
sensors

Article

Adaptive Segmentation of Streaming Sensor Data on
Edge Devices

Roman Dębski * and Rafał Dreżewski

����������
�������

Citation: Dębski, R.; Dreżewski, R.

Adaptive Segmentation of Streaming

Sensor Data on Edge Devices. Sensors

2021, 21, 6884. https://doi.org/

10.3390/s21206884

Academic Editor: Francisco José

García-Peñalvo

Received: 4 August 2021

Accepted: 12 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30,
30-059 Kraków, Poland; drezew@agh.edu.pl
* Correspondence: rdebski@agh.edu.pl

Abstract: Sensor data streams often represent signals/trajectories which are twice differentiable
(e.g., to give a continuous velocity and acceleration), and this property must be reflected in their
segmentation. An adaptive streaming algorithm for this problem is presented. It is based on the
greedy look-ahead strategy and is built on the concept of a cubic splinelet. A characteristic feature of
the proposed algorithm is the real-time simultaneous segmentation, smoothing, and compression of
data streams. The segmentation quality is measured in terms of the signal approximation accuracy
and the corresponding compression ratio. The numerical results show the relatively high compression
ratios (from 135 to 208, i.e., compressed stream sizes up to 208 times smaller) combined with
the approximation errors comparable to those obtained from the state-of-the-art global reference
algorithm. The proposed algorithm can be applied to various domains, including online compression
and/or smoothing of data streams coming from sensors, real-time IoT analytics, and embedded
time-series databases.

Keywords: sensor networks; edge computing; data stream smoothing; data stream compression;
cubic splinelet; cubic spline

1. Introduction

Sensor signal chain solutions used to rely totally upon cloud infrastructure whenever
high-level data processing was required. In most cases, it was effective because the amounts
of data to be transferred were small, and possibly existing real-time constraints were not
excessive. For contemporary systems, however, this approach is often not acceptable, since
the full bandwidth of sampled data will almost always cause network congestion and/or
create a significant bottleneck for the aggregation node (e.g., a wireless gateway).

The obvious solution can be to compress the data before uploading it. To realize this
and to address the above issues, the edge computing approach emerged, which can be
treated as a decentralized cloud that brings computing power and thus capabilities of data
stream pre-processing and compression closer to data sources such as sensors, Internet of
Things (IoT) devices and wearable devices [1,2].

Locating computing power closer to data sources is indispensable for some applica-
tions requiring almost real-time responses, such as for example autonomous vehicles and
e-health. Real-time requirements of such applications cannot be met by the regular cloud in
the case of numerous sensors because of high latency and ineffective bandwidth [1,2]. The
computing power available in edge devices also opens up new possibilities for advanced
data stream pre-processing such as smoothing and/or segmentation.

In many instances, certain properties of the input signal—typically represented as a
series of data points obtained by sampling—are known and must be considered during the
segmentation of the signal. A common example is the signal smoothness, measured by the
differentiability class Ck, with C2 often being the target (f ∈ C2 if it is twice differentiable.
For instance, in robotics or control systems to have a smooth movement, the trajectory
must be twice differentiable to give a continuous velocity and acceleration.).

Sensors 2021, 21, 6884. https://doi.org/10.3390/s21206884 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3283-6032
https://orcid.org/0000-0001-8607-3478
https://doi.org/10.3390/s21206884
https://doi.org/10.3390/s21206884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206884
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206884?type=check_update&version=1

Sensors 2021, 21, 6884 2 of 21

With no access to future values, an effective algorithm for the segmentation of stream-
ing data, must be entirely local. Although such algorithms exist (for instance, PLA, PMC-
MR, Linear Filter [3]), their outputs are not C2-continuous. This also refers to cubic Hermite
spline-based solutions (segmentations), which are C1-continuous only.

The second group of potential solutions—represented by cubic smoothing splines—
gives C2-continuous outputs, yet the corresponding algorithms are not local since they
require the solution of a system of linear equations whose coefficients depend on the whole
data set. To the best of our knowledge, there does not exist a streaming algorithm which
combines the above properties, i.e., is local and computes C2-segmentations.

Our aim is to propose such an algorithm. The presented algorithm is based on the
greedy look-ahead strategy and built upon the concept of a cubic splinelet (see Figure 1).
One of its key properties is the real-time simultaneous segmentation, smoothing, and
compression of noisy data streams. This means it can be applied to various domains
including online compression and/or smoothing of streaming data, real-time IoT analytics,
and embedded time-series databases.

The main contributions of this paper are the following:

• the cubic splinelet of type WSSRmin—the special type of splinelet that minimizes the
Weighted Sum of Squared Residuals (Section 4.1),

• the algorithm for C2-continuous WSSRmin-cubic splinelet-based adaptive segmenta-
tion of streaming sensor data (Sections 4.2 and 4.3),

• numerical results which demonstrate the effectiveness of the algorithm (Section 5).

The remainder of this paper is organized as follows. The next Section 2 contains the
related work overview. Following that Section 3, the problem statement is given and then,
in Section 4, the proposed solution is described. Next Section 5, the solution is evaluated,
and the obtained results are presented and discussed. The last Section 6 contains the
conclusion of the study.

eam of data points

Figure 1. Conceptual diagram of the considered problem: the streaming preprocessor (segmenter)
maps a stream of data points to a stream of cubic spline segments, which form a C2-continuous curve.

2. Related Work

Stream computing requires low-latency real-time algorithms that can process massive
amounts of data generated by multiple sources at very high speed [4]. Such algorithms
should be able to pre-process and analyze on-the-fly high-velocity streams of data coming
from sources such as the Internet of Things (IoT) devices, sensor networks, wearable and
mobile devices, market data.

The key value of data coming from such sources is their “freshness”, and they should
be processed and analyzed as soon as they arrive, which is the key assumption of the big
data stream analytics [4]. Such a requirement leads to the need for low-latency real-time
algorithms because the batch computing approach, in which data should be stored first
before it is processed and analyzed, is not sufficient [4–6]. In recent years, the research has
mainly been focused on algorithms for real-time analysis of big data streams and there was
not much research into the noisy or incomplete streaming data pre-processing phase [4].

Below, the research related to the proposed algorithm characteristic features—the
real-time data stream segmentation, smoothing, and compression—is presented. Moreover,

Sensors 2021, 21, 6884 3 of 21

the related research works on splines are mentioned and the selected possible application
areas for the proposed algorithm are reviewed.

2.1. Data Stream Segmentation

Sensors located in IoT devices generate data streams continuously. For some applica-
tion areas, it is crucial to partition such data into segments to perform successful analysis
using advanced algorithms, for example the machine learning ones.

Streaming segmentation of the signal realized on edge devices allows for:

• reconstruction of a sampled noisy signal (to maintain its continuity/smoothness class
as a key feature (like non-negativity)) before the network transmission,

• signal compression (in experiments with test signals, we observed the data size
reduction from 135 to 208 times, i.e., two orders of magnitude),

• reduction of network traffic (in the entire infrastructure),
• energy savings (in the entire infrastructure—the network communication is energy-

intensive, and additionally the signal smoothed on edge devices no longer needs to
be pre-processed in the cloud).

Recognition and prediction of human activities by real-time analysis of data streams
coming from sensors and actuators is one of the areas of application of data stream segmen-
tation [7]. The problem of automatic segmentation of data stream into activities in real time
is a difficult one—there is no general approach for determining the end of the detected activ-
ity [7]. Sensor data stream segmentation has been the subject of many research works. Some
proposed approaches were based on a time window with fixed length or on a dynamic
time window including fixed number of events [8,9]. The other approaches were based on
a real-time analysis of temporal information but either very intensive pre-processing was
required, or the application was limited (for example to location analysis) [10,11].

An approach for continuous activity recognition based on the real-time sensor data
segmentation was proposed in [12]. The proposed method was based on dynamically
resized time windows (taking into account temporal sensor data and the state of activity
recognition) and the ontology-based activity recognition algorithm. A real-time activity
prediction method using automatic data stream segmentation based on Jaro–Winkler
distance measurement was proposed in [7].

A method for unsupervised on-the-fly segmentation and classification of the time-
series data was proposed in [13]. The approach was based on data density distribution
estimation and the data stream was processed incrementally, using fixed amount of re-
sources (memory and CPU). It even worked in real time when the sampling rate of the data
stream was on the certain level [13]. A semantic-based approach for real-time separating
and segmenting sensor data stream into multiple threads of activities was proposed in [14].

None of the above-mentioned approaches can provide online C2-continuous segmen-
tation. This is crucial if we must deal with physical constraints (for example, velocity and
acceleration must be continuous).

Our proposed adaptive segmentation of the data stream (sampled signal) takes place
in the approximation space of 3rd order splines (which represents the space of twice
differentiable functions, i.e., the problem domain). Its result is a stream of segments that
represents the reconstructed true signal. A spline constructed in this way recreates the
signal taking into account its known class of continuity (smoothness). Therefore, we
segment the data stream taking into account the features (continuity/smoothness class) of
the processed signal.

2.2. Data Stream Smoothing

Advanced driving assistance systems and adaptive cruise control systems require
high-accuracy, low-noise (or at least smoothed) data for proper functioning [15]. Data
streams of estimated vehicle position can be obtained from different types of sensors: GPS,
radar, LiDAR, gyroscopes, accelerometers, wheel speed sensors. Data coming from those
sensors can be noisy and inaccurate due to many technical reasons. Such inaccuracies

Sensors 2021, 21, 6884 4 of 21

may lead to incorrect absolute positioning, unrealistic kinematics and inconsistent spacing
between vehicles [15].

In car-following applications, the Kalman smoothing was used for improving the
quality of data coming from one source (GPS) [16] or from multiple sensors [15,17]. The
Kalman smoothing approach was also used for improving the vehicle positioning data
coming from GPS and internal dead reckoning (gyroscopes, accelerometers, wheel speed)
sensors [18].

The method for smoothing the data stream coming from ultrasonic sensors measuring
the water level was proposed in [19]. The proposed approach included outlier detection us-
ing modified Z-scores based on the median absolute deviation and stream data smoothing
based on the exponentially weighted moving average.

A relational database system was extended to include real-time method based on
dynamic probabilistic models for filtering and smoothing data streams in [20]. In their
approach, the authors used particle filters (a class of sequential Monte Carlo algorithms).

The data stream smoothing methods mentioned above do not include data stream
segmentation nor compression. The approach using wavelet-based Kalman data smoothing
for processing uncertain oil well-testing data, which included compression, was presented
in [21]. However, the backward data smoothing was performed offline. The real-time ap-
proach proposed in this paper provides C2-continuous segmentation and data smoothing.

Signals of C2 continuity, recorded by sensors, constitute a substantial category/class
(for example, recorded location of autonomous vehicles, drones or industrial robots). C2

continuity (as a measure of smoothness) is a key characteristic of a signal (similar to, for
example, monotonicity or non-negativity) and determines the problem domain. It means
that the signal can be differentiated twice. For example, it allows, based on the recorded
location of the object, the determination of its velocity and acceleration, without the need
to additionally register these quantities which, in turn:

• significantly reduces the size of the data needed to be transferred from the edge layer
to the cloud,

• reduces delays and speeds up data transmission,
• reduces energy consumption (in the entire infrastructure).

In the case of a noisy signal (a typical case), taking into account the continuity class
allows for a more accurate reproduction of the true signal (noise removal). The continuity
class is an important element of our knowledge about the signal, which we should not
ignore because it reduces the accuracy of the true signal reproduction (the signal cannot
represent, for example, the function of the object’s location in time, if it is not twice
differentiable—otherwise it would allow the possibility of the operation of infinitely large
forces, and we do not have such in nature).

2.3. Data Stream Compression

The cloud computing is an indispensable part of the Internet of Things (IoT). However,
using it gives us many problems including transmission latency, bandwidth constraints,
and high energy consumption [2]. Micro-controller, transceiver, and sensor units are the
parts of smart devices that consume most of the energy, and data transmission is the most
power-hungry task [22,23]. Energy efficiency can be improved by moving computation
tasks from the cloud to edge devices, and by reducing the amount of data transferred
from IoT devices to the edge (which additionally conserves the edge devices’ storage
space) [1,2,24].

The proposed approaches for data reduction during transmission between IoT devices
and edge computing devices were based on adaptive sampling [25–27], aggregation and
compression [28–32], and Compressive Sensing [33–36]. The main disadvantage of the
above approaches is the low compression ratio of non-stationary data coming from multiple
sensors [2].

To address the above issue, in [2] a lightweight version of fast error-bounded lossy
compression algorithm [37] was proposed. The authors showed that the proposed ap-

Sensors 2021, 21, 6884 5 of 21

proach was able to reduce the amount of data transmitted from the wearable device to
the edge device by approximately 103 times, simultaneously not worsening the results of
data analytics.

None of the above-mentioned compression algorithms pre-process data into a form
that would potentially accelerate the operation of machine learning algorithms on edge
devices, for example by segmenting or smoothing the data stream before sending it from
sensors or IoT devices.

Our algorithm segments the data stream (sampled signal belonging to the continuity
class C2) in an online way. Segmentation allows for a significant degree of compression
(we have observed the data size reduction of 135 to 208 times) and the C2 class of the
signal helps in this process since three out of four coefficients of each spline segment
(apart from the first one) can be calculated from the continuity conditions. The omission
in the segmentation process of the known (in advance—because we know what we are
measuring) continuity class of the processed signal could potentially allow for a slightly
better compression ratio, but at the cost of the accuracy of signal reproduction (and in many
cases it is unacceptable). It is primarily about recreating the qualitative characteristics of
the signal (continuity/smoothness class), and less about the accuracy of approximation
(quantitative feature, measured, for example, with the mean square error).

2.4. Splines

A spline—flexible strip of wood that was used to draw smooth curves—was men-
tioned for the first time in [38], as indicated in [39]. The new idea of a spline curve
represented as piece-wise polynomial curves with certain smoothness properties was
proposed in [40]. In this work, mathematical foundations for spline interpolation and
approximation were presented. More information on splines can be found for example in
the following works [41–45].

An approximation of a linearly varying curvature by three cubic curve segments was
proposed in [46]. An online algorithm for the generation of minimum time joint industrial
manipulators trajectories, using similar representation of a curve as in [46], was proposed
in [47].

The real-time and online applications of interpolating splines were proposed in [48–55].
Among others, the application areas included trajectory generation and planning methods
for robotic [53,54] and simulation-based sailboat trajectory optimization was [55].

To the best of our knowledge, there is no online algorithm, which can compute C2-
continuous segmentations. The approach proposed in this paper can perform online
C2-continuous cubic splinelet-based adaptive segmentation. It can process data streams in
real time. It can also be applied offline when dealing with huge amounts of data, which
cannot be processes by traditional algorithms due to memory limitations.

2.5. Possible Application Areas

The application areas, for which there is a need for on-the-fly algorithms allowing for
data stream segmentation, smoothing, and compression include, but are not limited to, IoT
devices, sensor networks, edge computing, and autonomous vehicles (cars, robots, drones).
The need for real-time pre-processing of big data streams coming from multiple sensors
results from data noise, bandwidth limitations and energy efficiency requirements. Below,
the selected research in three areas (sensor networks, Unmanned Aerial Vehicles teams and
robot teams), in which the proposed algorithm could be applied, is presented.

Weather prediction generally requires expensive weather stations and supercomputers
for computations. An alternative can be the approach using Distributed Sensor Network
for collecting data and performing weather prediction computations [56].

Such an approach requires real-time pre-processing, segmentation, smoothing, and
compression of data streams because the used weather stations continuously communicate
with each other and exchange large amounts of data coming from sensors to compute the
predictions. The approach proposed in this paper meets all the requirements to be used in

Sensors 2021, 21, 6884 6 of 21

this area of applications—it allows for online C2-continuous cubic splinelet-based adaptive
segmentation, compression, and smoothing of noisy data streams.

Using multiple Unmanned Aerial Vehicles (UAVs) for surveillance, environmental
monitoring, and rescue operations has become an increasingly popular research topic
in the recent years [57,58]. Tracking single or multiple moving ground targets requires
continuously updated and accurate data about their position. The accuracy of data coming
from UAV’s sensors is crucial for that task. However, data coming from sensors such as
GPS, radar, LiDAR, gyroscopes, and accelerometers can be noisy and inaccurate due to
many technical reasons. Using multiple coordinated UAVs allows for combining data
coming from their sensors and thus using more accurate information about the current
target(s) position [57]. Furthermore, the navigation and coordination of the group of UAVs
will require real-time continuous exchange of large amounts of data coming from each unit
sensors [59].

Using a real-time algorithm that can segment, smooth and compress data streams
coming from each UAV’s sensors will be crucial for successfully navigating and coordi-
nating a whole team. The online algorithm proposed in this paper not only computes
C2-segmentations, but also smooths and compress data in real time, which makes it fully
applicable in such a domain as UAVs’ sensors data analytics. The online C2-continuous
segmentation is crucial for UAVs because, for example, the approximated trajectory of a
vehicle must be twice differentiable to give a continuous velocity and acceleration.

The research on multi-robot systems (MRS) gained importance and developed sig-
nificantly in the recent years. Some of the most important research problems in MRS
domain include communication mechanisms, planning and coordination strategies, and
decision-making algorithms [60]. Research issues related to team coordination [61], sharing
data, intelligence, and resources between many robots [62] are of great importance. The
effective communication between many robots in the case of limited bandwidth resulting
from environmental conditions (for example underwater environment), in which teams of
robots are operating, is also the subject of intensive research [63]).

As in the case of drone teams, also in the case of robot teams coordinating their
actions and sharing data, the essential issue is to deal in real time with data streams, which
additionally can be noisy and incomplete. In such a case, using a method of segmenting,
smoothing and compressing data in real time is crucial. The proposed approach not only
does this, but also provides C2-segmentations, which is of crucial importance when we
use the data to plan the trajectories for robots. In such a case the trajectory must be twice
differentiable to give a continuous velocity and acceleration.

3. Problem Formulation

Consider a stream of sensor data points, SD = (D0, D1, D2, . . .), that arrive (or are
accessed) sequentially, and describe an underlying signal f (q), q ∈ R (note that in the
subsequent formulae the q stands for any independent variable, typically it will refer to
time (t)), where:

Dk = (qk, f (qk)) = (qk, yk). (1)

This stream in a general case is “noisy”, i.e.,

f (qk) = g(qk) + εk, k = 0, 1, 2 . . . (2)

where g(·) is the true signal and ε ∼ N (µ, σ2), i.e., it is Gaussian noise. This model is
shown in Figure 1.

Problem statement. Given a stream of data points SD = (D0, D1, D2, . . .), where Dk = (qk, yk)
with yk = g(qk) + εk, k = 0, 1, 2 . . . , find the C2-continuous cubic spline whose segments
correspond—in the space generated by the user-defined segment length adaptation strategy (δ)—to
the optimal segmentation of SD, with regard to the reconstruction of the original signal (g).

Sensors 2021, 21, 6884 7 of 21

Remark 1. The adaptation strategy, δ, usually depends on the target platform capabilities (e.g., the
available memory), and on the required accuracy of the solution. In specific cases, it can be very
sophisticated, e.g., Machine Learning (ML)-based.

4. Proposed Solution

The streaming algorithm we propose is based upon the concept of a cubic splinelet—a
local building block of an “on the fly” constructed global cubic spline, which is by definition
C2-continuous (see Section 4.1 and [64]). This local, three-segment building block intro-
duces a look-ahead capability to the algorithm, which—because of its online characteristic—
must be greedy. Indeed, we can construct the global cubic spline using only the first
segment of each splinelet, while the remaining two—treated as a “look-ahead” part—can
be dropped (see Algorithm 1).

The key elements of the proposed algorithm (including its pseudo-code) are given in
the following three subsections.

4.1. Cubic Splinelet of Type WSSRmin—The Solution Building Block

Without loss of generality, we can consider the problem in the following local frame:

(x, y) = (q− q0, y) (3)

which means that an interval [qA, qD], given in the global frame, Oqy, is shifted in q-
direction by the offset, q0:

[qA, qD]
shift by q0−−−−−→ [xA, xD] = [qA − q0, qD − q0] (4)

In a special case, when q0 = qA, we get:

[qA, qD]
shift by qA−−−−−−→ [xA, xD] = [0, qD − qA] (5)

Note: this local frame, Oxy, will be used in the following paragraphs.

Definition 1. A cubic splinelet of type WSSRmin is a three-segment piece-wise cubic function
defined in the local frame (when q0 = qA) as ([64]):

s(x) =

s(1)(x) 0 ≤ x ≤ xB

s(2)(x) xB ≤ x ≤ xC

s(3)(x) xC ≤ x ≤ xD

(6)

where:

s(i)(x) =
4

∑
j=1

a(i)j x4−j, i = 1, 2, 3 (7)

and with the following properties:

• s(x) is C2-continuous on the interval Is = [0, xD],
• s(x) has the following boundary conditions:

xA = 0 :

s(xA) = sA

s′(xA) = s′A
s′′(xA) = s′′A

(8)

Sensors 2021, 21, 6884 8 of 21

• minimizes the Weighted Sum of Squared Residuals, i.e.,

WSSR =
3

∑
i=1

∑
xk∈I(i)s

wi(xk)
[
yk − s(i)(xk)

]2
→ min (9)

where: I(1)s = [0, xB), I(2)s = [xB, xC) and I(3)s = [xC, xD].

To find the splinelet corresponding to Equation (9), we first note that each coefficient
in Equation (7) can be expressed in the following way:

a(i)j = A(i)
j1 sD + A(i)

j2 s′D + A(i)
j3 s′′D + A(i)

j4 =
4

∑
l=1

A(i)
jl αl (10)

where: i = 1, 2, 3, j = 1, 2, 3, 4, and (α1, α2, α3, α4) = (sD, s′D, s′′D, 1). Equation (9) can be now
restated as the following parametric optimization problem:

WSSR = J(α1, α2, α3) =
3

∑
i=1

∑
xk∈I(i)s

wi(xk)

[
yk −

4

∑
j=1

4

∑
l=1

A(i)
jl αl x

4−j
k

]2

→ min (11)

or, in another notation:

arg min
α1,α2,α3

3

∑
i=1

∑
xk∈I(i)s

wi(xk)

[
yk −

4

∑
j=1

4

∑
l=1

A(i)
jl αl x

4−j
k

]2

. (12)

Next, we compute:
∂J

∂α1
(α1, α2, α3) = 0

∂J
∂α2

(α1, α2, α3) = 0
∂J

∂α3
(α1, α2, α3) = 0

(13)

which leads to a system of three linear equations (since J(α1, α2, α3) is linear with respect to
αi, i = 1, 2, 3):

3

∑
j=1

Bijαj = Ci, i = 1, 2, 3 (14)

whose solution (i.e., the optimal values of αi, i = 1, 2, 3) we substitute into Equation (10),
and obtain the coefficients of the corresponding splinelet.

Remark 2. Having set wi(x), i = 1, 2, 3, and xA, xB, xC, xD, we can find the closed-form solution
(compare [64]) for a(i)j , i = 1, 2, 3, j = 1, 2, 3, 4.

4.2. Segmentation Heuristic Overview

The cubic splinelet defined in the previous section gives the locally optimal approximant
in the given interval [0, xD]. However, the following questions remain unanswered:

• What should be the value of xD that corresponds to the locally optimal stream seg-
mentation/partitioning?

• What should be the search space for this optimization task?

The search space (interval) can be straightforwardly derived from the selected spline
adaptation strategy. It may be as simple as:

Dom
(

x(i)D

)
= [x(i)DS

, x(i)DE
] = [

1
2

, 2] x(i−1)
D (15)

Sensors 2021, 21, 6884 9 of 21

The best xD can be then computed using an iterative improvement method. At each
of its steps:

1. the search interval is divided into predefined number of sub-intervals,
2. they are then evaluated (see Equation (16) below) by sampling and interpolating (note:

this step can be accelerated by memoization/caching),
3. the best sub-interval becomes the new search interval.

The fitness (objective) function, φ, used in the above search algorithm is defined in the
following way:

φ(s; ∆R2
adj, L̄1min, L̄1max) = φ1(s) + ∆R2

adj φ2(s; L̄1min, L̄1max) (16)

where:

φ1(s) = R2
adj(s) = 1−

n
∑

k=1
[yk − s(xk)]

2

n
∑

k=1
(yk − ȳ)2

n− 1
n− 4

(17)

φ2(s; L̄1min, L̄1max) =

{ L̄1max−L̄1(s)
L̄1max−L̄1min

, L̄1max − L̄1min > 0

1, otherwise
(18)

and:

ȳ =
1
n

n

∑
k=1

yk (19)

∆R2
adj = max

s∈Σs
R2

adj(s)−min
s∈Σs

R2
adj(s) (20)

L̄1max = max
s∈Σs

MAE(s) = max
s∈Σs

1
n

n

∑
k=1
|yk − s(xk)| (21)

L̄1min = min
s∈Σs

MAE(s) = min
s∈Σs

1
n

n

∑
k=1
|yk − s(xk)| (22)

with R2
adj being the Adjusted Coefficient of Determination, MAE—the Mean Absolute Error, and

Σs—a set of candidate splinelets (corresponding to different values of xD).

4.3. The Algorithm

Algorithm 1 presents a high-level view of the whole computational process (see also
Appendix A). The sliding window-based streaming segmentation that we propose is clearly
reflected in its structure. It is also worth noting that:

• the sliding window buffer size, h, can be either fixed upfront (e.g., depending on the
input signal characteristics and/or real-time constraints), or constantly adapted (e.g.,
using ML algorithms); a good strategy for the first approach is to use the value of h
corresponding to the maximum acceptable buffering delay (latency),

• to increase the readability of the pseudo-code, checking for exceptional/corner cases
(e.g., too few data points at the end of the sliding window buffer to build one more
segment) was omitted in some places,

• the algorithm presents one possible way of handling the end of the stream (s(3)Best, was
computed with no looking-ahead); again, if necessary, this computation can be more
sophisticated (e.g., the stream can be “artificially” extended),

• the number of sub-intervals that a given interval is divided into can be either fixed up-
front or variable (e.g., simple dependence on the length of the interval, or ML-based).

Remark 3. The streaming characteristic of the algorithm means that it requires O(n) time and
O(h) space, where n stands for the length of Sin (potentially n→ ∞). See also Appendix B.

Sensors 2021, 21, 6884 10 of 21

Algorithm 1. Adaptive segmentation of streaming data (see also Appendix A)

Input:
Non-empty stream of data points,
Sliding window buffer size

Output:
Stream of cubic spline segments which form a C2-continuous curve

1 Open the input and output streams
2 Estimate initial conditions for the first segment
3 Initialize the buffer offset and search interval (see Equation (15))

4 while not end of input stream do
5 Fill the sliding window buffer

6 while not end of sliding window buffer do
7 Compute the new search interval (see Equation (15))
8 Find sBest - the best splinelet in this interval
9 Add the first segment of sBest to the output stream

10 Compute the new initial conditions

11 Add the remaining two segments of sBest to the output stream
12 Close the input and output streams

5. Results and Discussion

To evaluate the proposed algorithm, a series of numerical experiments was carried out,
mostly in the form of a comparative analysis. As a point of reference, the results obtained
from R function smooth.spline (accessed on 15 July 2021) were used. It is worth noting
that this function—an example of state-of-the-art solutions—is global (i.e., the whole stream
must be given as its input).

A summary of the evaluation process used is given in Section 5.1 and the results of
the experiments are presented in Sections 5.2 and 5.3.

5.1. Evaluation Process Overview

The key aspects of the evaluation process—test streams, algorithm performance descriptors,
and the reference function (algorithm) used—are briefly described in this section.

5.1.1. Test Streams

The test data sets were generated using the following function g (its graph in the
interval [0, 500] is shown in Figure 2) as the “true signal”:

g(q) = sin(π/2− 0.1 q) + sin(0.025 q) + 2 sin(0.15 q) (23)

to which four levels of Gaussian noise was added, resulting in the following four test
streams (see Figure 3):

f1(qk) = g(qk) + ε1k

f2(qk) = g(qk) + ε2k

f3(qk) = g(qk) + ε3k

f4(qk) = g(qk) + ε4k

(24)

where:
qk = 0.05 k, k = 0, 1, . . . , 106 (25)

εik = first [e | e← N (µ = 0, σ = εimax /3), e < εimax] (26)

i.e., the first e, such that: e ∼ N (µ, σ) and e < εimax , and

[ε1max , ε2max , ε3max , ε4max] = [0.1, 0.5, 1.5, 3.5] (27)

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/smooth.spline

Sensors 2021, 21, 6884 11 of 21

−6

−3

0

3

6

0 100 200 300 400 500
q

g
(q

)

Figure 2. Signal g (Equation (2), for readability shown only in the interval [0, 500]) used—after
discretization and adding Gaussian noise—to generate the test streams used in the evaluation of the
proposed algorithm.

−6

−3

0

3

6

0 100 200 300 400 500
qk

f 1
(q

k
)

(a)

−6

−3

0

3

6

0 100 200 300 400 500
qk

f 2
(q

k
)

(b)

−6

−3

0

3

6

0 100 200 300 400 500
qk

f 3
(q

k
)

(c)

−6

−3

0

3

6

0 100 200 300 400 500
qk

f 4
(q

k
)

(d)

Figure 3. The test streams: (a–d) f1– f4 (for readability shown only in the interval [0, 500]) generated
from signal g using four levels of Gaussian noise (see Equation (27)).

5.1.2. Performance Descriptors

Each of the solutions, s, was evaluated using the following measures:

• Mean Absolute Error:

MAE(s, f) =
1
n

n

∑
k=1
|s(xk)− f (xk)| (28)

• Root Mean Squared Error:

RMSE(s, f) =

{
1
n

n

∑
k=1

[s(xk)− f (xk)]
2

}1/2

(29)

Sensors 2021, 21, 6884 12 of 21

• Normalized Root Squared Error:

NRSE(s, f) =

{
∑n

k=1[s(xk)− f (xk)]
2

∑n
k=1[f (xk)]

2

}1/2

(30)

• Mean Absolute Error Quotient (local-to-global algorithm ratio 1):

QMAE(s, sR)| f =
MAE(s, f)

MAE(sR, f)
(31)

• Root Mean Squared Error Quotient (local-to-global algorithm ratio 2):

QRMSE(s, sR)| f =
RMSE(s, f)

RMSE(sR, f)
(32)

• Compression Ratio:

CR(s, f) =
uncompressed-size(f)

compressed-size(f)
=

size(f)
size(s)

=
length(Sin)

2 + length(Sout)
(33)

Note: due to C2-continuity of cubic splines we need only {4 + [length(Sout)− 1]}+
{length(Sout) + 1} = 2 [2 + length(Sout)] values.

• Absolute Error (function):
AE(x; s, f) = |s(x)− f (x)| (34)

• Squared Error (function):

SQE(x; s, f) = [s(x)− f (x)]2 (35)

Remark 4. The above set covers local (AE and SQE), global (MAE, RMSE, and NRSE), and
competitive (QRMSE, QRMSE, and CR) performance descriptors.

5.1.3. Reference Algorithm and Its Limitations

Remember that an online (local, streaming) algorithm is one that can process its
input piece-by-piece in a serial fashion without having the entire input available from
the beginning (as is the case for offline/global algorithms). As a result, it might make
“decisions” that later turn out not to be optimal. Consequently, a local algorithm cannot
outperform its global (optimal) counterpart. To compare these two, a “local-to-global algorithm
ratio” is often used.

Unfortunately, this approach cannot be directly applied to the problem under con-
sideration (i.e., adaptive segmentation of streaming data with the use of C2-continuous
cubic splines) because there is no other algorithm to compare it with. With this in mind, we can
assume that the stream is finite and then use an existing cubic spline-based approximator
as a (global) point of reference. An example of such an approximator is the R language
smoothing spline function smooth.spline (accessed on 15 July 2021).

It turns out, however, that this is still not a solution because from the automatic
segmentation point of view, this reference function (algorithm) does not handle data
streams longer than about 6% of the length of the test streams (as shown in Figure 4).

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/smooth.spline

Sensors 2021, 21, 6884 13 of 21

0.0

0.5

1.0

1.5

2.0

10
2

10
3

10
4

10
5

10
6

n

M
A

E
(

s
R

1
 ,
 f

1
)

(a)

0.0

0.5

1.0

1.5

2.0

10
2

10
3

10
4

10
5

10
6

n

M
A

E
(

s
R

2
 ,
 f

2
)

(b)

0.0

0.5

1.0

1.5

2.0

10
2

10
3

10
4

10
5

10
6

n

M
A

E
(

s
R

3
 ,
 f

3
)

(c)

0.0

0.5

1.0

1.5

2.0

10
2

10
3

10
4

10
5

10
6

n

M
A

E
(

s
R

4
 ,
 f

4
)

(d)

Figure 4. Auto-segmentation related limitations of the reference algorithm: approximation mean
absolute error (Equation (28)) as a function of input stream length (n) for all test streams, (a–d) f1– f4.
For n > 6× 104 one needs to specify the number of spline segments (knots) manually.

For longer streams, we need to specify the number of smoothing spline segments
(knots) manually. As shown in Figure 5, we can expect accurate approximations for all test
streams when using more than 4× 103 knots.

0.0

0.5

1.0

1.5

0 2000 4000 6000

number of knots

M
A

E
(

s
R

1
 ,
 f

1
)

(a)

0.5

1.0

1.5

0 1000 2000 3000 4000 5000

number of knots

M
A

E
(

s
R

2
 ,
 f

2
)

(b)

0.6

0.9

1.2

1.5

0 1000 2000 3000 4000 5000

number of knots

M
A

E
(

s
R

3
 ,
 f

3
)

(c)

0.9

1.1

1.3

1.5

1.7

0 1000 2000 3000 4000 5000

number of knots

M
A

E
(

s
R

4
 ,
 f

4
)

(d)

Figure 5. Approximation mean absolute error (Equation (28)) as a function of smooth.spline number
of knots (segments) for all test streams, (a–d) f1– f4 (in all cases: n = 106).

Sensors 2021, 21, 6884 14 of 21

Remark 5. In the evaluation process used, the number of knots for function smooth.spline was set
to be the same as that found by the splinelet-based segmentation algorithm (which in all cases was
more than 4× 103).

5.2. Evaluation Results: Approximation Errors and Compression Ratio

Given a signal, the quality of its splinelet-based approximation—measured in terms
of absolute and quadratic errors (see Section 5.1.2)—is the key performance indicator of the
corresponding segmentation which, in turn, is strongly related to the signal compression
ratio. The corresponding evaluation results are presented in Table 1 and in Figures 5 and 7.

Table 1. Performance comparative analysis (see Section 5.1.2): cubic splinelet generated spline
(denoted as s) vs. smoothing spline (denoted as sR) for all test streams fi, where i = 1, 2, 3, 4.

f MAE(s,f) RMSE(s,f) NRSE(s,f) QMAE(s,sR) QRMSE(s,sR) CR(s,f)

f1 0.029 0.037 0.021 1.110 1.243 135
f2 0.136 0.170 0.098 1.033 1.070 183
f3 0.402 0.502 0.279 1.019 1.040 201
f4 0.933 1.165 0.560 1.013 1.028 208

The values of error quotients QMAE and QRMSE (Table 1) show that the splinelet-
based solutions, despite being completely local, in most cases are almost as good as their
global (smoothing spline-based) correspondents.

The same can be observed in Figures 6 and 7. They provide additional insight into
the splinelet-based approximation. These supplement the integral measure view—given
by error quotients—with error distributions. Almost identical shapes of density lines
corresponding to the two compared solutions confirm the high quality of splinelet-based
solution. In this context, the values of compression ratios, CR(s, t), given in Table 1 can
be considered high (from 135 to 208, meaning that the compressed stream sizes are up to
208 times smaller).

0

5

10

15

20

25

0.00 0.05 0.10 0.15

AE(x; s1, f1), AE(x; sR1
, f1)

d
e
n
s
it
y

splinelet

smooth.spline

(a)

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8

AE(x; s2, f2), AE(x; sR2
, f2)

d
e
n
s
it
y

splinelet

smooth.spline

(b)

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

AE(x; s3, f3), AE(x; sR3
, f3)

d
e
n
s
it
y

splinelet

smooth.spline

(c)

0.0

0.2

0.4

0.6

0 1 2 3 4

AE(x; s4, f4), AE(x; sR4
, f4)

d
e
n
s
it
y

splinelet

smooth.spline

(d)

Figure 6. Cubic splinelet generated spline vs. smoothing spline: distribution of absolute approxima-
tion errors (in the form of a density function) for all test streams, (a–d) f1– f4.

Sensors 2021, 21, 6884 15 of 21

0

500

1000

1500

0.00 0.01 0.02

SQE(x; s1, f1), SQE(x; sR1
, f1)

d
e
n
s
it
y

splinelet

smooth.spline

(a)

0

20

40

60

0.0 0.2 0.4 0.6

SQE(x; s2, f2), SQE(x; sR2
, f2)

d
e
n
s
it
y

splinelet

smooth.spline

(b)

0

2

4

6

0 1 2 3 4

SQE(x; s3, f3), SQE(x; sR3
, f3)

d
e
n
s
it
y

splinelet

smooth.spline

(c)

0.0

0.4

0.8

1.2

0 5 10 15

SQE(x; s4, f4), SQE(x; sR4
, f4)

d
e
n
s
it
y

splinelet

smooth.spline

(d)

Figure 7. As in Figure 6, but for the squared approximation errors, SQE. (a–d) f1– f4.

5.3. Evaluation Results: Segment Length Auto-Adaptation

Since the spline segment length auto-adaptation mechanism determines the search
space at each segmentation step, it has significant impact on the algorithm’s overall per-
formance. Not only does this refer to the approximation quality (discussed in Section 5.2),
but also—probably even more importantly—to the algorithm’s stability, which becomes
essential in the context of the C2-continuous streaming approximation.

Figure 8 shows concisely the spline segment auto-adaptation related results in the
form of a segment length distribution for each tested data stream.

We can see that:

• in all cases the dominating segment lengths (remember that the test streams differ only
in their signal-to-noise ratios—see Equations (23) and (26)) belong to the interval [5, 10],

• the lower the noise level, the more distinct the three existing maxima of the den-
sity function become (they correspond to the main “building blocks” used by the
segmentation algorithm to restore the true signal, which is periodic),

• the higher the noise level, the closer to uniform the segment length distribution
becomes, and the longer the segments are (because of a higher error tolerance).

Remark 6. Although simple (see Equation (15)), the segment length auto-adaptation mechanism
proved effective.

Sensors 2021, 21, 6884 16 of 21

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

length of sements in Sout1

d
e

n
s
it
y

(a)

0.00

0.05

0.10

0.15

0 5 10 15 20 25

length of sements in Sout2

d
e

n
s
it
y

(b)

0.00

0.05

0.10

0 5 10 15 20 25

length of sements in Sout3

d
e

n
s
it
y

(c)

0.00

0.03

0.06

0.09

0.12

0 5 10 15 20 25

length of sements in Sout4

d
e

n
s
it
y

(d)

Figure 8. Output stream, Sout, segment length auto-adaptation: distribution of cubic-splinelet-
segment lengths (in the form of a density function) for all test streams, (a–d) f1– f4.

6. Conclusions

It has been shown that the C2-continuous cubic splinelet-based adaptive segmentation
of streaming data—despite its local/online character—is not only possible but also can be
effective. The key element in achieving this was to base the algorithm on the greedy look-
ahead strategy based on the concept of a cubic splinelet—a building block for C2-continuous
cubic splines. A characteristic feature of the proposed algorithm is the simultaneous
segmentation, smoothing, and compression of data streams from sensors being performed
in real time.

The segmentation quality has been measured in terms of the signal approximation
accuracy and the corresponding compression ratio. The numerical results show the rela-
tively high compression ratios (from 135 to 208, see Table 1) combined with the approx-
imation errors comparable to these obtained from the (global) reference algorithm (see
Figures 6 and 7).

The proposed algorithm can be applied to various domains, including online compres-
sion and/or smoothing of streaming data coming from IoT devices, sensor networks, and
sensors located in autonomous vehicles (cars, drones) and robots. The possible application
areas also include real-time IoT analytics, and embedded time-series databases. Further
exploration of this idea could be the first possible future research direction. Another could
be related to more advanced auto-adaptation mechanisms of the search space.

Author Contributions: Conceptualization, R.D. (Roman Dębski); methodology, R.D. (Roman Dębski);
software, R.D. (Roman Dębski); validation, R.D. (Roman Dębski); formal analysis, R.D. (Roman
Dębski); investigation, R.D. (Roman Dębski) and R.D. (Rafał Dreżewski); resources, R.D. (Roman
Dębski); data curation, R.D. (Roman Dębski); writing—original draft preparation, R.D. (Roman
Dębski) and R.D. (Rafał Dreżewski); writing—review and editing, R.D. (Roman Dębski) and R.D.
(Rafał Dreżewski); visualization, R.D. (Roman Dębski); supervision, R.D. (Roman Dębski); project
administration, R.D. (Roman Dębski); funding acquisition, R.D. (Rafał Dreżewski). All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 6884 17 of 21

Appendix A. Pseudo-Code of the Proposed Algorithm (Full Version)

Algorithm A1. Adaptive segmentation of streaming data (full version).

Input:
h - sliding window buffer size,
Sin - non-empty stream of data points

Output:
Sout - stream of cubic spline segments which form a C2-continuous curve

/* prepare the streams */
1 open (Sin); open (Sout)

/* estimate initial conditions for the first segment */
2 (sic, xD0)← init_conditions (Sin) // sic = (s0, s′0, s′′0); xD0 - see

Equation (15)

/* initialise the buffer offset (see Equation (3)) and search
interval parameter */

3 q0 ← 0; xDi ← xD0

4 while not end of Sin do
5 fill (sl_buffer, Sin, q0, h) // fill in the sliding window buffer

6 while not end of sl_buffer do
/* compute the new search interval (i.e., xD domain) */

7 [xDS , xDE]← search_interval (sl_buffer, q0, xDi) // see Equation (15)

/* divide the search interval into sub-intervals */
8 ΣISE ← sub_intervals ([xDS , xDE])

/* find the best splinelet in the interval [xDS , xDE] */
9 foreach ISE in ΣISE do

/* build a list of candidate splinelets */
10 Σs ← cand_splinelets (sl_buffer, q0, ISE, sic)

/* find the best of the candidate splinelets */
11 (φiBest , siBest)← best_of (Σs)

/* if necessary, update the best */
12 if φiBest > φBest then
13 φBest ← φiBest
14 sBest ← siBest

15 put(s(1)Best, Sout) // add the first segment of sBest to Sout

16 sic ← init_conditions (s(2)Best) // compute new initial conditions

17 q0 ← q0 + s(2)Best.xS // s(2)Best.xS = sBest.xB, see Equation (6)

18 xDi ← s(3)Best.xE // s(3)Best.xE = sBest.xD, see Equation (6)

/* add the remaining two segments, s(2)Best and s(3)Best to Sout */

19 put(s(2)Best, Sout)

20 put(s(3)Best, Sout)

/* close the streams */
21 close (Sin); close (Sout)

Sensors 2021, 21, 6884 18 of 21

Appendix B. Experimental Verification of the Algorithm (Linear) Time Complexity

Table A1. The algorithm time complexity analysis: Tn—measured in terms of the number of represen-
tative operations needed to solve Equation (14)—for different sizes (n) of the test streams (f1, f2, f3,
and f4).

n × 103 Tn for f1 Tn for f2 Tn for f3 Tn for f4

10 1,943,679 2,046,967 2,025,182 2,033,942
50 9,860,670 10,791,466 10,472,338 10,535,740

100 19,933,179 21,144,273 21,093,559 21,050,965
250 50,373,800 53,515,682 53,311,644 52,439,474
500 100,428,803 106,829,071 106,302,366 104,768,087
750 150,522,546 160,678,013 159,405,423 157,300,544

1000 200,772,538 213,827,730 212,596,453 209,684,704

0 × 10
0

5 × 10
7

1 × 10
8

1.5 × 10
8

2 × 10
8

0 × 10
0

2.5 × 10
5

5 × 10
5

7.5 × 10
5

1 × 10
6

n − stream size

T
n
 −

 t
e

s
t

s
tr

e
a

m
 f

1

0 × 10
0

5 × 10
7

1 × 10
8

1.5 × 10
8

2 × 10
8

0 × 10
0

2.5 × 10
5

5 × 10
5

7.5 × 10
5

1 × 10
6

n − stream size

T
n
 −

 t
e

s
t

s
tr

e
a

m
 f

2

0 × 10
0

5 × 10
7

1 × 10
8

1.5 × 10
8

2 × 10
8

0 × 10
0

2.5 × 10
5

5 × 10
5

7.5 × 10
5

1 × 10
6

n − stream size

T
n
 −

 t
e

s
t

s
tr

e
a

m
 f

3

0 × 10
0

5 × 10
7

1 × 10
8

1.5 × 10
8

2 × 10
8

0 × 10
0

2.5 × 10
5

5 × 10
5

7.5 × 10
5

1 × 10
6

n − stream size

T
n
 −

 t
e

s
t

s
tr

e
a

m
 f

4

Figure A1. As Table A1, but in graphical form.

Table A2. The algorithm time complexity analysis: linear regression (Tn = A n + b).

Test A in Tn = A n + b Pearson’s R2 F Statistics p-ValueStream r(n, Tn)

f1 200.8676 0.9999989 0.9999978 2,228,045 2.561486× 10−15

f2 214.0141 0.9999981 0.9999963 1,343,737 1.239466× 10−15

f3 212.7101 0.9999992 0.9999983 2,978,702 1.239466× 10−15

f4 209.6683 0.9999997 0.9999995 9,631,370 6.593002× 10−17

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Azar, J.; Makhoul, A.; Barhamgi, M.; Couturier, R. An Energy Efficient IoT Data Compression Approach for Edge Machine

Learning. Future Gener. Comput. Syst. 2019, 96, 168–175. [CrossRef]
3. Papaioannou, T.G.; Riahi, M.; Aberer, K. Towards Online Multi-Model Approximation of Time Series. In Proceedings of the 2011

IEEE 12th International Conference on Mobile Data Management, Lulea, Sweden, 6–9 June 2011; pp. 33–38. [CrossRef]
4. Kolajo, T.; Daramola, O.; Adebiyi, A. Big Data Stream Analysis: A Systematic Literature Review. J. Big Data 2019, 6, 47. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.future.2019.02.005
http://dx.doi.org/10.1109/MDM.2011.57
http://dx.doi.org/10.1186/s40537-019-0210-7

Sensors 2021, 21, 6884 19 of 21

5. Qian, Z.; He, Y.; Su, C.; Wu, Z.; Zhu, H.; Zhang, T.; Zhou, L.; Yu, Y.; Zhang, Z. TimeStream: Reliable Stream Computation in the
Cloud. In EuroSys’13: Proceedings of the 8th ACM European Conference on Computer Systems; ACM Press: Prague, Czech Republic,
2013; pp. 1–14. [CrossRef]

6. Sun, D.; Zhang, G.; Zheng, W.; Li, K. Key Technologies for Big Data Stream Computing. In Big Data-Algorithms, Analytics, and
Applications; Li, K., Jiang, H., Yang, L.T., Guzzocrea, A., Eds.; Chapman and Hall/CRC: New York, NY, USA, 2015; pp. 193–214.
[CrossRef]

7. Cho, H.; An, J.; Hong, I.; Lee, Y. Automatic Sensor Data Stream Segmentation for Real-Time Activity Prediction in Smart Spaces.
In IoT-Sys’15: Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems; Association for Computing
Machinery: New York, NY, USA, 2015; pp. 13–18. [CrossRef]

8. Laguna, J.O.; Olaya, A.G.; Borrajo, D. A Dynamic Sliding Window Approach for Activity Recognition. In User Modeling, Adaption
and Personalization; Springer: Berlin/Heidelberg, Germany, 2011; pp. 219–230. [CrossRef]

9. Tapia, E.M.; Intille, S.S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In Pervasive
Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 158–175. [CrossRef]

10. Hong, X.; Nugent, C.D. Partitioning Time Series Sensor Data for Activity Recognition. In Proceedings of the 2009 9th
International Conference on Information Technology and Applications in Biomedicine, Larnaka, Cyprus, 4–7 November 2009;
pp. 1–4. [CrossRef]

11. Wan, J.; O’Grady, M.J.; O’Hare, G.M.P. Dynamic Sensor Event Segmentation for Real-Time Activity Recognition in a Smart Home
Context. Pers. Ubiquitous Comput. 2015, 19, 287–301. [CrossRef]

12. Okeyo, G.; Chen, L.; Wang, H.; Sterritt, R. Dynamic Sensor Data Segmentation for Real-Time Knowledge-Driven Activity
Recognition. Pervasive Mob. Comput. 2014, 10, 155–172. [CrossRef]

13. Kohlmorgen, J.; Lemm, S. An On-Line Method for Segmentation and Identification of Non-Stationary Time Series. In Proceedings
of the Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop (IEEE Cat,
No.01TH8584), North Falmouth, MA, USA, 12 September 2001; pp. 113–122. [CrossRef]

14. Triboan, D.; Chen, L.; Chen, F.; Wang, Z. Semantic Segmentation of Real-Time Sensor Data Stream for Complex Activity
Recognition. Pers. Ubiquitous Comput. 2017, 21, 411–425. [CrossRef]

15. Bifulco, G.N. Real-Time Smoothing of Car-Following Data through Sensor-Fusion Techniques. Procedia Soc. Behav. Sci. 2011,
20, 524–535. [CrossRef]

16. Punzo, V.; Formisano, D.; Torrieri, V. Nonstationary Kalman Filter for Estimation of Accurate and Consistent Car-Following Data.
Transp. Res. Rec. 2005, 1934, 2–12. [CrossRef]

17. Ma, X.; Andreasson, I. Behavior Measurement, Analysis, and Regime Classification in Car Following. IEEE Trans. Intell. Transp.
Syst. 2007, 8, 144–156. [CrossRef]

18. Aono, T.; Fujii, K.; Hatsumoto, S.; Kamiya, T. Positioning of Vehicle on Undulating Ground Using GPS and Dead Reckoning. In
Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat, No.98CH36146), Leuven, Belgium, 20
May 1998; Volume 4, pp. 3443–3448. [CrossRef]

19. Bae, I.; Ji, U. Outlier Detection and Smoothing Process for Water Level Data Measured by Ultrasonic Sensor in Stream Flows.
Water 2019, 11, 951. [CrossRef]

20. Kanagal, B.; Deshpande, A. Online Filtering, Smoothing and Probabilistic Modeling of Streaming Data. In Proceedings of the
2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 1160–1169. [CrossRef]

21. Feng, X.; Feng, Q.; Li, S.; Hou, X.; Zhang, M.; Liu, S. Wavelet-Based Kalman Smoothing Method for Uncertain Parameters
Processing: Applications in Oil Well-Testing Data Denoising and Prediction. Sensors 2020, 20, 4541. [CrossRef]

22. Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy Conservation in Wireless Sensor Networks: A Survey. Ad Hoc
Netw. 2009, 7, 537–568. [CrossRef]

23. Razzaque, M.A.; Bleakley, C.; Dobson, S. Compression in Wireless Sensor Networks: A Survey and Comparative Evaluation.
ACM Trans. Sens. Netw. 2013, 10, 1–44. [CrossRef]

24. Miettinen, A.P.; Nurminen, J.K. Energy Efficiency of Mobile Clients in Cloud Computing. In HotCloud’10: Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing; USENIX Association: Berkeley, CA, USA, 2010; p. 4.

25. Habib, C.; Makhoul, A.; Darazi, R.; Couturier, R. Real-Time Sampling Rate Adaptation Based on Continuous Risk Level
Evaluation in Wireless Body Sensor Networks. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8.

26. Laiymani, D.; Makhoul, A. Adaptive Data Collection Approach for Periodic Sensor Networks. In Proceedings of the 2013 9th In-
ternational Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1448–1453.

27. Tayeh, G.B.; Makhoul, A.; Laiymani, D.; Demerjian, J. A Distributed Real-Time Data Prediction and Adaptive Sensing Approach
for Wireless Sensor Networks. Pervasive Mob. Comput. 2018, 49, 62–75. [CrossRef]

28. Azar, J.; Makhoul, A.; Darazi, R.; Demerjian, J.; Couturier, R. On the Performance of Resource-Aware Compression Techniques
for Vital Signs Data in Wireless Body Sensor Networks. In Proceedings of the 2018 IEEE Middle East and North Africa
Communications Conference (MENACOMM), Jounieh, Lebanon, 18–20 April 2018; pp. 1–6.

29. Alieksieiev, V. One Approach of Approximation for Incoming Data Stream in IoT Based Monitoring System. In Proceedings of
the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018;
pp. 94–97.

http://dx.doi.org/10.1145/2465351.2465353
http://dx.doi.org/10.1201/b18050-15
http://dx.doi.org/10.1145/2753476.2753484
http://dx.doi.org/10.1007/978-3-642-22362-4_19
http://dx.doi.org/10.1007/978-3-540-24646-6_10
http://dx.doi.org/10.1109/ITAB.2009.5394306
http://dx.doi.org/10.1007/s00779-014-0824-x
http://dx.doi.org/10.1016/j.pmcj.2012.11.004
http://dx.doi.org/10.1109/NNSP.2001.943116
http://dx.doi.org/10.1007/s00779-017-1005-5
http://dx.doi.org/10.1016/j.sbspro.2011.08.059
http://dx.doi.org/10.1177/0361198105193400101
http://dx.doi.org/10.1109/TITS.2006.883111
http://dx.doi.org/10.1109/ROBOT.1998.680970
http://dx.doi.org/10.3390/w11050951
http://dx.doi.org/10.1109/ICDE.2008.4497525
http://dx.doi.org/10.3390/s20164541
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1145/2528948
http://dx.doi.org/10.1016/j.pmcj.2018.06.007

Sensors 2021, 21, 6884 20 of 21

30. Azar, J.; Darazi, R.; Habib, C.; Makhoul, A.; Demerjian, J. Using DWT Lifting Scheme for Lossless Data Compression in Wireless
Body Sensor Networks. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference
(IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1465–1470.

31. Harb, H.; Makhoul, A.; Abou Jaoude, C. En-Route Data Filtering Technique for Maximizing Wireless Sensor Network Lifetime.
In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol,
Cyprus, 25–29 June 2018; pp. 298–303.

32. Harb, H.; Makhoul, A.; Abou Jaoude, C. A Real-Time Massive Data Processing Technique for Densely Distributed Sensor
Networks. IEEE Access 2018, 6, 56551–56561. [CrossRef]

33. Cheng, L.; Guo, S.; Wang, Y.; Yang, Y. Lifting Wavelet Compression Based Data Aggregation in Big Data Wireless Sensor Networks.
In Proceedings of the 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Wuhan, China,
13–16 December 2016; pp. 561–568. [CrossRef]

34. Deligiannakis, A.; Kotidis, Y.; Roussopoulos, N. Compressing Historical Information in Sensor Networks. In SIGMOD’04:
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data; ACM Press: Paris, France, 2004; p. 527.
[CrossRef]

35. Fragkiadakis, A.; Charalampidis, P.; Tragos, E. Adaptive Compressive Sensing for Energy Efficient Smart Objects in IoT
Applications. In Proceedings of the 2014 4th International Conference on Wireless Communications, Vehicular Technology,
Information Theory and Aerospace & Electronic Systems (VITAE), Aalborg, Denmark, 11–14 May 2014; pp. 1–5. [CrossRef]

36. Gaeta, M.; Loia, V.; Tomasiello, S. Multisignal 1-D Compression by F-Transform for Wireless Sensor Networks Applications. Appl.
Soft Comput. 2015, 30, 329–340. [CrossRef]

37. Di, S.; Cappello, F. Fast Error-Bounded Lossy HPC Data Compression with SZ. In Proceedings of the 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; pp. 730–739.

38. Monceau Du, H.L.D. Elémens de L’architecture Navale, ou Traité Pratique de la Construction des Vaisseaux; Chez Charles-Antoine
Jombert: Paris, France, 1758.

39. Farin, G.; Hoschek, J.; Kim, M.-S. Handbook of Computer Aided Geometric Design; Elsevier: Amsterdam, The Netherlands, 2002.
40. Schoenberg, I. Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. Q. Appl. Math. 1946,

4, 45–99. [CrossRef]
41. Boor de, C. A Practical Guide to Splines; Applied Mathematical Sciences; Springer: New York, NY, USA, 1978; Volume 27.
42. Knott, G.D. Interpolating Cubic Splines; Progress in Computer Science and Applied Logic; Birkhäuser: Boston, MA, USA, 2000;

Volume 18.
43. Schoenberg, I.J. Cardinal Spline Interpolation; Siam: Philadelphia, PA, USA, 1973; Volume 12.
44. Schumaker, L. Spline Functions: Basic Theory; Cambridge University Press: Cambridge, UK, 2007.
45. Späth, H. One Dimensional Spline Interpolation Algorithms; A K Peters Series; CRC Press, Taylor & Francis Group: New York, NY,

USA, 1995.
46. Milenkovic, V.; Milenkovic, P.H. Tongue Model for Characterizing Vocal Tract Kinematics. In Recent Advances in Robot Kinematics;

Springer: Dordrecht, The Netherlands, 1996; pp. 217–224.
47. Bazaz, S.A.; Tondu, B. Minimum time on-line joint trajectory generator based on low order spline method for industrial

manipulators. Robot. Auton. Syst. 1999, 29, 257–268. [CrossRef]
48. Carvalho de, J.M.; Hanson, J.V. Real-time interpolation with cubic splines and polyphase networks. Can. Electr. Eng. J. 1986,

11, 64–72. [CrossRef]
49. Fan, W.; Lee, C.H.; Chen, J.H. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of

short line segments. Int. J. Mach. Tools Manuf. 2015, 96, 27–46. [CrossRef]
50. Guven, O.; Eftekhar, A.; Kindt, W.; Constandinou, T.G. Computationally efficient real-time interpolation algorithm for non-

uniform sampled biosignals. Healthc. Technol. Lett. 2016, 3, 105–110. [CrossRef]
51. Ogniewski, J. Cubic Spline Interpolation in Real-Time Applications using Three Control Points. In Proceedings of the 27

International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision WSCG 2019, Plzen,
Czech Republic, 27–31 May 2019; World Society for Computer Graphics: Plzen, Czech Republic, 2019; pp. 1–10.

52. Dębski, R. Real-time interpolation of streaming data. Comput. Sci. 2020, 21, 513–532. [CrossRef]
53. Kröger, T. On-Line Trajectory Generation in Robotic Systems: Basic Concepts for Instantaneous Reactions to Unforeseen (Sensor) Events;

Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 58.
54. Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer: Berlin/Heidelberg, Germany, 2008.
55. Dębski, R.; Sniezynski, B. Pruned Simulation-Based Optimal Sailboat Path Search Using Micro HPC Systems. In Computational

Science–ICCS 2021, Lecture Notes in Computer Science; Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V., Dongarra, J.,
Sloot, P., Eds.; Springer: Cham, Switzerland, 2021; Volume 12745, pp. 158–172. [CrossRef]

56. Vas, Á.; Fazekas, Á.; Nagy, G.; Tóth, L. Distributed Sensor Network for Meteorological Observations and Numerical Weather
Prediction Calculations. Carpathian J. Electron. Comput. Eng. 2013, 61, 56–63.

57. Wise, R.; Rysdyk, R. UAV Coordination for Autonomous Target Tracking. In AIAA Guidance, Navigation, and Control Conference
and Exhibit; American Institute of Aeronautics and Astronautics: Keystone, Colorado, 2006; pp. 1–22. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2872687
http://dx.doi.org/10.1109/ICPADS.2016.0080
http://dx.doi.org/10.1145/1007568.1007628
http://dx.doi.org/10.1109/VITAE.2014.6934488
http://dx.doi.org/10.1016/j.asoc.2014.11.061
http://dx.doi.org/10.1090/qam/15914
http://dx.doi.org/10.1016/S0921-8890(99)00058-5
http://dx.doi.org/10.1109/CEEJ.1986.6593746
http://dx.doi.org/10.1016/j.ijmachtools.2015.04.009
http://dx.doi.org/10.1049/htl.2015.0031
http://dx.doi.org/10.7494/csci.2020.21.4.3932
http://dx.doi.org/10.1007/978-3-030-77970-2_13
http://dx.doi.org/10.2514/6.2006-6453

Sensors 2021, 21, 6884 21 of 21

58. Chmaj, G.; Selvaraj, H. Distributed Processing Applications for UAV/Drones: A Survey. In Progress in Systems Engineering.
Advances in Intelligent Systems and Computing; Selvaraj, H., Zydek, D., Chmaj, G., Eds.; Springer: Cham, Switzerland, 2015;
Volume 366, pp. 449–454. [CrossRef]

59. Huang, H.; Savkin, A.V.; Li, X. Reactive Autonomous Navigation of UAVs for Dynamic Sensing Coverage of Mobile Ground
Targets. Sensors 2020, 20, 3720. [CrossRef] [PubMed]

60. Yan, Z.; Jouandeau, N.; Ali, A. A Survey and Analysis of Multi-Robot Coordination. Int. J. Adv. Robot. Syst. 2013, 10, 399.
[CrossRef]

61. Almeida, L.; Santos, F.; Facchinetti, T.; Pedreiras, P.; Silva, V.; Lopes, L.S. Coordinating Distributed Autonomous Agents with
a Real-Time Database: The CAMBADA Project. In Computer and Information Sciences-ISCIS 2004; Hutchison, D., Kanade, T.,
Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer:
Berlin/Heidelberg, Germany, 2004; Volume 3280, pp. 876–886. [CrossRef]

62. López, D.S.; Moreno, G.; Cordero, J.; Sanchez, J.; Govindaraj, S.; Marques, M.M.; Lobo, V.; Fioravanti, S.; Grati, A.; Rudin, K.; et al.
Interoperability in a Heterogeneous Team of Search and Rescue Robots. In Search and Rescue Robotics; IntechOpen: Rijeka, Croatia,
2017; Chapter 6, pp. 93–125. [CrossRef]

63. Pfingsthorn, M.; Birk, A.; Bulow, H. An Efficient Strategy for Data Exchange in Multi-Robot Mapping under Underwater
Communication Constraints. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, 18–22 October 2010; pp. 4886–4893. [CrossRef]

64. Dębski, R. Streaming Hermite interpolation using cubic splinelets. Comput. Aided Geom. Des. 2021, 88, 102011. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-08422-0_66
http://dx.doi.org/10.3390/s20133720
http://www.ncbi.nlm.nih.gov/pubmed/32635163
http://dx.doi.org/10.5772/57313
http://dx.doi.org/10.1007/978-3-540-30182-0_88
http://dx.doi.org/10.5772/intechopen.69493
http://dx.doi.org/10.1109/IROS.2010.5650270
http://dx.doi.org/10.1016/j.cagd.2021.102011

	Introduction
	Related Work
	Data Stream Segmentation
	Data Stream Smoothing
	Data Stream Compression
	Splines
	Possible Application Areas

	Problem Formulation
	Proposed Solution
	Cubic Splinelet of Type WSSRmin—The Solution Building Block
	Segmentation Heuristic Overview
	The Algorithm

	Results and Discussion
	Evaluation Process Overview
	Test Streams
	Performance Descriptors
	Reference Algorithm and Its Limitations

	Evaluation Results: Approximation Errors and Compression Ratio
	Evaluation Results: Segment Length Auto-Adaptation

	Conclusions
	Pseudo-Code of the Proposed Algorithm (Full Version)
	Experimental Verification of the Algorithm (Linear) Time Complexity
	References

