Artificial Intelligence Techniques for the Puerto Rico
Strategy Game

Rafat Drezewski! and Maciej Kleczar?

' AGH University of Science and Technology, Department of Computer Science, Krakéw,
Poland
drezew@agh.edu.pl
2 The School of Banking and Management, Faculty of Management, Finance and Computer
Science, Krakéw, Poland
maciekkl@o2.pl

Abstract. It was always a challenging task to create artificial opponents for strat-
egy video games. It is usually quite easy to discover and exploit their weaknesses
because their tactics usually do not adapt to changing conditions and to human op-
ponent tactics. In this paper two artificial intelligence techniques for well known
Puerto Rico strategy game are proposed. One of them does not rely on any pre-
coded tactics, but tries to dynamically learn and adapt to the changing game envi-
ronment. Both techniques were compared on the basis of results of games played
against each other and also against human expert players.

Keywords: strategy games, artificial intelligence techniques, computer games

1 Introduction

Since the invention of computers, Artificial Intelligence (Al) was always a topic of
high interest. Research on Al was not only related to computer games—in fact it was
rather conducted as a part of academic studies or military development. In the recent
decades, along with the rapid growth of video games industry, Al for games started
to become a necessary part of games development. Almost every published game has
some simple—or more sophisticated—AI algorithms inside, which are responsible for
actions performed by various gaming agents.

In games that require rather agility skills (e.g. shooting games, hack and slash
games), Al development is focused on creating more human-like agents, that are com-
petitive, but not too difficult to compete with, allowing human players to eventually win.
If the task is to calculate some number based on the given variables (e.g. hit the target
accurately) Al player will outplay human player quite easily, so in most cases the main
difficulty is to properly handicap Al player (make it less perfect), in order to achieve
more human-like behavior.

The situation becomes completely different in the case of games that require think-
ing, inventing new tactics, adapting to environment, properly reacting to enemy’s moves.
While the above skills would be appreciated in many types of games, strategy games
definitely require these skills. That is why it was always hard to create a good Al tech-
nique for strategy games [8]]. Al techniques for enterprise video games usually are based

on instructions what to do in particular situations. This is usually achieved by finite state
algorithms or scripts. Skill of such Al depends on how many possible situations the AI’s
creator would predict. However, in most strategy games it is impossible to predict all
situations or combinations, or even get close to it. Such an approach leads to weak Al
technique for games. Usually, Al would behave correctly in some situations and much
worse in the others. Even bigger problem is that such AI will often perform the same
actions in the same or similar situations and its moves would be easy to predict, while
prediction of enemy moves is a key of every successful tactic. That is why a good
player will sooner or later find such weaknesses and exploit them in order to easily win
the game.

The goal of this paper is to present a different approach—AI player that can quickly
adapt and change its tactics dynamically on the basis of changes of the game environ-
ment. This is achieved by using tree search technique, with such adjustments, that would
minimize search time, while keeping results at the satisfying level. Such Al player is ca-
pable of competing with an advanced human player and of making its decisions within
a reasonable time slot, which is very important for a good game experience. In order to
test different proposed Al techniques the computer game based on Puerto Rico board
game was implemented. Also two Al algorithms for that game were proposed and im-
plemented in order to illustrate the difference between more common approach (based
on precoded decisions) and the proposed adaptive approach.

2 Related Work

Due to the complexity of the most of strategy games, creating Al for them was always
very difficult—that is why Al techniques for most enterprise games are quite simple,
usually based on scripts. Such an Al will not be a serious challenger for any advanced
player, therefore the common technique of improving its skills is providing it a number
of advantages (more money, more units, less penalties, etc). However such an approach
is not ideal—basically it is cheating.

Of course, everyone can point to chess game, where Al have achievements of beat-
ing the best human players. But there are some significant differences between chess
game and enterprise strategy games. Chess Al has been a subject of university studies
for almost 70 years. There are a lot of strategies available and that strategies can be
hard-coded into chess Al algorithms. The lower bound of the game-tree complexity of
chess is 10'2°, which makes it possible to search all states for next few moves in a rea-
sonable time, or even prepare a database with some precalculated moves. In most of the
enterprise strategy games environment is totally new and the number of possible moves
is almost infinite. Any brute-force-like methods will fail or require a lot of computa-
tional time to obtain any viable results, while common human player requires such an
Al technique to perform actions almost instantly.

The research is now conducted on methods that would improve static, scripted Al,
without significant effect on the speed of decision making. One of the popular ways
seems to be “Reinforcement learning” [[LO]. This method can be used to optimize single
decision made during the game using historical data. In [[11] usage of this method to op-
timize algorithm for city placement in popular game Civilization 1V is described, while

in [3]] optimization of high-level strategies for that game is presented. Those methods
help improve Al efficiency a bit, but it is obvious that this is only tip of the iceberg.
Both of the above mentioned research works focus on optimization of only one aspect
of the game. Although the second approach allows for focusing on global strategy that
impacts the entire game, it is still just choosing from four scripted tactics.

Another method is called “Dynamic Scripting” [9]. It is quite similar to reinforce-
ment learning—it is focused on adjusting factors of scripts on the basis of historical
data collected from previous runs of those scripts and thus improving their efficiency.

Such methods allow for Al improvement with the use of data coming from competi-
tion against other Al players, however the most important data is collected when playing
against human opponents. In order to improve the learning process during competition
with human players “online learning” can be used. It allows to collect the data generated
directly by human players, accumulate it and adjust strategy of individual Al players.

While those methods are having their successes, the main problem is balance be-
tween exploration and exploitation. Exploitation of collected knowledge is needed to
perform the best actions, while exploration is necessary to collect more data. So such
approach always requires significant number of tries, before the results can be visible—
and this is the situation when only one aspect of the game is taken into consideration.
The more aspects are automated by these algorithms, the more tries are needed to pro-
duce a reasonable version of the Al technique for the given game. This is the main
factor why the game producers do not like such approach. Usually everybody wants a
product which is immediately ready for usage—not after some time (which is even hard
to predict) needed for learning.

The key difference with the algorithm proposed in this paper is that in our technique
adjustment of the strategy is done not on the basis of historical data, but it is based on
simulations performed during the game, while trying to keep Al responses as quick as
possible. Such an approach can be used in a strategy game to adjust several important
decisions in the case of complex games, or even all of them in the case of less complex
ones.

Algorithms like Monte-Carlo Tree Search (MCTS) are also used in games, however
usually either to simulate simple actions, or in games that do not require quick response
times, like Chess or Go. There are three main differences between the approach pro-
posed in this paper, which is based on game tree search, and standard MCTS algorithm:

o Simulations of the moves are performed with the use of scripted Al algorithm,
instead of using random movements.

e Simulations are not performed till the end of the game, but usually end after few
rounds. This requires special formulas to calculate value of moves.

o Exploration versus exploitation balance is shifted in order to minimize the number
of simulations needed to achieve reasonable outcome.

The above differences have one main purpose—minimize the time needed for perform-
ing simulations.

3 Puerto Rico Game

Puerto Rico is a German-style strategy board game, created by Andreas Seyfarth in
2002 and published by Alea [2]. The game quickly reached top ranks in BoardGameGeek
(world’s most popular board game site) and still stays in top10, becoming the oldest
game at the top ranks [1].

There are three main reasons why we decided to focus our research on this game,
and not on any other: lack of randomness, level of rivalry and easy rules. From all
the board games we have played, Puerto Rico is less dependent on randomness, like
throwing a dice or random events. It requires no luck, but pure tactical skills to win
a game. That makes it a good test-bed for Al techniques. The level of rivalry in this
game makes it impossible to create some unique “always good” strategy. Players fight
for control over common pool of various kind of resources and performing good moves
highly depends on opponent’s moves. That additionally increases the difficulty level of
creating Al technique properly reacting to environment changes (which always is a hard
task). Easy rules decrease time spent on creating game engine and coding all possible
situations on the board, allowing to focus on creating Al mechanisms.

In Puerto Rico game we can perform the following actions:

e Raise plantations, which later allows us to produce goods of 5 kinds: corn, indigo,

sugar, tobacco and coffee.

Build production buildings, which combined with plantations, let us produce goods.

Build utility buildings, which gives us several bonuses.

Grant colonists to work on plantations or buildings.

Produced goods can either be sold on the Market, granting doubloons, or shipped

to Europe, granting victory points.

e Every turn we pick one of the 67 roles. Then every player performs action con-
nected with this role, however the player who picked it is granted additional bonus
and also opportunity to perform the given role’s action first. Possible roles are the
following: Settler (raising plantations), Mayor (getting new colonists and transfer
them to plantations/buildings), Builder (builds buildings for the doubloons), Crafts-
man (produces goods), Trader (sells goods for the doubloons), Captain (ships goods
for victory points) and Prospector (no action).

4 Game Engine

The game engine used in this research was created in C# using MS Visual Studio, with
Net 4.5 and WPF frameworks. WPF allows to create a nice graphical interface for the
game, while .Net features, especially generic, allows to create a clean object oriented
code. The engine of the game consists of 3 main modules (classes): Game, GamePage
and Player. First two ones are responsible for general game rules, while Player class
holds all user actions. By default these are human player actions performed with the
use of mouse. Every Al player class derives from Player class, overriding its virtual
functions, which are responsible for making choices (there are 10 such functions). Such
architecture makes it quite easy to add a new Al technique.

S Al Techniques

Low complexity level of the game rules leads to only 10 different possible choices to be
made. Of course these choices always appear within the context of different situation—
giving almost infinite number of possible combinations—but it allows for easier group-
ing of all Al actions. The set of choices include:

Choosing a role;

Choosing a plantation from available plantations stack;

Choosing a building to build from the list of available buildings;
Choosing how to re-allocate colonists over plantations and buildings;
Choosing an additional production (as a bonus to craftsman role);
Choosing which good to sell on the Market;

Choosing which type of goods should be loaded onto ship;

Choosing a ship onto which the goods should be loaded;

Choosing which goods will be spoiled (due to the lack of storage);
Choosing whether to use a Hacienda (an utility building).

The above grouping allowed for creating 10 virtual functions, one for each choice.
Initially these functions were created for a human player and later they were overridden
in Al classes, which provided specific implementation.

For a human player, a specific GUI is launched, which allows for making a choice
with a mouse click. For Al players it is required to create a specific algorithm for each
of those functions.

Two kinds (generations) of Al mechanisms were created for the Puerto Rico game.
First one is similar to the already mentioned scripted Al (with some small adjustments
implemented). The second one does not have any hard-coded strategies—instead it tries
to perform a simulation for choosing best moves.

5.1 Scripted Al

First generation of Al was based mostly on scripts and Bayesian networks, with a little
addition of random algorithms.
Most of the 10 possible actions, mentioned above, have a very similar algorithm:

1. Prepare a list of all possible choices (e.g. all buildings that are possible to build
taking into account the amount of money and placement limitations).
2. Calculate which choice is potentially the best one by adding specific weights to
each of them and then select one of the possibilities on the basis of these weights.
e Add an a priori weight, which is based on some values predefined for each of
the choices.
e Consider multiple cases that can modify weights accordingly to the current
situation on the board.
3. Randomly choose final option, on the basis of weighted list (choice with highest
weight is the most probable).

Slight changes had to be made for re-allocating colonists action. Due to the fact the we
have to place multiple colonists, the above algorithm actually runs in a loop and the
choice is done multiple times, until all colonists are placed.

It should be noticed that there is a slight difference when we compare our approach
to the standard scripted approach—it is randomness factor. It was added to achieve
the lack of predictability, so Al player not always acts in the same way in a similar
situation (e.g. at the beginning of the game). Puerto Rico game offers multiple, almost
equally valuable, choices at many stages of the game, so randomness factor is used in
order to avoid following the same path in the case when there are several reasonable
possibilities. In order to avoid the selection of bad moves, precalculated weights were
added, so it is very unlikely that really bad (low value) moves would be chosen.

Such Al approach is extremely fast, relatively easy to code and slight randomness
factor gives lower rates of predictability. The above approach has also some limitations.
It does not “think”—all the decisions are defined by its creator (so basically it acts like
him in some limited way). Quick (not very sophisticated) implementation of such ap-
proach would result in quite low strategy skills, which would not be really challenging
for advanced human player. This approach needs a lot of work when trying to imple-
ment large number of cases, resulting in performing better moves in different situations
and generally being more challenging for advanced players. Randomness factor, which
protects against the predictability, unfortunately sometimes lowers general skills of Al
player, so it should be used with caution.

5.2 Thinking Al

The second generation of Al is based on game tree searching approach. During the tree
search, simulations of moves are performed with the use of first generation (scripted)
AL In short, the algorithm works as follows:

1. When the choice is to be made, start a simulation. To save some time, start it in the
background as soon as possible (e.g. we can start thinking about which building
should be built, as soon as other player picks the Builder role).

2. Like previously, create a list of all possible choices.
3. Start a simulation:
Create a copy of the game with the current state.
Replace all the players with Scripted Al.
Make a choice (pick one of possible choices from the list).
Let the game run for a turn or few turns (depending on the type of choice).
Estimate the final result. Estimation is different depending on the choice. For
example if it is about choosing a resource to be sold on the Market then the
estimation is quite simple—the amount of money earned is compared to the
amount of money earned by other players. If it is about a role to choose then
player’s virtual score after few rounds of the game is estimated. This estimation
is made on the basis of goods, money and holdings, as well as on current victory
points.

4. Repeat a simulation multiple times for each choice and prepare the statistics.

5. When it is time to make a choice, stop the simulation and choose statistically best
action.

Again, there is a slight difference for re-allocating colonists action. To save some time,
most of the colonists are placed with the use of scripted algorithm (because usually it is
an obvious choice), only for few last colonists simulation is made.

Choosing a Role may be implemented as follows. First, for every possible choice 5
rounds of the game are played. Next the score = . p, Difference (P;) is calculated, where
P(i) are all other players in the game.

Difference is calculated as follows:

Difference = (Pr+20)- (VPO - VP;) + (80— Pr)- (PosO — Pos;) (1)

where Pr is a game progress valued from 0 to 100, VPO are Victory Points of Al, VP;
are Victory Points of i-th player, Pos0 is Virtual Score (based on possession state) of
Al and Pos; is Virtual Score (based on possession state) of i-th player.

Possession state is calculated in the following way:

Pos =(100-D+50-C + Z Quan(R;)(100 + 50 - Val(R;) + Prod(R;) - (200+
R;

100- Val(R;)) +450- O + Z 50+ 25 - Val(Pl;) + Z 150 - Prize(B;)
Pli B;

@)

where D is Quantity of doubloons, C is Quantity of colonists, R; is type of resource,
Quan is Quantity of resource, Val is Value of type of the resource (Corn = 1, Indigo =
2, Sugar = 3, Tobacco = 4, Coffee = 5), Prod is Production capacity of the resource, Q is
Quantity of Quarries, PI; is i-th plantation in possession, B; is i-th building in possession
and Prize is prize for building.

It is worth to notice (Eq. (I)) that game progress is very important. In early stages
of the game it is more important to have high Virtual Score (resources that will allow to
produce Victory Points later), while later it is more important to have Victory Points.

There are of course some pros and cons of such Al technique. Firstly, we can say that
this Al is “thinking”, choices are not coded by the creator—instead they are the results
of simulations. Implementation of this algorithm gives good results and do not require
a lot of work. This approach possesses a highly challenging strategy skills, capable
of competing with experienced human player. It can dynamically react to the changes
taking place on the board and adjust accordingly its tactics. Its actions and tactics are
very hard to predict.

The biggest disadvantage of the second generation Al is that it is dependent on other
(scripted) Al it simply can not work without it. And actually its skills also depend on
how precisely the scripted Al was developed. But even with quite basic implementa-
tion of the first generation Al, the second generation is working very well. The time
needed for performing moves is noticeable, but not annoying for human players. This
technique, when given more time for performing a move, gives slightly better results,
but on any modern PC quite short time is enough for very good performance (it is
usually between one and several seconds for a single action). Implementing estimation
functions—which are most important for making a proper choice—can be quite diffi-
cult. The functions can be obtained by a series of additional simulations or by applying
reinforcement learning technique, which seems to be a next step to be made in order to
further improve AI’s efficiency.

6 Experiments and Results

6.1 Comparison of Both AI Mechanisms

Assumption of the research was that Thinking Al should be a perfect opponent, able
to win with Scripted Al—at least if given enough time for thinking. “Thinking time”
is a maximum time dedicated for performing simulations by Thinking AI. Some of the
functions use the whole time, some only 1/2 or 1/4 of a given time. A series of exper-
iments were carried out in order to test that. The configuration details of the machine
used during experiments are as follows: Intel i5-2500k CPU, 3.30GHz, 16GB RAM
running MS Windows 7. Rules of the experiments were as follows:

e Run tests for 4 possible settings of thinking time: 100ms, 2.5s, 5s,10s.
o Run 100 games for each series, with 4 players, 2 of each Al types.
e Check the game winner and prepare statistics based on that.

Amount of wins related to thinking time

100 —o

90 Thinking Al
80
70

60
50
40
30
20
10 Scriped Al

Amount of wins

0 2500 5000 7500 10000
Thinking Time [ms]

Fig. 1: Comparison of Al mechanisms

Results (see Fig. [I) were a bit surprising. It could be expected that with minimal
thinking time Scripted Al would win because Thinking Al would perform quite random
moves, but in reality it was opposite. Apparently 100ms was enough to perform such a
number of simulations that Scripted Al could be outplayed. With 2.5s thinking time the
second generation Al almost always won.

6.2 Al vs Human Players

Experiments in which AI competed with human players were much more difficult to
carry out. During those experiments, one of the authors of this paper and few other
players with various range of strategy skills played about 50 games.

Most of the games were played by an expert player against 2 Als of both types. In
these games each player received points on the basis of his position at the end of the

Table 1: Results of competition between Als and expert player

[Player | Score in consecutive games [Average score
Al Scripted 1 1]2 |1 1 (2 (1 |2 |3 |1 (2 {2 |2 |1 |3 |1 1 |2 |1 1 1 1.55

Al Scripted2 |2 |1 |2 |2 |1 |2 |1 2 301 |2 |1 |2 (2 |1 |2 |2 |2 |1.65

Al Thinking1 |4 |5 |4 (3 |4 |5 |4 |2 |3 |5 |5 |5 (3 |4 |3 |4 |3 |5 |4 |5 |4

Al Thinking2 |3 |3 |5 (5 (3 |4 (3 |4 |5 (4 |4 |3 (4 |2 |5 |5 |5 [4 (3 |4 |39

Expert Player |5 |4 |3 (4 |5 |3 |5 |5 |4 (3 |1 |4 (5 |5 |4 |3 |4 (3 |5 |3 |39

game (5 points for winning, 4 for second place, etc.) Then statistical data was computed
on the basis of the results of 20 games in order to compare performance of human expert
player during competition against different Als (see Table[T)). As we can see, Scripted
Al had no chance at all, while Thinking Al scored almost the same as expert player.
Statistics from the games played against beginner or intermediate human player are
currently not available because the focus of this research was to create the best possible
Al player capable of competing with an expert human player. However a few games
were played also against less advanced human players and typical results of one of such
games are presented in the Fig.[2]

Game ended after 19 rounds!

Ada (Al Il) - 67 victory points (export: 32, building: 20, special: 15), 6 doubloons, 12 goods
Ela (Al'll) - 63 victory points (export: 30, building: 20, special: 13), 3 doubloons, 6 goods
Player 1 - 47 victory points (export: 33, building: 14, special: 0), 3 doubloons, 13 goods
Zosia (Al 1) - 35 victory points (export: 26, building: 9, special: 0), 4 doubloons, 5 goods
Maniek (Al I) - 34 victory points (export: 13, building: 21, special: 0), 11 doubloons, 4 goods

The winner is Ada (Al I1). Congratulations!

Fig. 2: Typical results of competition between intermediate human player and various
Als (Al I is Scripted Al AI Il is Thinking AI)

The following observations may be formulated on the basis of the obtained results.
Scripted Al is a good opponent for beginning player or a player with lower strategy
skills. Intermediate player will often win with the Scripted Al, but winning against
Thinking AI will be almost impossible. Human player needs to possess good strategy
skills to be able to win with it at all. Advanced player is usually capable of beating
the first generation Al and sometimes the second generation Al. Only very good player
would win with Thinking AI more often, but still not always. On the basis of the per-
formed experiments it is safe to assume that Thinking AI’s skills are similar to such an
experienced human player.

7 Summary and Conclusions

The Al players proposed in this paper were, more or less, performing in accordance
with our expectations. Two types of Al, with different playing styles and skills, can
ensure a good game experience both for beginner and advanced human players. It is
really hard to get bored when playing against such Al players—actions of both of them
are rather hard to predict. Especially Thinking Al is very promising technique because
it can adapt and dynamically react to other players’ actions.

It is worth to notice that there are still possibilities to improve both AI mechanisms.
Improving Scripted Al relies on tests and observation. We can try to improve con-
ditional statements and weights calculations used during decision making. This tech-
nique can be also greatly improved by adding more conditional statements, taking into
account additional situations. Possibly, also dynamic scripting could be used here, how-
ever it would require much more programming effort.

Improving Thinking AI can be done automatically when improving Scripted Al
Improvement of Scripted Al would impact simulation results because moves would be
performed against stronger opponents. Another way to improve Thinking Al is to create
better formulas for approximation of the best moves. The most important thing would
be more precise approximation of a real value of opponent player’s assets. It could
be done by performing additional simulations or by applying reinforcement learning
technique. The goal would be to find better ways of valuing different kind of opponent
players’ properties, for example how to value buildings, plantations and colonists as
compared to doubloons and victory points. Creating better formula could eventually
lead to choosing much better moves from the simulated ones.

The proposed Thinking Al technique, of course when correctly implemented, seems
to be highly effective and significantly improving skills of Al player. Due to the fact that
it is based on the standard scripted Al, it could be used along with other known tech-
niques (that improve efficiency of the scripted Al) and thus made even more challenging
for human players.

In the future research we plan also to adapt and use the techniques proposed in
this paper in agent-based strategy and tactical games, where agents are individuals in-
teracting independently with each other and with an environment. In such a case Al
mechanisms are encapsulated within each agent and thus many different Al techniques
can be coherently combined together (for example evolutionary algorithms, neural nets,
multi-objective evolutionary optimization techniques, etc.)—we have already used such
approach with great success in computational systems [6/5/7/4] and it seems that it can
also bring many advantages to the construction of Al for computer games. The simula-
tion technique proposed in this paper could be used by each agent in order to assess its
future moves and to select the best one.

Acknowledgments. This research was partially supported by Polish Ministry of Sci-
ence and Higher Education under AGH University of Science and Technology, Fac-
ulty of Computer Science, Electronics and Telecommunications statutory project no.
11.11.230.124.

References

10.

11.

. BoardGameGeek. https://boardgamegeek.com/browse/boardgame
. Puerto Rico (board game). https://en.wikipedia.org/wiki/Puerto_Rico_(board_

game)

. Amato, C., Shani, G.: High-level reinforcement learning in strategy games. In: W. van der

Hoek et al. (ed.) Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2010). pp. 75-82. IFAAMAS (2010)

. Cetnarowicz, K., Drezewski, R.: Maintaining functional integrity in multi-agent systems for

resource allocation. Computing and Informatics 29(6), 947-973 (2010)

. Drezewski, R., Sepielak, J.: Evolutionary system for generating investment strategies. In: M.

Giacobini, et al. (ed.) Applications of Evolutionary Computing, EvoWorkshops 2008. LNCS,
vol. 4974, pp. 83-92. Springer-Verlag, Berlin, Heidelberg (2008)

. Drezewski, R., Siwik, L.: Multi-objective optimization technique based on co-evolutionary

interactions in multi-agent system. In: M. Giacobini, et al. (ed.) Applications of Evolutionary
Computing, EvoWorkshops 2007. LNCS, vol. 4448, pp. 179-188. Springer-Verlag, Berlin,
Heidelberg (2007)

. Drezewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In:

Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance, vol. 1, pp.
271-299. Springer-Verlag, Berlin, Heidelberg (2008)

. Millington, 1., Funge, J.: Artificial Intelligence for Games. CRC Press (2009)
. Spronck, P., Ponsen, M.J.V., Sprinkhuizen-Kuyper, 1.G., Postma, E.O.: Adaptive game Al

with dynamic scripting. Machine Learning 63(3), 217-248 (2006)

Szepesviri, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Aurtificial
Intelligence and Machine Learning, Morgan & Claypool Publishers (2010)

Wender, S., Watson, L.: Using reinforcement learning for city site selection in the turn-based
strategy game Civilization IV. In: Hingston, P., Barone, L. (eds.) CIG. pp. 372-377. IEEE
(2008)

https://boardgamegeek.com/browse/boardgame
https://en.wikipedia.org/wiki/Puerto_Rico_(board_game)
https://en.wikipedia.org/wiki/Puerto_Rico_(board_game)

	Artificial Intelligence Techniques for the Puerto Rico Strategy Game
	Introduction
	Related Work
	Puerto Rico Game
	Game Engine
	AI Techniques
	Scripted AI
	Thinking AI

	Experiments and Results
	Comparison of Both AI Mechanisms
	AI vs Human Players

	Summary and Conclusions

