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1. Introduction

For generations humans are occupied with different games. Games are generally associated with fun and innocent
frivolity, and usage of this word may give an impression of them being a trivial matter. However, it could be argued
that many important issues, like war, elections or personal relationships are games. Moreover, because of their nature,
games are an interesting application area from the point of view of artificial intelligence—it is easy to define straight-
forward rules, the game’s state is simple to represent and in most cases the number of available moves is significantly
restricted. Games are a good candidate for a problem that can be optimally solved by artificial intelligence algorithms
and therefore can be successfully used to test and verify many artificial intelligence techniques.

However, artificial intelligence techniques used in game development usually have a different goal than to find
the best solution. Instead of maximizing the chances of success, or optimally solving the problem, they are used to
create a convincing experience for the player. Computer games are very diverse and “convincing experience” means
something very different for each of them, thus in each of them the AI will function differently. The methods used in
constructing AI are developed based on a very broad variety of sources, heavily modifying them. Additionally, game
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developers introduce their alterations in many ways, and therefore the techniques used to solve similar problems can
drastically differ with every creator.

This paper aims to show the researched methods used in the process of developing artificial intelligence in computer
games. Because of the overwhelming variety of those techniques, it has been decided to reduce the field of research to
strategy games. Presented methods are going to be tested in the experiment—a simple strategy computer game with
an implemented AI module. The developed game will be verified experimentally for the quality of the AI module and
its ability to be a worthy opponent for human players with different experience level.

2. A review of selected artificial intelligence methods for strategy computer games

There are several essential artificial intelligence requirements for real-time strategy games [8]: path-finding,
decision-making, tactical and strategic reasoning, and group movement.

Those requirements are also very similar for turn-based strategy games. The most significant difference is in the
movement—there is no need for kinematic steering, as units can be transported directly [8].

2.1. Path-finding

Characters in strategy games usually move around a level map. Because they hardly ever know in advance where
they will have to move, it is impossible to implement them a fixed route. A unit in a real-time strategy game may be
ordered by the player to move to any point on the map at any time. For each of those characters the game AI module
must be capable of finding an appropriate route through the game world to allow the character to traverse the level
map and reach the target [6].

This capability is called path-finding. In most cases, it is used to figure out where to move to reach a target. The
target itself is decided by another part of the game AI module—the decision-making algorithm. The path-finder’s only
task is to establish the route leading to the goal [12].

The majority of games relies on path-finding solutions based on an algorithm called A* [8, 1]. A* is efficient
and not hard to implement, however, it is incapable of working directly with the game level data. The game level is
required to be represented in a form of a directed non-negative weighted graph.

2.2. Decision-making

Decision-making is all about the capability of a character to decide on its next action. The character processes a
set of information, which is then used to generate an action that needs to be performed. The input to the decision-
making system is the knowledge that a character possesses, and the output is an action request. The knowledge can be
organized into external and internal knowledge [8].

External knowledge is the information that a figure possesses about the surrounding environment. The examples of
such data could be the position of other characters, the layout of the level, or the direction that a sound is coming from.
Internal knowledge is information about the character’s internal state or thought processes, for example its health, its
goals, or previously executed actions.

Likewise, actions can consist of two components. An action requested can change the external state of the char-
acter (for example, attacking another figure or changing its position) or it can only impact the character’s internal
state. Changes to the internal state are not as apparent in game applications but are still important in some decision-
making algorithms. They might include adjusting the character’s opinion of the player, updating its emotional state,
or changing its current goal.

Decision trees are one of the simplest and most straightforward decision-making techniques. They are usually not
extremely sophisticated, but because of their flexibility they have many uses in decision-making. The decision tree
is used to obtain an action from a set of actions. This action must correspond to the input—the situation when the
decision is made. The tree groups numerous inputs together under one action, while the inputs keep the capability to
influence the output—the decision [9].

Usually, characters in a game will perform actions from a limited set. They keep doing the same thing until an event
or external influence forces them to change their behavior. For example, AI-controlled sentinel will stand in its post
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until it notices the player, then it will enter the combat mode, taking cover and shooting the player. State machines
are the technique often used for this kind of decision-making [8]. They make up the vast majority of decision-making
systems used in games nowadays. State machines take into consideration both the world around them and their internal
state [2].

2.3. Tactical and strategic reasoning

In the decision-making techniques presented above, the decisions are made only by a single character, using only
its knowledge. The character does not utilize the information about the whole strategic situation of its team. The same
techniques can be used for making decisions in a wider, strategic spectrum, but first this strategic information must be
obtained and interpreted in some way.

The waypoint is a position in the game, which a character can occupy [5]. Waypoints correspond to the vertices
in the path-finding methods described earlier in this section. To allow a waypoint to be useful outside path-finding
and movement, it is essential for it to contain additional data of tactical importance. When a character occupies the
waypoint with tactical features it can use those features to its advantage [8].

Strategy computer games almost always use multiple characters working together to accomplish their goals. Play-
ers, both human an AI-controlled, lead the armies consisting of a significant number of units. To be effective and
become a worthy challenge for a human player, those units need to synergize their actions.

The most straightforward approach to coordinated action is to create an AI on multiple levels. For example, in such
a multi-leveled AI every unit has its AI, a team of those units has a separate AI, and a division containing many teams
also has an independent AI [11].

There is more than one way for such a multi-tier AI to operate. In the top-down approach, the AI on the highest
tier makes its decision, and then informs the next tier about it. This lower tier then utilizes this information to make
its own decision, notifies the next tier, and so on until the lowest tier. In the bottom-up approach AI of the lowest tier
makes the autonomous decisions, consulting the AI from the higher tiers to obtain the information used for choosing
its actions [8].

2.4. Group movement

Another requirement for AI in strategy computer games is to move characters in the game in a sensible fashion [7].
This requirement applies mainly to real-time strategy games. Turn-based strategy games often do not need movement
techniques—when a decision is made where to move, the character can simply be placed in the target location.

The most commonly adopted technique of steering characters in strategy computer games are kinematic movement
algorithms [8]. Kinematic movement algorithms use static data (position and orientation, without velocities) and
produce a requested velocity. The output is often simply a target direction, and one of two velocities: full speed of the
character or remaining stationary. Kinematic algorithms do not use acceleration.

In strategy computer games groups of characters are often required to move in a coordinated manner. Coordination
of motion can happen at two levels. The individual figures can make decisions that complement each other, resulting
in their movements being organized. The decision can also be made as a whole team to move in an established and
coordinated group.

The movement of many figures in a way that they maintain a certain level of group cohesion is called formation
motion [8]. There are a few different approaches to introduce formation motion to characters in a game. This gives
this technique a degree of flexibility, while remaining simple and efficient in producing sensible behavior.

The easiest method of implementing formation motion is to use fixed geometric formations. This kind of formation
consists of a set of slots, which are locations where a character can be positioned [8].

Another approach to formation motion is to give every character its movement mechanism and then allow them to
calculate their position based on the position of other characters [8].

Emergent formations have the benefit of enabling each character to react individually to obstacles and collisions.
There is no need to consider the size of the formation while turning or avoiding obstacles because all the figures in
the formation will follow the rules. The disadvantage of this approach is the difficultly to set up the rules to acquire a
desired shape. The result is usually a little chaotic, not as strict as in the fixed formation.
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Fig. 1. Simplified model of the game’s architecture.

3. An exemplary strategy game with AI mechanisms

To test how effective the presented AI methods are in creating an engaging experience they were used in an exper-
imental strategy game.

3.1. Game summary

The game was titled Blitz: Tactical Action. It is a real-time strategy game, where the player takes control of up to
three units. The main goal of the game is to collect the objectives scattered on the game’s level. The objectives are
guarded by AI-controlled units, and player characters are unable to obtain the objectives until there are no guards
near the objective. The opposing units can shoot each other, dealing some damage with each shot that hits. When a
unit, both player or AI-controlled, takes enough damage it is destroyed and removed from the game. When all the
objectives are picked up, the player wins the game. If all the player’s units are destroyed, he loses the skirmish. All
the units, either player or AI-controlled, along with objectives are represented by colored squares.

The game was created with the help of Unity game engine. All of the game’s code, including the artificial intelli-
gence code, was written in C# language.

3.2. Game architecture

Each non-player unit is controlled by its own state machine. The units are divided into several types, each with
different behavior—different state machine (see Fig. 1). The whole team of AI-controlled units is supervised by
a higher-tier AI—a decision tree. The decision tree monitors the course of the game, and can give orders to Special
Sentinel and Special Chaser-type units to respond to different situations. The tree requires information from objectives,
player units and Sentry-type units to make its decisions.

Both player and AI-controlled units can request a path to be calculated by a path-finding manager. The manager
implements the A* algorithm using the Euclidean distance as an estimating heuristic. The found path is returned to a
unit, which then uses kinematic movement to follow the path.

3.2.1. Strategic decision tree
Every frame the instance of a decision tree checks for notifications about situations that might require a response.

These notifications are sent to the tree by player characters (player was destroyed), objectives (objective is endangered
or was stolen) or its units (Sentry-type unit detected a player character)—see Fig. 2.
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R. Dreżewski, J. Solawa / Procedia Computer Science 00 (2021) 000–000 5

Fig. 2. Strategic decision tree.

When a player character takes lethal damage and is therefore destroyed, it notifies the tree. The tree then checks if
the destroyed player character was the last one, and if yes, it informs the player, that the game is finished and the AI
is victorious.

Upon detecting a player character, Sentry-type unit alerts the tree and gives it the detected player’s location. If the
tree has an available Special Chaser unit, it sends this unit to the obtained location.

Objective warns the decision tree when it is stolen. The tree then counts the remaining objectives and if there are
none left, it ends the game and congratulates the player on victory. However, if at least one objective is still in play,
the AI orders available Special Sentinel-type units to relocate to those objectives.

The target can also signal the tree when there are no guards nearby, making it vulnerable to being captured by the
player. In such a situation AI sends a Special Sentinel-type unit to reinforce the objective, if only a unit is available.

3.2.2. State machine-controlled characters
There are six types of AI-controlled characters in the game: Warden, Sentinel, Sentry, Chaser, Special Sentinel,

and Special Chaser.
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The Warden is the simplest unit. It is stationary and does not move around the map. Warden constantly scans the
surrounding area, and if a player character enters this area it starts shooting this character. The Warden will stop
shooting when all the player units left the area or were destroyed. The squares representing Warden-type units are
purple.

The levels in the game contain obstacles, and waypoints neighboring with those obstacles have the tactical char-
acteristic of providing cover from at least one of four cardinal directions. The Sentinel is one of two unit types in the
game (the other one being a Special Sentinel), which can utilize this information.

The Sentinel patrols the area, which means it successively moves between two predefined locations. If it finds the
player character nearby, it determines from which direction this character is approaching and then moves to a waypoint
providing appropriate cover. Once the Sentinel is in cover, it starts to shoot the player. Once there are no player units
in the vicinity, Sentinel resumes patrolling. Sentinels are pictured by orange squares.

The Sentry is the only unit controlled by a state machine, which can pass the information to the strategic decision
tree. It patrols the area just like the Sentinel-type units. The moment it detects the player-controlled unit, the Sentry
informs the decision tree about the location of this detected unit. It is enough to pass this information to the tree once
for it to make its decision, therefore, to avoid flooding it with redundant data—then the Sentry waits for 5 seconds.
During this time it is unable to move or to detect player characters. Once the 5 seconds pass, the Sentry proceeds
with its patrol, and can detect and alarm again. Sentries are illustrated by yellow squares, and during the 5 seconds of
waiting after alarming the strategic AI, are highlighted with red.

Chasers patrol their surroundings the way Sentinels and Sentries are. When Chaser finds a player unit during its
patrol it starts moving towards it and shooting. The Chasers usually move slower than player characters, so it is
possible to move out of the Chaser’s detection range. If the Chaser does not find any player unit nearby, it returns to
its patrol. The color of squares used to represent Chaser-type units is red.

Special Sentinels are the first unit to be controlled by a hierarchical state machine. When strategic decision-making
mechanism decides that an objective requires help, it orders the Special Sentinel to move to the objective. The unit
obeys the order no matter what state it was previously in. When the relocation is finished, the unit resumes its behavior,
which is identical to those of the Sentinel-type unit. Special Sentinels are portrayed as brown squares.

Along with Special Sentinels, Special Chasers use a hierarchical state machine to make decisions. If the Sentry-
type unit detects the player and gives his location to the decision tree, the tree orders a Special Chaser-type unit to
move to this location. When this Special Chaser fulfills this command, it starts to act just like a Chaser unit. Special
Chaser-type units are dark red.

3.2.3. Pathfinding Manager
Units send requests to find a path between two locations, one of them being usually the unit’s current position. The

path-finding manager adds every request to a queue, and processes them one at a time. Once the path is found, it is
returned to the requesting unit.

The manager uses the A* algorithm with Euclidean distance heuristic to fulfill those requests. The use of this heuris-
tic means that the estimated cost of the edge between vertices is calculated as the distance between the representative
point of each vertex, even if there are no direct connections. This heuristic can be precise or underestimating [8].
Avoiding walls and other obstacles only adds extra distance. If there are none, then the heuristic is precise.

3.3. Scoring system

Whenever the game is over, both the player and the AI are awarded points. The maximum score for both the player
and AI is 300 points. The same rules are applied no matter which side wins. The winner is awarded 60 points. For each
objective obtained by the player, he is awarded 50 points. Moreover, whenever the player takes an objective, 15 points
are added for each surviving unit besides the first. For example, if the player takes the first objective while controlling
three units, the second one with two units and the last one with only one unit, he will be awarded 255 points—150 for
all three objectives, 60 for winning the game, 30 for taking the first objective with three units remaining and 15 for
taking the second one with two units remaining.

For each objective which the player did not manage to obtain, the AI is awarded 50 points. Furthermore, the
percentage of remaining AI-controlled units is multiplied by 90 points, and rounded down if it is not an integer. The
score is then increased by the resulting value. For example, if the player is defeated after obtaining one objective and
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the AI orders available Special Sentinel-type units to relocate to those objectives.

The target can also signal the tree when there are no guards nearby, making it vulnerable to being captured by the
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shooting when all the player units left the area or were destroyed. The squares representing Warden-type units are
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The levels in the game contain obstacles, and waypoints neighboring with those obstacles have the tactical char-
acteristic of providing cover from at least one of four cardinal directions. The Sentinel is one of two unit types in the
game (the other one being a Special Sentinel), which can utilize this information.

The Sentinel patrols the area, which means it successively moves between two predefined locations. If it finds the
player character nearby, it determines from which direction this character is approaching and then moves to a waypoint
providing appropriate cover. Once the Sentinel is in cover, it starts to shoot the player. Once there are no player units
in the vicinity, Sentinel resumes patrolling. Sentinels are pictured by orange squares.

The Sentry is the only unit controlled by a state machine, which can pass the information to the strategic decision
tree. It patrols the area just like the Sentinel-type units. The moment it detects the player-controlled unit, the Sentry
informs the decision tree about the location of this detected unit. It is enough to pass this information to the tree once
for it to make its decision, therefore, to avoid flooding it with redundant data—then the Sentry waits for 5 seconds.
During this time it is unable to move or to detect player characters. Once the 5 seconds pass, the Sentry proceeds
with its patrol, and can detect and alarm again. Sentries are illustrated by yellow squares, and during the 5 seconds of
waiting after alarming the strategic AI, are highlighted with red.

Chasers patrol their surroundings the way Sentinels and Sentries are. When Chaser finds a player unit during its
patrol it starts moving towards it and shooting. The Chasers usually move slower than player characters, so it is
possible to move out of the Chaser’s detection range. If the Chaser does not find any player unit nearby, it returns to
its patrol. The color of squares used to represent Chaser-type units is red.

Special Sentinels are the first unit to be controlled by a hierarchical state machine. When strategic decision-making
mechanism decides that an objective requires help, it orders the Special Sentinel to move to the objective. The unit
obeys the order no matter what state it was previously in. When the relocation is finished, the unit resumes its behavior,
which is identical to those of the Sentinel-type unit. Special Sentinels are portrayed as brown squares.

Along with Special Sentinels, Special Chasers use a hierarchical state machine to make decisions. If the Sentry-
type unit detects the player and gives his location to the decision tree, the tree orders a Special Chaser-type unit to
move to this location. When this Special Chaser fulfills this command, it starts to act just like a Chaser unit. Special
Chaser-type units are dark red.

3.2.3. Pathfinding Manager
Units send requests to find a path between two locations, one of them being usually the unit’s current position. The

path-finding manager adds every request to a queue, and processes them one at a time. Once the path is found, it is
returned to the requesting unit.

The manager uses the A* algorithm with Euclidean distance heuristic to fulfill those requests. The use of this heuris-
tic means that the estimated cost of the edge between vertices is calculated as the distance between the representative
point of each vertex, even if there are no direct connections. This heuristic can be precise or underestimating [8].
Avoiding walls and other obstacles only adds extra distance. If there are none, then the heuristic is precise.

3.3. Scoring system

Whenever the game is over, both the player and the AI are awarded points. The maximum score for both the player
and AI is 300 points. The same rules are applied no matter which side wins. The winner is awarded 60 points. For each
objective obtained by the player, he is awarded 50 points. Moreover, whenever the player takes an objective, 15 points
are added for each surviving unit besides the first. For example, if the player takes the first objective while controlling
three units, the second one with two units and the last one with only one unit, he will be awarded 255 points—150 for
all three objectives, 60 for winning the game, 30 for taking the first objective with three units remaining and 15 for
taking the second one with two units remaining.

For each objective which the player did not manage to obtain, the AI is awarded 50 points. Furthermore, the
percentage of remaining AI-controlled units is multiplied by 90 points, and rounded down if it is not an integer. The
score is then increased by the resulting value. For example, if the player is defeated after obtaining one objective and
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6 out of 9 starting AI-controlled units remained, the AI would get 220 points—100 for two remaining objectives, 60
for winning the game and 60 for surviving units.

3.4. Gameplay

To conduct the experiment, three different levels in the game were designed. When the game is launched, the main
menu is shown, and it is possible to start a level chosen by a player.

The first level of the game is at the same time the game’s tutorial. The controls and rules of the game are shown on
the obstacles. Player units are represented by numbered blue squares. Objectives are pictured by green squares, and
when guarded, highlighted with yellow. There is also a few enemies. The player is supposed to familiarize himself
with the controls and then defeat the enemies and collect the objectives, finishing the level.

To demonstrate that the objective is impossible to obtain, until there are no enemies near it, one objective is
protected by a single Warden-type unit which is easy to defeat, and in contrast one objective is completely unguarded.
The level also features one Sentinel-type enemy to show that certain enemies can hide behind obstacles. To present
an enemy with a different behavior and to provide some challenge for the learning player, two Chasers patrol the final
objective. There are four enemies in total, which means that each surviving AI-controlled unit is worth 22.5 points for
the AI.

In the second level the player starts with his units separated from each other and placed in different corners of
the level. This enables the player to consider many approaches to beat the game level. The player can try to collect
the objectives, each guarded by a single Warden, while keeping his units separated, without the advantage in the
number of units. The player can also start by trying to unite all his units, but this approach will risk Sentries alarming
the Special Chaser units waiting at the bottom of the level. This level also features Special Sentinel-type units, so if
the objective becomes exposed or is stolen, these units will be ordered to reinforce the objectives. There are twelve
enemies in total, therefore each surviving AI-controlled unit is worth 7.5 points for the AI.

The third level requires the player to properly coordinate the action of all his units. The challenges, like simultane-
ously facing two Sentinels or Wardens, were designed to be too difficult for one or even two units to overcome.

Because the player will probably need all three of his units to prevail in the final skirmish with Chasers and Special
Chasers, he could consider sending a less damaged unit to draw the enemy fire, while shooting with his remaining
units to defeat the foe. Such tactics can increase the chances of all units surviving the final battle. There are fifteen
enemies in total, hence for every surviving AI-controlled unit the AI is awarded 6 points.

4. The experiments

The aim of the conducted experiments was to verify how effective the implemented artificial intelligence methods
were in creating challenges and interesting experiences for the player.

The main objective of game AI is to build a compelling experience [10]. Therefore, to properly research artificial
intelligence methods for strategy computer games it was necessary to verify if they fulfill this task satisfactorily.

Because the experimental game is a game of strategy, the experience created by it should be based on a challenge
requiring the human player to think through and plan his actions. Chance and manual skills should play a minor role
in achieving victory [3]. Different types of enemies should be consistent in their behaviors to allow the player to learn
their patterns and use this knowledge to build his strategy. The more experienced player is the more he should be
aware of these facts and use them to his advantage.

The game was presented to several human players with varying experience in playing computer games. The par-
ticipants did not know any details about the game (like controls or types of enemies) before playing it. All of their
knowledge was supposed to come from the game itself, especially the tutorial. The exception was the scoring system—
they were aware of the rules for awarding points. The participants played all the game levels and their actions in the
game were observed to examine what strategies were used by them. After each trial to beat the level, both the player’s
and AI’s scores were noted. Additionally, when the player finished the level, the number of tries he needed to do so
was documented.

Below, the details of the experiment participation of all the players are presented. The participants are sorted by
their estimated level of proficiency in playing computer games in ascending order.
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Player 1 has almost no experience with computer games. He played only several times for a few minutes during
his lifetime.

On the level 1 (see Table 1) the player was learning the rules of the game and how to control the game for quite a
long time. He did not coordinate the actions of his units, always used one at a time. He was slow to react to danger
and lost two units in an encounter with Chasers, but could still beat the game level on the first try.

Table 1. Player 1 scores.

Player Level 1 Level 2 Level 3

1 1 2 3 1 2

Player 1 270 130 145 285 50 225
AI 0 177 125 0 196 0

On the level 2 (see Table 1) the player kept using only one unit at a time, and was overwhelmed by Chasers and
Special Chasers on his first trials. However, his slow reaction time somehow worked to his advantage. Because he
moved his units slowly, he could place them slightly out of range of enemy units, but still allowing them to hurt the
enemy. He very patiently kept shooting from this long range until every enemy unit was defeated.

In the final level the player did not change his strategy—he gave orders to units individually. In his second trial he
utilized the cover mechanic. That, combined also with patient shooting the enemy from the long range, was enough
for him to achieve victory, but with an unimpressive score of 225—barely higher than the lowest possible winning
score of 210 (see Table 1).

The participant was impressed by the different behaviors of enemy units and found that they appeared intelligent.
He said he used a strategy of keeping his distance and distributing tasks among his units to win.

Player 2 is not currently playing computer games. Several years ago, he did this for two to four hours a week.
During this time, he focused on simple action games that do not require strategic thinking and planning.

The player did not read the rules written in the tutorial carefully, instead he attacked the enemy using only one unit
at a time, which resulted in a loss. In his second attempt, he read the rules and kept his units together, which allowed
him to defeat his enemies (see Table 2).

Table 2. Player 2 scores.

Player Level 1 Level 2 Level 3

1 2 1 2 3 4 5 6 1 2 3

Player 2 80 300 80 80 80 160 65 270 50 65 225
AI 182 0 190 190 175 125 212 0 226 190 0

In the second level, the player tried various approaches, such as focusing first on defeating enemy forces and then
collecting objectives, or using Sentry-type units to lure Special Chasers and defeat them one at a time. However, the
player still struggled to be cautious and tried to get through the level quickly, losing five times (see Table 2).

At the last level, the player still had problems with the coordination of the entire team, which was required at this
level. In his third attempt, he kept his units in a tight formation and managed to win the level, but with an unremarkable
score of 225 points (see Table 2).

The participant said that the enemy units appear to be smart to some degree because they tried different tactics, like
aggressively chasing the player, running to cover or calling for help. The player admitted that some strategic planning
is required to perform well in the game, that it is important to keep the units together and to keep distance from the
enemy units because their accuracy increases with proximity to the target.

Player 3 currently plays computer games for about two hours a month. A few years ago, he played two to five
hours a week. On the tutorial level the player carefully kept his units together, but was surprised by the aggressive
behavior of the Chasers and lost a unit while fighting them (see Table 3).

The player approached the second level cautiously, but in his first attempts he was still overrun by alarmed Chasers
and Special Chasers. Then he tried to use the cover to his advantage. This behavior, combined with his tight formation
strategy, allowed him to finish the level (see Table 3).
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menu is shown, and it is possible to start a level chosen by a player.

The first level of the game is at the same time the game’s tutorial. The controls and rules of the game are shown on
the obstacles. Player units are represented by numbered blue squares. Objectives are pictured by green squares, and
when guarded, highlighted with yellow. There is also a few enemies. The player is supposed to familiarize himself
with the controls and then defeat the enemies and collect the objectives, finishing the level.

To demonstrate that the objective is impossible to obtain, until there are no enemies near it, one objective is
protected by a single Warden-type unit which is easy to defeat, and in contrast one objective is completely unguarded.
The level also features one Sentinel-type enemy to show that certain enemies can hide behind obstacles. To present
an enemy with a different behavior and to provide some challenge for the learning player, two Chasers patrol the final
objective. There are four enemies in total, which means that each surviving AI-controlled unit is worth 22.5 points for
the AI.
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the level. This enables the player to consider many approaches to beat the game level. The player can try to collect
the objectives, each guarded by a single Warden, while keeping his units separated, without the advantage in the
number of units. The player can also start by trying to unite all his units, but this approach will risk Sentries alarming
the Special Chaser units waiting at the bottom of the level. This level also features Special Sentinel-type units, so if
the objective becomes exposed or is stolen, these units will be ordered to reinforce the objectives. There are twelve
enemies in total, therefore each surviving AI-controlled unit is worth 7.5 points for the AI.
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ously facing two Sentinels or Wardens, were designed to be too difficult for one or even two units to overcome.
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Chasers, he could consider sending a less damaged unit to draw the enemy fire, while shooting with his remaining
units to defeat the foe. Such tactics can increase the chances of all units surviving the final battle. There are fifteen
enemies in total, hence for every surviving AI-controlled unit the AI is awarded 6 points.
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The aim of the conducted experiments was to verify how effective the implemented artificial intelligence methods
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The main objective of game AI is to build a compelling experience [10]. Therefore, to properly research artificial
intelligence methods for strategy computer games it was necessary to verify if they fulfill this task satisfactorily.

Because the experimental game is a game of strategy, the experience created by it should be based on a challenge
requiring the human player to think through and plan his actions. Chance and manual skills should play a minor role
in achieving victory [3]. Different types of enemies should be consistent in their behaviors to allow the player to learn
their patterns and use this knowledge to build his strategy. The more experienced player is the more he should be
aware of these facts and use them to his advantage.

The game was presented to several human players with varying experience in playing computer games. The par-
ticipants did not know any details about the game (like controls or types of enemies) before playing it. All of their
knowledge was supposed to come from the game itself, especially the tutorial. The exception was the scoring system—
they were aware of the rules for awarding points. The participants played all the game levels and their actions in the
game were observed to examine what strategies were used by them. After each trial to beat the level, both the player’s
and AI’s scores were noted. Additionally, when the player finished the level, the number of tries he needed to do so
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Below, the details of the experiment participation of all the players are presented. The participants are sorted by
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8 R. Dreżewski, J. Solawa / Procedia Computer Science 00 (2021) 000–000

Player 1 has almost no experience with computer games. He played only several times for a few minutes during
his lifetime.

On the level 1 (see Table 1) the player was learning the rules of the game and how to control the game for quite a
long time. He did not coordinate the actions of his units, always used one at a time. He was slow to react to danger
and lost two units in an encounter with Chasers, but could still beat the game level on the first try.

Table 1. Player 1 scores.

Player Level 1 Level 2 Level 3

1 1 2 3 1 2

Player 1 270 130 145 285 50 225
AI 0 177 125 0 196 0

On the level 2 (see Table 1) the player kept using only one unit at a time, and was overwhelmed by Chasers and
Special Chasers on his first trials. However, his slow reaction time somehow worked to his advantage. Because he
moved his units slowly, he could place them slightly out of range of enemy units, but still allowing them to hurt the
enemy. He very patiently kept shooting from this long range until every enemy unit was defeated.

In the final level the player did not change his strategy—he gave orders to units individually. In his second trial he
utilized the cover mechanic. That, combined also with patient shooting the enemy from the long range, was enough
for him to achieve victory, but with an unimpressive score of 225—barely higher than the lowest possible winning
score of 210 (see Table 1).

The participant was impressed by the different behaviors of enemy units and found that they appeared intelligent.
He said he used a strategy of keeping his distance and distributing tasks among his units to win.

Player 2 is not currently playing computer games. Several years ago, he did this for two to four hours a week.
During this time, he focused on simple action games that do not require strategic thinking and planning.

The player did not read the rules written in the tutorial carefully, instead he attacked the enemy using only one unit
at a time, which resulted in a loss. In his second attempt, he read the rules and kept his units together, which allowed
him to defeat his enemies (see Table 2).

Table 2. Player 2 scores.

Player Level 1 Level 2 Level 3

1 2 1 2 3 4 5 6 1 2 3

Player 2 80 300 80 80 80 160 65 270 50 65 225
AI 182 0 190 190 175 125 212 0 226 190 0

In the second level, the player tried various approaches, such as focusing first on defeating enemy forces and then
collecting objectives, or using Sentry-type units to lure Special Chasers and defeat them one at a time. However, the
player still struggled to be cautious and tried to get through the level quickly, losing five times (see Table 2).

At the last level, the player still had problems with the coordination of the entire team, which was required at this
level. In his third attempt, he kept his units in a tight formation and managed to win the level, but with an unremarkable
score of 225 points (see Table 2).

The participant said that the enemy units appear to be smart to some degree because they tried different tactics, like
aggressively chasing the player, running to cover or calling for help. The player admitted that some strategic planning
is required to perform well in the game, that it is important to keep the units together and to keep distance from the
enemy units because their accuracy increases with proximity to the target.

Player 3 currently plays computer games for about two hours a month. A few years ago, he played two to five
hours a week. On the tutorial level the player carefully kept his units together, but was surprised by the aggressive
behavior of the Chasers and lost a unit while fighting them (see Table 3).

The player approached the second level cautiously, but in his first attempts he was still overrun by alarmed Chasers
and Special Chasers. Then he tried to use the cover to his advantage. This behavior, combined with his tight formation
strategy, allowed him to finish the level (see Table 3).
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Table 3. Player 3 scores.

Player Level 1 Level 2 Level 3

1 1 2 3 4 1 2

Player 3 285 130 130 130 300 65 300
AI 0 162 155 147 7 202 0

After viewing the challenges of the last level on the first try, the player used the tactics learned on the previous level
and won on the second try (see Table 3).

The participant stated that some units used clever tactics and others did not appear to be intelligent. The player said
that the strategy of using cover and keeping the units in cohesive formation allowed him to win.

Player 4 plays computer games for approximately five hours a week. On the first level (see Table 4), the player
took his time to get acquainted with the detailed capabilities of his units, such as their range, rate of fire and speed.
He lined up his units and moved them carefully so as not to break the formation. He went up to each enemy with the
entire team and ensured victory.

Table 4. Player 4 scores.
Player Level 1 Level 2 Level 3

Player 4 300 300 300
AI 0 7 0

While playing at level 2 (see Table 4), the player discovered that his units had a slightly greater range than enemy
units. If a player’s unit is placed just outside the enemy’s spotting range, it can damage the enemy unit without fighting.
The player was careful and moved his units very slowly to always keep this perfect distance and use it to defeat the
AI.

In the last level (see Table 4) the player used the same strategy as in the previous level, using the greater range of
his units and completing the level flawlessly.

The participant believes that some elements of enemy units’ behavior require corrections, for example they do not
react to fire and thus the player easily beats the entire game. The player focused on his strategy of keeping his units
out of the enemy’s reach and that was enough to win.

Player 5 plays computer games for about ten hours a week, but as he is the youngest participant his overall gaming
experience may be lower compared to other players. In the first level (see Table 5), the player quickly learned the
controls and defeated the enemy while keeping his units together.

Table 5. Player 5 scores.
Player Level 1 Level 2 Level 3

Player 5 300 270 300
AI 0 0 0

At level 2 (see Table 5), the player focused on combining scattered units. He had no problems defeating the enemy
forces, but he gained overconfidence and carelessly rushed to the third target, losing two units.

During the game at level 3 (see Table 5), the player had no difficulty coordinating the maneuvers of his entire team,
holding the units together and making them use cover.

The player stated that the game was too simple to tell if the enemy’s behavior was rational—he ended the game
before the characters could appear to be intelligent. The competitor agreed that he had to use formation and cover
strategies to win the game.

The conducted experiments show that the game was rather easy to complete, with barely over half of the participants
being forced to give more than one try to finish any of the game’s levels. Nevertheless, even the most proficient players
had to approach the game with caution and use strategic planning to be able to win. Different strategies were utilized—
using cover, engaging enemy units one by one, staying in formation, staying out of the enemy’s range—with varying
degrees of success.
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The artificial intelligence methods used have been successful in creating the right strategy game experience—
players were forced to consider and plan their actions and developed various strategies to win the game.

5. Conclusions

The main goal of this paper was to examine the various techniques used to implement artificial intelligence modules
for strategy computer games. The fundamental requirements for artificial intelligence in strategy games, namely: path-
finding, decision-making, tactical and strategic reasoning, and group movement (for real-time strategy games) were
presented. Selected AI methods for fulfilling these requirements were also discussed. The exemplary real-time strategy
game, which was developed with the use of selected AI methods was described and experimentally verified. The game
was presented to several players with differing experience with computer games.

As expected, the game AI was harder to beat for less proficient players, while remaining relatively easy for the
experienced ones. However, what is more important, this experiment showed, that the chosen methods, even in a
simple game, were successful in creating a challenge, which required all the players, even the most experienced ones,
to plan their actions and develop strategies to beat the game AI. Just like in a proper strategy game, luck and manual
skills were not enough to win.

The presented AI methods, which were described in detail and verified in the experimental game, are still only a
small part of available solutions, which can be used to create AI modules for strategy computer games. The experi-
mental game, while sufficiently exploiting implemented methods of artificial intelligence, is barely complex enough to
require strategic thinking. It requires some degree of planning, but it is possible to additionally enhance this strategic
experience by adding some new features like resources, possibilities of creating new units, and player’s units with
distinct characteristics. Also, using adaptive approaches [13, 4] would possibly lead to a more demanding strategies
used by the AI module.
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Table 3. Player 3 scores.

Player Level 1 Level 2 Level 3

1 1 2 3 4 1 2

Player 3 285 130 130 130 300 65 300
AI 0 162 155 147 7 202 0

After viewing the challenges of the last level on the first try, the player used the tactics learned on the previous level
and won on the second try (see Table 3).
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Player Level 1 Level 2 Level 3
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AI 0 7 0
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units. If a player’s unit is placed just outside the enemy’s spotting range, it can damage the enemy unit without fighting.
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Table 5. Player 5 scores.
Player Level 1 Level 2 Level 3
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AI 0 0 0

At level 2 (see Table 5), the player focused on combining scattered units. He had no problems defeating the enemy
forces, but he gained overconfidence and carelessly rushed to the third target, losing two units.

During the game at level 3 (see Table 5), the player had no difficulty coordinating the maneuvers of his entire team,
holding the units together and making them use cover.

The player stated that the game was too simple to tell if the enemy’s behavior was rational—he ended the game
before the characters could appear to be intelligent. The competitor agreed that he had to use formation and cover
strategies to win the game.

The conducted experiments show that the game was rather easy to complete, with barely over half of the participants
being forced to give more than one try to finish any of the game’s levels. Nevertheless, even the most proficient players
had to approach the game with caution and use strategic planning to be able to win. Different strategies were utilized—
using cover, engaging enemy units one by one, staying in formation, staying out of the enemy’s range—with varying
degrees of success.
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The artificial intelligence methods used have been successful in creating the right strategy game experience—
players were forced to consider and plan their actions and developed various strategies to win the game.

5. Conclusions
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finding, decision-making, tactical and strategic reasoning, and group movement (for real-time strategy games) were
presented. Selected AI methods for fulfilling these requirements were also discussed. The exemplary real-time strategy
game, which was developed with the use of selected AI methods was described and experimentally verified. The game
was presented to several players with differing experience with computer games.

As expected, the game AI was harder to beat for less proficient players, while remaining relatively easy for the
experienced ones. However, what is more important, this experiment showed, that the chosen methods, even in a
simple game, were successful in creating a challenge, which required all the players, even the most experienced ones,
to plan their actions and develop strategies to beat the game AI. Just like in a proper strategy game, luck and manual
skills were not enough to win.

The presented AI methods, which were described in detail and verified in the experimental game, are still only a
small part of available solutions, which can be used to create AI modules for strategy computer games. The experi-
mental game, while sufficiently exploiting implemented methods of artificial intelligence, is barely complex enough to
require strategic thinking. It requires some degree of planning, but it is possible to additionally enhance this strategic
experience by adding some new features like resources, possibilities of creating new units, and player’s units with
distinct characteristics. Also, using adaptive approaches [13, 4] would possibly lead to a more demanding strategies
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