RESULTS OBTAINED IN THE SECOND SET OF EXPERIMENTS

‘ EXP‘ Apriori
no.

FP-
Growth Eclat ‘
2l ms| 3 ms
24 ms| 4 ms
30ms| 4 ms
58ms| 9 ms
26 ms| 27 6 ms
ms
63ms| 9 ms

1 13 ms
2 16 ms
3 21 ms
4 42 ms
5
6

34 ms

Results presented in Tab. II highlight the character of Eclat
algorithm that behaves very good when applied to multi-
element transactions, which means that it is immune to number
of elements in transactions.

For the rest of tests the following naming convention was
established: id—id number, sup—minimal support, tNum—
number of transactions in the database, tE/—maximum num-
ber of elements in the transaction, tRg—range of generated
element values, fgNum—number of returned frequent sets,
Ap[ms]—execution time of Apriori algorithm in millisec-
onds, FP[ms]—execution time of FP-growth algorithm in
milliseconds, Ec/ms]—execution time of Eclat algorithm in
milliseconds.

1 0,0500 (500/10000) 10000 10 1000 0 859 1656 35
2 0,0200 (200/10000) 10000 10 1000 [163 1576 2
3 0,0100 (100/10000) 10000 10 1000 0 154 1626 28
4 0,0050 (50/10000) 10000 10 1000 764 | 10099 | 3326 | 2265
B 0,0020 (20/10000) 10000 10 1000 | 1000 | 15917 | 4359 | 2948
6 0,010 (10/10000) 10000 10 1000 | 1000 | 15823 | 3688 | 2963
7 10,0005 (5/10000) 10000 10 1000 | 1013 | 16237 | 4539 | 3397

Fig. 5. Results for tNum=10000, tEl=10, tRg=1000

tNum: 10000 tEl: 10 tRg: 1000
18000 T T

Apriori
FP-Growth
16000 Eclat -

14000
12000 |-
Time[ms) 10000
8000

6000

4000

2000 |

2 0015 001 0005 0

0
0.05 0045 004 0.035 003 0.025
Support[%]

Fig. 6. Results for tNum=10000, tEl=10, tRg=1000

Results presented in Fig. 5-10 show that Eclat algorithm
is the fastest, but does not perform that well in the case of
sets with a large diversity of elements. This technique has the
largest advantage in the case of dense data sets.

Performed tests show clearly, that Apriori algorithm is out-
performed by FP-growth and Eclat. Apriori does not perform
well in the case of sets with large diversity and large number
of transaction elements. Eclat algorithm increased its distance
from FP-growth during third test (Fig. 9 and Fig. 10) as
compared to the performance displayed during second test
(Fig. 7 and Fig. 8), showing that it performs better in the case
of large sets of data with minimal diversity. As mentioned
before, Eclat algorithm is not influenced by the number of

1 10,0500 (500/10000) 5000 25 1000 [798 567 32
2 0,0200 (200/10000) 5000 25 1000 [177 486 34
3 10,0100 (100/10000) 5000 25 1000 [152 519 26
4 0,0050 (50/10000) 5000 25 1000 975 | 19582 | 1695 | 3570
B 0,0020 (20/10000) 5000 25 1000 | 1000 | 18842 | 2131 | 3760
6 0,010 (10/10000) 5000 25 1000 | 1000 | 18082 | 1321 | 4063
7 0,0005 (5/10000) 5000 25 1000 | 3043 | 18093 | 1337 | 4026

Fig. 7. Results for tNum=5000, tEl=25, tRg=1000

tNum: 5000 tEl: 25 tRg: 1000
30000

Apriori
FP-Growth ---
Eclat -
25000 - 8
20000
Time[ms]
15000 | {4

10000 4

5000 |-

0 = S
05 045 04 035 03 025 02
Support[%]

Fig. 8. Results for tNum=5000, tEl=25, tRg=1000

1 10,0500 (500/10000) 5000 39 942 o 632 587 53

2 10,0200 (200/10000) 5000 39 942 0 223 555 55

3 10,0100 (100/10000) 5000 39 942 673 | 12864 | 2707 [3057
4 10,0050 (50/10000) 5000 39 942 942 21621 3346 5558
5 10,0020 (20/10000) 5000 39 942 942 | 22739 | 3003 | 5644
6 0,010 (10/10000) 5000 39 942 1241 | 21958 | 2716 | 5246
7 0,0005 (5/10000) 5000 39 942 62790 | 862707 | 19920 | 15118

Fig. 9. Results for tNum=5000, tEl=39, tRg=942

tNum: 5000 tEI: 25 tRg: 1000
900000

Apriori
FP-Growth -
800000 L Eclat
700000 1
|
600000 r—
Time[ms] 500000 n
|
400000 H
300000
200000
100000
N I
0.1 009 0.08 007 0.06 005 004 003 002 0.01]
Support[%)
Fig. 10. Results for tNum=5000, tEl1=39, tRg=942
elements in transactions.
1 10,1000 (5/50) 50 3 3 6 1 2)
2 0,2000 (10/50) 50 3 3 5 1 1 1
3 10,4000 (20/50) 50 3 3 3 1 2 0
4 10,8000 (40/50) 50 3 3] 2 o 1
5 10,1000 (20/200) 200 3 3 6 2 3 0
6 0,0667 (20/300) 300 3 3 6 3 3 0
7 0,1000 (30/300) 300 3 3 6 3 2 1
8 0,0667 (20/300) 300 3 3 7 2 3 1
9 0,0500 (20/400) 400 3 3 7 2 4 0
10 10,0020 (2/1000) 1000 3 3 7 a4 9 1
11 10,0010 (2/2000) 2000 3 3 7 8 19 2
12 10,0007 (2/3000) 3000 8] 3 7 12 36 3
13 0,005 (2/4000) 4000 3 3 7 16 193 3
14 10,0004 (2/5000) 5000 3 3 7 20 263 5
15 0,0003 (2/6000) 6000 3 3 7 24 299 5
16 10,0003 (2/7000) 7000 3 3 7 30 566 8
17 10,0002 (2/8000) 8000 3 3 7 35 885 7
18 0,0002 (2/9000) 9000 3 3 7 37 782 8
19 10,0020 (2/1000) 1000 5 10 326 24 32 4
20 10,0010 (2/2000) 2000 5 10 391 33 53 8
21 10,0007 (2/3000) 3000 5 10 424 47 83 11
22 0,005 (2/4000) 4000 5 10 451 221 106 15
23 10,0004 (2/5000) 5000 5 10 461 n 314 17
24 0,0003 (2/6000) 6000 5 10 484 82 555 23
25 0,0003 (2/7000) 7000 5 10 498 9% 827 26
26 10,0002 (2/8000) 8000 5 10 524 114 775 29
27 10,0002 (2/9000) 9000 5 10 559 131 1487 32
28 10,0200 (20/1000) 1000 3 10 51 8 11 2
29 10,0100 (20/2000) 2000 3 10 55 14 24 4
30 0,0067 (20/3000) 3000 3 10 55 22 44 5
31 10,0050 (20/4000) 4000 3 10 55 28 421 7
32 10,0040 (20/5000) 5000 3 10 56 37 360 10
33 0,0033 (20/6000) 6000 3 10 58 45 437 11
34 0,0029 (20/7000) 7000 3 10 72 53 756 13
35 10,0025 (20/8000) 8000 3 10 77 59 698 15
36 0,0022 (20/9000) 9000 3 10 101 68 1255 17
37 0,0200 (20/1000) 1000 5 10 62 1 17 3
38 10,0100 (20/2000) 2000 5 10 161 24 a1 7
39 0,0067 (20/3000) 3000 5 10 175 37 72 10
40 10,0050 (20/4000) 4000 5 10 175 90 463 14
41 10,0040 (20/5000) 5000 5 10 180 62 401 17
42 0,0033 (20/6000) 6000 5 10 196 77 506 20
43 0,0029 (20/7000) 7000 5 10 218 78 584 25
44 0,0025 (20/8000) 8000 5 10 264 104 908 28
45 0,0022 (20/9000) 9000 5 10 311 119 933 32

Fig. 11. Collected results from tests with varying parameters

Fig. 11 shows tests with restricted value ranges for number
of elements in transaction and number of transactions in data
set. As we can see, Eclat algorithm performs really well in the
case of such data sets, proving to be several times faster than
the other methods. Nevertheless it is important to remember
about the characteristics of the data set when we choose
search algorithm. Analyzing the above results, we can say
that Eclat algorithm is, on the average, several times better in
terms of execution time, than Apriori and FP-growth methods

implemented in the Money Laundering Detection System.

V. SUMMARY AND CONCLUSIONS

In this paper we presented four algorithms that are the core
of Money Laundering Detection System. Their overall char-
acteristics were presented from a perspective of incorporating
them into a system for police analysts. We can clearly see why
data mining problems are non-trivial and why searching for
a better solution is always necessary. Construction of Apriori,
PrefixSpan, FP-growth and Eclat algorithms, as well as their
performance were compared, in favor of the last one. The
MLDS consists not only of these four algorithms, but a lot of
other algorithms are still tested and added to the system (for
example social network analysis algorithms [3]).

In the current state the system allows the user to conduct
all actions required for performing the analysis. This includes
importing transactions and accounts from data supplied by
banks (which may exist in many different formats), clustering
them, analyzing in multiple iterations and presenting results in
a graphical form. The MLDS is capable of being an invaluable
aid to money laundering investigators and is being used in
practice by Polish Police.

ACKNOWLEDGMENTS

This research was partially supported by a grant “A system
for collecting and generating information for criminal anal-
ysis and activities coordination of the Border Guard” (No.
DOB-BI06/08/129/2014) from the Polish National Centre for
Research and Development and by Polish Ministry of Science
and Higher Education under AGH University of Science and
Technology Grant (statutory project).

REFERENCES

[1] R. Drezewski, J. Sepielak, and W. Filipkowski, “System supporting
money laundering detection,” Digital Investigation, vol. 9, no. 1, pp. 8-21,
2012.

[2] J. Dajda, R. Debski, A. Byrski, and M. Kisiel-Dorohinicki, “Component-

based architecture for systems, services and data integration in support

for criminal analysis,” Journal of Telecommunications and Information

Technology, no. 1, pp. 67-73, 2012.

R. Drezewski, J. Sepielak, and W. Filipkowski, “The application of social

network analysis algorithms in a system supporting money laundering

detection,” Information Sciences, vol. 295, pp. 18-32, 2015.

J. Han and M. Kamber, Data Mining: Concept and Techniques. Morgan

Kaufmann, 2006.

[5] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in VLDB ’94: Proceedings of the 20th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers Inc., 1994, pp. 487—
499.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and H. M.,

“Prefixspan: Mining sequential patterns by prefix-projected growth,”

Proceedings of the 17th International Conference on Data Engineering,

pp. 215-224, 2001.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate

generation,” in Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas,

USA, W. Chen, J. F. Naughton, and P. A. Bernstein, Eds. ACM, 2000,

pp. 1-12.

[8] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms
for fast discovery of association rules,” in 3rd International Conference
on Knowledge Discovery and Data Mining(KDD), 1997.

3

—

[4

—_

[7

—

