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Abstract—The agent-based approach to modeling and sim-
ulation (ABMS) has recently become very popular, especially
among researchers dealing with biological and social simulations.
The ABMS approach allows for modeling complex phenomena,
resulting from interactions between many individuals, in a very
natural way. The agent-based approach is especially useful when
it comes to simulating emergent phenomena, which usually arise
from interactions between a large number of individuals, each
of which acts according to some simple patterns or rules. In this
paper, two agent-based models of species formation processes are
presented and experimentally verified. The first one is a model in
which speciation takes places as a result of geographic barriers
that split the population. In the second the speciation results
from existence and interactions between flocks of individuals,
which presence restricts mating between individuals from the
same species. During experiments, the ecosystem diversity and
the number of existing species are measured using entropy-based
indicators.
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population diversity, entropy-based diversity measures

I. INTRODUCTION

The agent-based approach to modeling and simulation
(ABMS) has become popular among researchers dealing
with models of complex, real-world phenomena [1]–[4]. The
ABMS approach allows for relatively easy modeling of com-
plex biological and social phenomena because it provides all
the necessary notions and mechanisms like the environment,
autonomously acting individuals (agents), passive objects and
relations between agents, objects, and the environment. Thus,
it allows modeling of complex biological and social phe-
nomena in a very natural way, especially when it comes to
investigating the emergent behavior [5]–[7].

Agent based approach is particularly useful when we want
to model and simulate biological phenomena [1], [3], social
mechanisms and relations [8], economic mechanisms [9],
[10], political mechanisms and interactions [11], demographic
phenomena [12], transportation systems and road traffic [13].

In this paper, the multi-agent system with biological and
social mechanisms (BSMAS) [14] is used to model the speci-
ation phenomena which occur in natural populations. BSMAS
was developed as an extended and improved version of the
co-evolutionary multi-agent system (CoEMAS) [15], which
allowed for the development of computational agent-based
systems with co-evolutionary and sexual selection mecha-
nisms. CoEMAS was in turn inspired by the evolutionary
multi-agent system (EMAS) proposed in [16], which allowed

for agent-based evolutionary computations. Co-evolutionary
multi-agent systems were applied to multi-modal optimiza-
tion [17], multi-objective optimization [18] and generating
investment strategies [19].

The BSMAS approach allows for modeling all kinds of
biological phenomena—including co-evolution, sexual selec-
tion and speciation—and social relations and structures. It also
provides the possibilities of integrating within a single simu-
lation system many different bio-inspired artificial intelligence
techniques, like evolutionary algorithms, neural networks, and
artificial immune algorithms. The BSMAS approach was suc-
cessfully used for modeling and simulation of sexual selection
and pair formation mechanisms and investigating their impact
on speciation processes [20].

The speciation is a biological term to specify the processes
of species formation caused by different factors [21], [22]. The
most popular are allopatric models in which the speciation
takes place as a result of splitting the population of a single
species into several sub-populations caused by the appearance
of geographical barriers between them. Such separation limits
the flow of genes between sub-populations and ultimately
may lead to the reproductive isolation and emergence of new
species.

The second model of speciation is called parapatric. In this
case, sub-populations of a single species live within partially
overlapping habitats. Such conditions also limit the flow of
genes between sub-populations and may lead to speciation.

And finally, the third model of speciation, which is called
sympatric. Here, the speciation takes places as a result of co-
evolution or sexual selection. In this model, the space factor
does not play any role in the speciation. The only factor
causing the speciation is the selective pressure caused by
interactions between species or sexes. In some conditions, it
may create the reproductive isolation of sub-populations and
trigger the emergence of new species.

In this paper, the BSMAS approach is used to prepare
simulation models of allopatric and parapatric speciation. The
first one is caused by geographical barriers while the second
one by flocking mechanism. As opposed to the previous
work [14] the carried out simulation experiments will be aimed
at verifying the impact of different speciation models on the
course of speciation processes. The entropy-based indicators
will be used to analyze the course of speciation and how it
affects the diversity of the ecosystem.



II. THE AGENT-BASED SIMULATION MODELS

Both models presented in this section are based on BSMAS
concept [14]. The model is composed of the environment,
which has a graph structure. The agents are located within
the environment and can interact with it and with each other.
There is a resource in the system, which is needed by the
agents for performing all of their actions, like reproduction
and migration. The total amount of resource in the system is
constant, so it serves as a mechanism of limiting the maximal
number of agents that can live within the simulated ecosys-
tem [23]. Each agent can obtain some amount of resource from
the environment. An agent which runs out of resources dies
and is removed from the system.

The reproduction takes place when a given agent has enough
resources and when it can find a partner, which is also ready
for the reproduction. An agent searches for partners within the
same node of the environment, so the number of agents that
it can interact with is limited. Children are produced with the
use of intermediate recombination [24] and mutation with self-
adaptation [25]. Parents give some amount of their resource
to their children during the reproduction.

In the following sections, two agent-based models are
presented. The first one uses the mechanism of allopatric spe-
ciation, in which there exist geographical barriers separating
sub-populations. In the second one, the speciation is caused by
flocking mechanism, which limits the flow of genes between
sub-populations.

A. The Model with Geographical Barriers

In the multi-agent system with geographical barriers (aB-
SMAS) the speciation takes place as a result of allopatric
speciation [14]. In allopatric speciation model, a new species
emerges as a result of evolving sub-populations separated by
a geographical barrier. In such conditions, the flow of genes
is reduced, and after some time the sub-populations become
reproductively isolated and in fact, new species arise.

In the proposed aBSMAS model the geographical barriers
are simulated by a very high cost of migration between nodes
of the environment (see fig. 1). It causes that practically there
are no such agents that can migrate because none of them
has enough resources to do that. Migrations are theoretically
possible but very rare. Thus sub-populations evolve separately,
and gradually distinct species emerge.

The multi-agent system with geographical barriers (aBS-
MAS) is defined in the following way:

aBSMAS(t) =
〈
EnvT (t) =

{
et
}
, Env(t) =

{
env

}
,

ElT (t) = V ertT (t) ∪ObjT (t)∪
AgT (t), ResT (t) =

{
rt
}
, InfT (t) = ∅,

Rel(t), Attr(t) =
{
genotype

}
, Act(t)

〉 (1)

EnvT (t) is the set of environment types. Env(t) is the set
of environments. ElT (t) is the set of system’s element types.
V ertT (t) =

{
vt
}

is the set of vertex types. ObjT (t) = ∅
is the set of object types. AgT (t) =

{
ind
}

is the set of
agent types. ResT (t) is the set of resource types (the amount
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Fig. 1. Multi-Agent System with Geographical Barriers

of resource of type rest(t) ∈ ResT (t) will be denoted as
rrest(t)). InfT (t) is the set of information types (information
of type inft(t) ∈ InfT (t) will be denoted as inf inft(t)).
Rel(t) is the set of relations between sets of agents, objects,
and vertices. Attr(t) is the set of attributes of agents, objects,
and vertices (in the case of the aBSMAS system, there is only
one attribute genotype). Act(t) is the set of actions that can
be executed by agents, objects, and vertices.

The set of actions is defined as follows:

Act =
{
die, reproduce, get_resource,

give_resource,migrate
} (2)

Environment type et is defined as follows:

et =
〈
EnvT et = ∅, V ertT et = V ertT,

ResT et = ResT, InfT et = ∅
〉 (3)

EnvT et ⊆ EnvT is the set of environment types that may
be connected with the environment of type et. V ertT et ⊆
V erT is the set of types of vertices that may exist within
the environment of type et. ResT et ⊆ ResT is the set of
resource types that may exist within the environment of type
et. InfT et ⊆ InfT is the set of information types that may
exist within the environment of type et.

Environment env of type et is defined as follows:

env =
〈
grenv, Envenv = ∅

〉
(4)

The directed graph grenv is defined as follows:

grenv =
〈
V ert, Arch, cost

〉
(5)

V ert is the set of vertices. Arch is the set of arches. Function
cost computes an amount of resource, that an agent migrating
between two nodes would lose.

Vertex type vt is defined in the following way:

vt =
〈
Attrvt = ∅, Actvt =

{
give_resource

}
,

ResT vt = ResT, InfT vt = ∅, V ertT vt =

V ertT,ObjT vt = ∅, AgT vt = AgT
〉 (6)



Attrvt ⊆ Attr is the set of attributes of vt type of vertex.
Actvt ⊆ Act is the set of actions, which vertex type vt can
execute. ResT vt ⊆ ResT is the set of resource types, which
can exist within vertex type vt. InfT vt ⊆ InfT is the set
of information, which can exist within vertex type vt. V tvt is
the set of types of vertices that can be connected with vertex
type vt. ObjT vt ⊆ ObjT is the set of types of objects that
can be located within vertex type vt. AgT vt ⊆ AgT is the set
of types of agents that can be located within vertex type vt at
the beginning of its existence. give_resource is the action of
giving a certain amount of resource to an agent.

Each vertex vert ∈ V ert is defined as follows:

vert =
〈
Attrvert = ∅, Actvert = Actvt, Resvert ={

resvert
}
, Infvert = ∅, V ertvert,

Objvert = ∅, Agvert
〉 (7)

Attrvert ⊆ Attr is the set of attributes of vertex vert.
Actvert ⊆ Act is the set of actions, which vertex vert can
execute. Resvert is the set of resources of types from ResT
set. Infvert is the set of information of types from InfT set.
V ertvert is the set of types of vertices from V ertT set that
are connected with vertex vert. Objvert is the set of objects
of types from ObjT set that are located within vertex vert.
Agvert is the set of agents of types from AgT set that are
located within vertex vert. resvert is the amount of resource
of type rt that is possessed by vertex vert. V ertvert is the
set of sixteen vertices connected with the vertex vert. Agvert

is the set of agents located within the vertex vert.
There is only one type of agents in the system:

ind =
〈
Glind =

{
gl1, gl2, gl3

}
, Attrind ={

genotype
}
, Actind =

{
die, reproduce,

get_resource,migrate
}
, ResT ind = ResT,

InfT ind = ∅, ObjT ind = ∅, AgT ind = ∅
〉 (8)

Glind is the set of goals of ind agent. Attrind ⊆ Attr is
the set of attributes of ind agent. genotype contains two in-
dependent variables and the parameters of mutation (standard
deviations). Actind ⊆ Act is the set of actions, which ind
agent can execute. ResT ind ⊆ ResT is the set of types of
resources, which can be used by ind agent. InfT ind ⊆ InfT
is the set of information types, which can be used by ind agent.
ObjT ind ⊆ ObjT is the set of types of objects that can be
located within ind agent. AgT ind ⊆ AgT is the set of types
of agents that can be located within ind agent.
gl1 is the goal “get resource from the environment”, gl2 is

the goal “reproduce”, and gl3 is the goal “migrate to another
vertex”. die is the action of death (agent dies when it runs out
of resources), reproduce is the action of reproducing (with the
use of recombination and mutation operators), get_resource
is the action of getting some amount of the resource from
the environment, and migrate is the action of migrating to
another vertex.

Agent agind (of type ind) is defined as follows:

agind =
〈
Glag,ind = Glind, Attrag,ind = Attrind,

Actag,ind = Actind, Resag,ind =
{
rag,ind

}
,

Infag,ind = ∅, Objag,ind = ∅, Agag,ind = ∅
〉 (9)

Glind is the set of goals, which ind agent tries to realize.
Attrind ⊆ Attr is the set of attributes of ind agent. Actind ⊆
Act is the set of actions, which ind agent can execute in order
to realize its goals. Resind is the set of resources (of types
from ResT set) which are used by ind agent. Inf ind is the set
of information (of types from the InfT set), which ind agent
can possess and use. Objind is the set of objects (of types
from ObjT set), that are located within ind agent. Agind is
the set of agents (of types from the AgT set), that are located
within ind agent.

Notation Glag,ind means “the set of goals of agent ag of
type ind”. rag,ind is the amount of resource of type rt that is
possessed by agind agent.

The set of relations is defined as follows:

Rel =

{
{get_resource}−−−−−−−−−−→
{get_resource}

}
(10)

The relation
{get_resource}−−−−−−−−−−→
{get_resource}

is defined as follows:

{get_resource}−−−−−−−−−−→
{get_resource}

=

{〈
Agind,{get_resource},

Agind,{get_resource}
〉} (11)

Agind,{get_resource} is the set of agents of type ind capable
of performing action get_resource. This relation represents
competition for limited resources between ind agents.

B. The Model with Flock Formation Mechanism

In the multi-agent system with flock formation mechanism
(fBSMAS) [14] the speciation takes place as a result of flock
formation, which restricts mating and causes that the flow
of genes within the population is limited (see fig. 2). A
ready-for-reproduction agent searches for a partner among the
individuals that are members of the same flock. An agent can
migrate between flocks, trying to find the one that is located
within the same ecological niche.

Flocks can merge and split. Two flocks merge when they
are located within the same ecological niche. A flock can also
be divided into two flocks when some of the agents from the
given flock are situated within different niche than the majority
of the flock. An agent that is located outside the niche, within
which majority of the individuals is located, tries to migrate
to another flock, which is situated in its niche or creates its
flock.

Flocks compete for limited resources that are located within
the environment. At the same time, members of the given flock
compete for limited resources between themselves. Flocks can
migrate within the environment, and they lose some of their
resources for such activity.
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Fig. 2. Multi-Agent System with Flock Formation Mechanisms

The meaning of all symbols in the following equations
is exactly the same as in the case of the aBSMAS model
presented in Section II-A.

The multi-agent system with flocks fBSMAS is defined
in the same way as the aBSMAS system (compare Equa-
tion (1)). Only AgT and Act sets are defined in a different
way. The set AgT =

{
flock, ind

}
and the set of actions is

defined as follows:

Act =
{
die, reproduce, get_resource,

give_resource,migrate, search_flock,

merge_flocks, split_flock
} (12)

Environment type et and environment env are defined in
the same way as in the case of aBSMAS system (compare
Equations (3) and (4)).

Vertex type vt is also defined as in the case of aBSMAS
system (compare Equation (6)). However, the meaning of
give_resource action from the Actvt =

{
give_resource

}
set is now different. It is the action of giving the resource
to a flock. Also, the definition of AgT vt =

{
flock

}
set is

different. Now the set includes only flock type of agents.
Vertex vert ∈ V ert is defined as in the case of aBSMAS

system (compare Equation (7)). However, there are two dif-
ferences. The set V ertvert contains four vertices connected
with the vertex vert (compare Figure 2). Agvert is the set of
agents of type flock located within the vertex vert.

There are two types of agents in the system: flock and ind.
flock type of agent is defined in the following way:

flock =
〈
Glflock =

{
gl1, gl2, gl3

}
, Attrflock = ∅,

Actflock =
{
get_resource, give_resource,

migrate,merge_flocks
}
, ResT flock =

ResT, InfT flock = ∅, ObjT flock = ∅,
AgT flock =

{
ind
}〉

(13)

gl1 is the goal “get resource from the environment”, gl2 is
the goal “merge with another flock”, and gl3 is the goal
“migrate to another vertex”. get_resource is the action of

getting resource from the environment, give_resource is the
action of giving the resource to ind type agent, migrate is
the action of migrating to another vertex, and merge_flocks
is the action of merging with another flock.
ind type of agent is defined in the following way:

ind =
〈
Glind =

{
gl4, gl5, gl6, gl7

}
, Attrind ={

genotype
}
, Actind =

{
die, reproduce,

get_resource,migrate, search_flock,

split_flock
}
, ResT ind = ResT, InfT ind =

∅, ObjT ind = ∅, AgT ind = ∅
〉

(14)

gl4 is the goal “get resource from the flock agent”, gl5 is
the goal “reproduce”, gl6 is the goal “migrate to another
flock”, and gl7 is the goal “split flock”. die is the action of
death—agent dies when it runs out of resources; reproduce
is the action of reproducing with the use of recombination
and mutation operators; get_resource is the action of getting
the resource from flock type agent; migrate is the action
of migrating to another flock; search_flock is the action of
searching for another flock, which is located within the same
ecological niche; split_flock is the action of creating a new
flock.

Agent agflock (of type flock) is defined as follows:

agflock =
〈
Glag,flock = Glflock, Attrag,flock = ∅,

Actag,flock = Actflock, Resag,flock ={
rag,flock

}
, Infag,flock = ∅,

Objag,flock = ∅, Agag,flock
〉 (15)

Notation Glag,flock means “the set of goals of agent ag of
type flock”. rag,flock is the amount of resource of type rt
that is possessed by the agent agflock. Agag,flock is the set
of agents of type ind that currently belong to the flock agent.

Agent agind (of type ind) is defined as follows:

agind =
〈
Glag,ind = Glind, Attrag,ind = Attrind,

Actag,ind = Actind, Resag,ind =
{
rag,ind

}
,

Infag,ind = ∅, Objag,ind = ∅, Agag,ind = ∅
〉 (16)

rag,ind is the amount of resource of type rt that is possessed
by the agent agind.

The set of relations is defined in the same way as in the
case of aBSMAS system (compare Equation (10)).

The relation
{get_resource}−−−−−−−−−−→
{get_resource}

is defined as follows:

{get_resource}−−−−−−−−−−→
{get_resource}

=

{〈
Agflock,{get_resource},

Agflock,{get_resource}
〉
,〈

Agind,{get_resource},

Agind,{get_resource}
〉}

(17)

Agflock,{get_resource} is the set of agents of type flock capa-
ble of performing action get_resource. Agind,{get_resource}



is the set of agents of type ind capable of performing action
get_resource. This relation represents competition for limited
resources between agents of the same type.

III. EXPERIMENTAL RESULTS

In this section, the results of experiments with the proposed
agent-based models of speciation are presented. During the
experiments, Waves fitness landscape was used. The entropy-
based indicators were used to assess the ecosystem diversity.

Waves fitness landscape is given by the following equa-
tion [26]:

f4(~x) = −
((
0.3 ∗ x1

)3 − (x22 − 4.5 ∗ x22
)
∗ x1 ∗ x2−

4.7 ∗ cos
(
3 ∗ x1 − x22 ∗

(
2 + x1

))
∗

sin
(
2.5 ∗ π ∗ x1

))
x1 ∈ [−0.9; 1.2], x2 ∈ [−1.2; 1.2]

(18)

Waves fitness landscape has many irregularly spaced local
optima (see Fig. 3).
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Fig. 3. Waves fitness landscape

The entropy-based indicator of ecosystem diversity [27] (the
so called “true diversity” or “Hill numbers”) is defined as

follows D ≡
(∑S

i=1 p
q
i

)1/(1−q)
. Variable q is the order of

diversity, and it affects the sensitivity of the above indicator
to common and rare species. For q = 0, the indicator
is insensitive to species commonness, and we obtain the
species richness indicator [27]: D0 =

∑S
i=1 p

0
i . For q = 0.5

rare species are preferred [27]: D0.5 =
(∑S

i=1

√
pi

)2
. For

q = 1 neither rare nor common species are preferred. In
this case, equation for D is undefined, but there exist its
limit, which is the exponential of Shannon entropy [27]:
D1 = exp

(
−
∑S

i=1 pi ln(pi)
)

. For q = 2 common species

are preferred [27]: D2 = 1/
(∑S

i=1 p
2
i

)
.

The results of experiments with the allopatric model are
shown in Figure 4. As it can be seen, there is only one species
in the ecosystem in step 0 (Figure 4(a)). In the following
steps, the speciation processes can be observed. The values of
entropy-based indicators show that neither rare nor common
species dominate in the ecosystem. It can also be observed that
from step 2500 (Figure 4(c)) the number of distinct species
in the ecosystem stabilizes at the level of 6. So, in the case
of allopatric speciation, the speciation takes place as expected,
and the diversity within species that emerged is quite balanced.
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Fig. 4. The processes of species formation for allopatric mechanism

In the case of parapatric speciation model with flocking
mechanism species also emerge during simulation (Figure 5).
In step 0, there is only one species in the ecosystem (Fig-
ure 5(a)). It can be observed that in step 500 there are twelve
distinct species (Figure 5(b)). In step 2500 the number of
species drops to seven (Figure 5(c)) and then it raises again
to twelve (Figure 5(d)). Such fluctuations in the number of
distinct species result from the splitting and merging of flocks.
It shows that ecosystem diversity measured as the number
of distinct species is quite unstable when flocks are formed.
However, finally, the ecosystem diversity is quite high with
rare species slightly dominating in the ecosystem.

IV. SUMMARY AND CONCLUSIONS

In this paper, the bio-social multi-agent system (BS-
MAS) [14] was used to develop two speciation models. The
first one was the agent-based model of allopatric speciation.
The second one was the agent-based model of parapatric spe-
ciation caused by the existence of flocks within the population.

The experiments showed that in both cases the speciation
took place. However, the course of the processes taking place
in the ecosystem was different in each case. In the case of
allopatric speciation, six distinct species were formed. The
population diversity within each species was kept at an average
level. The values of entropy-based indicators showed that
neither rare nor common species dominated the ecosystem.

In the case of the parapatric model with flocking mechanism
the speciation also took place. It could be observed that a larger
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Fig. 5. The processes of species formation for flocking mechanism

number of species emerged in the ecosystem than in the case
of the allopatric model. The entropy-based indicators show that
twelve distinct species emerged and rare species prevailed in
the ecosystem.

The carried out experiments have proven that agent-based
models can provide useful information about emergent bio-
logical phenomena, and in-depth analyzes are possible in the
case of phenomena that are difficult to explore differently.

The future research will include the further application of
BSMAS approach in the area of evolutionary biology. Mainly,
other models of speciation will be examined with the use of
agent-based simulation models.

ACKNOWLEDGMENTS

The research presented in this paper received financial
support from AGH University of Science and Technology
Statutory Project.

REFERENCES

[1] V. Grimm and S. F. Railsback, Individual-based Modeling and Ecology.
Princeton University Press, 2005.

[2] N. Gilbert, Agent-based models. SAGE Publications, 2008.
[3] V. Grimm and S. F. Railsback, Agent-Based and Individual-Based

Modeling: A Practical Introduction. Princeton University Press, 2011.
[4] U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling:

Modeling Natural, Social, and Engineered Complex Systems with Net-
Logo. The MIT Press, 2015.

[5] R. K. Sawyer, Social Emergence: Societies As Complex Systems. Cam-
bridge University Press, 2005.

[6] J. M. Epstein, Generative social science. Studies in agent-based com-
putational modeling. Princeton University Press, 2006.

[7] J. M. Epstein and R. Axtell, Growing artificial societes. Social science
from bottom up. Brookings Institution Press, The MIT Press, 1996.

[8] N. Gilbert and K. G. Troitzsch, Simulation for the social scientist. Open
University Press, 2005.

[9] M. J. North and C. M. Macal, Managing Business Complexity: Discov-
ering Strategic Solutions with Agent-Based Modeling and Simulation.
Oxford University Press, 2007.

[10] L. Hamill and N. Gilbert, Agent-Based Modelling in Economics. Wiley,
2016.

[11] M. Laver and E. Sergenti, Party Competition: An Agent-Based Model.
Princeton University Press, 2011.

[12] F. C. Billari, T. Fent, A. Prskawetz, and J. Scheffran, Eds., Agent-
Based Computational Modelling: Applications in Demography, Social,
Economic and Environmental Sciences. Physica-Verlag, 2006.

[13] A. M. Uhrmacher and D. Weyns, Eds., Multi-agent systems. Simulation
and applications. CRC Press, 2009.
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