
The Complexity of Priced Control in Elections

Tomasz Miąsko Piotr Faliszewski
AGH University of Science and Technology

Krakow, Poland

May 19, 2014

Abstract

We study the complexity of priced control in elections. Naturally, if a given control
type is NP-hard for a given voting system E then its priced variant is NP-hard for
this rule as well. It is, however, interesting what effect introducing prices has on the
complexity of those control problems that without prices are tractable. We show that for
four prominent voting rules (plurality, approval, Condorcet, and Copeland) introducing
prices does not increase the complexity of control by adding/deleting candidates/voters.
However, we do show an example of a scoring rule for which such effect takes place.

1 Introduction
We consider the complexity of election control [2, 25] for the case where different control
actions can have possibly different prices. Our main motivation comes from the fact that
different types of control actions allowed in multimode control reflect a wide range of ways
in which elections can be influenced through political campaigns, and prices reflect the fact
that the cost of different actions varies. Our main finding is that introducing prices in control
problems, typically, does not change their complexity. Specifically, we show that for sev-
eral well-known voting rules (plurality, approval, Condorcet, and Copeland) the complexity
of control problems with prices remains the same as for the unpriced variants (however,
showing this requires more care). On the other hand, we show that for scoring protocols
destructive voter control is often easy, yet there is a scoring protocol for which destructive
priced voter control is NP-hard. Our results stand in sharp contrast to those for control
in weighted elections [16]. On one hand, allowing weighted votes often increases the com-
plexity of control problems, and on the other, destructive weighted voter control for scoring
protocols is always easy.

The individuals participating in an election, to whom we will refer as voters, might be,
for example, members of parliaments, a jury, all adult citizens of a country, or even elements
of distributed software systems [28, 20] or algorithms in various areas of computer science
(we point to an application of voting related to natural language processing [27]). Voters
select among possible alternatives, i.e., candidates taking part in the election. In the most
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frequently used, ordinal, model, a vote is a linear order over all the candidates, ranking
them from the most to the least desirable. However, under approval voting voters simply
indicate which candidates they do and do not approve of. Once all votes are gathered,
we use a voting rule to determine the winner(s). There are many different voting rules to
choose from, each with its own advantages and faults. For example, under plurality rule each
candidate receives a point from each voter that ranks him or her first, and the candidate(s)
with most points win. Under Copeland elections, for each two candidates we form a head-
to-head contest (that is, we check which of the two is preferred by a majority of the voters),
the winner receives a point, and whoever has most points in the end is the winner. We
formally introduce all the voting systems studied in this paper in Section 2. We focus on
four rules, plurality, approval, Condorcet, and Copeland, that are widely studied from the
point of view of the complexity of control. This makes it easy to compare our results with
other ones in the literature.

Since elections are used to decide on matters of great importance among individuals
with conflicting preferences, it is no surprise that many agents are interested in influencing
their outcomes. There are two basic goals that such agents may we willing to attain: either
they try to ensure that a preferred candidate is the winner of the election (a constructive
action) or they try to preclude a despised candidate from achieving a victory (a destructive
action). Further, there are many ways in which voters, candidates, and election organizers
can influence elections results. These ways range from strategic voting [22, 34] (see the
survey of Faliszewski and Procaccia [19] for an AI-focused overview), through bribery [13],
to running political campaigns [10, 9] and performing control attacks [2, 25]. We focus on
the later two and we merge the ideas behind election control and campaign management.

By election control we mean actions that change the structure of an election. The most
typical examples of control actions are adding/deleting candidates or voters. For example,
it is easy to imagine settings where supporters of a particular candidate run a campaign to
promote participating in an election, targeting the voters who are likely to vote for their
candidate. Similarly, one can imagine actions discouraging opponent voters from casting
their votes. A more difficult, yet possible, way of controlling an election is to fund a campaign
of an additional candidate that would not otherwise take part in the election. Doing so could
be motivated by a hope that such a candidate would steal votes away from our opponents.

The complexity of election control was first studied by Bartholdi, Tovey, and Trick [2]
(we discuss related work in more detail in Section 1.1). However, they assumed that adding
or deleting each candidate or voter has the same unit cost, which is not reasonable in the
context of campaign management. Indeed, it might be very expensive to convince some
candidate to join the race (e.g., because one would have to fund him or her completely),
whereas convincing some other one might be quite cheap (because he or she already wants
to join the election and is mostly prepared). Similarly, convincing some voters to vote may
be more expensive than others (e.g., because for some we would have to pay for their
transportation to the voting stations, whereas for others we would simply have to drop
some leaflets in their neighborhood). Thus, in this paper we extend the model of control
introduced by Bartholdi, Tovey, and Trick by allowing that different control actions have
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different prices. To simplify and shorten many of our proofs, we apply the multimode control
framework of Faliszewski, Hemaspaandra, and Hemaspaandra [15].

1.1 Related Work

Computational study of election control was initiated by Bartholdi, Tovey, and Trick [2],
who defined the problems of constructive election control by adding/deleting/partitioning
candidates or voters for plurality and Condorcet elections. Later Hemaspaandra, Hemas-
paandra, and Rothe [25] extended their work by considering destructive variants of these
problems, and by also studying approval voting rule. Since these two papers, many re-
searchers studied the complexity of control problems for various voting rules and in various
other models. For example, Faliszewski et al. [17] considered the Copeland rule, Erdélyi et
al. [12] studied Bucklin and fallback rules, and Parkes and Xia [32] studied Schulze’s rule.
This list, of course, is not exhaustive and is meant to present just a few examples (the
reader may wish to consult survey of Faliszewski, Hemaspaandra and Hemaspaandra for
some more details [14]).

In addition to studying election control for different voting rules, researchers extended
the standard model of election control in many different directions. For example, Meir et
al. [31] studied election control in multiwinner voting and introduced a model that gen-
eralizes the idea of constructive and destructive control. Faliszewski, Hemaspaandra, and
Hemaspaandra [15] studied multimode control, where it is possible to perform several differ-
ent types of control actions at the same time (e.g., it is possible to add some candidates, and
delete some voters; the standard control problems allow one to either only add candidates
or only delete voters, etc.). Faliszewski, Hemaspaandra, and Hemaspaandra [16] were the
first to study control in weighted elections (however the work of Baumeister et al. [4] is
related to this topic). Other authors took a different perspective and, for example, studied
parametrized complexity of control problems [5, 29, 30, 36], or considered the complexity
of control in elections where votes come from some restricted domains (focusing mostly
on single-peaked elections [18, 7]). On the other hand, Wojtas and Faliszewski [35] studied
counting variants of control problems, where instead of asking if someone can become a
winner we ask for the probability that someone becomes a winner, given that a random
control action is taken. This counting variant of control can be used to predict election
winners and, thus, has similar applications as the research presented in this paper; it aims
to guide the election campaigning process.

While traditionally election control problems are limited to adding/deleting/partitioning
candidates and voters, there are many problems that are very close in spirit to election
control. For example, Chevaleyre et al. [8] studied a differnt setting where new candidates
can appear, and Elkind, Faliszewski, and Slinko [11] studied candidate cloning. Research
on election control has also affected research on related fields. For example, Baumeister et
al. [3] studied control in judgment aggregation.
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Control Type
Adding
Candidates

Deleting
Candidates

Adding
Voters

Deleting
Voters

Election System
Const.
Control

Dest.
Control

Const.
Control

Dest.
Control

Const.
Control

Dest.
Control

Const.
Control

Dest.
Control

Approval I V V V R V R V
Condorcet I V V V R V R V
Copeland R V R V R R R R
Plurality R R R R V V V V

Table 1: Summary of priced control vulnerabilities. Our results are typeset in boldface. In
the table, we write I to indicate that the voting rule is immune to a given control attack, i.e.,
that it is impossible to affect the result by exerting this type of control. By R we mean that
the rule is resistant, i.e., that it is not immune by the election control problem is NP-hard.
By V we mean that the voting rule is vulnerable, i.e., that it is not immune and that there
is a polynomial-time algorithm for the election control problem. Approval and Condorcet
in our model are trivially vulnerable to destructive priced control by deleting candidates —
the only possible successful control action is to delete despised candidate.

1.2 Results

Given the above, very rough, overview of literature on the complexity of election control,
we see that there are three main lines of research regarding the topic. First, researchers seek
complexity results for more and more different voting rules. Second, researchers seek to ex-
tend the election control model (e.g., by introducing weights, studying restricted domains,
generalizing the notions of constructive/destructive control actions). Third, researchers ap-
ply the ideas from election control in other settings (e.g., in judgment aggregation).

Our paper follows the second line of research: We extend the model of election control by
assuming that different control actions have possibly different costs. It is typical that papers
that follow this second line of research focus on very few voting rules, usually including
plurality, Condorcet, and approval. We follow this tradition as well. Specifically, we focus
on these three voting rules and also consider Copeland. We show that for each of these rules
the complexity of control by adding/deleting candidates or voters is the same irrespective
if we assume that all control action have the same or possibly different costs. This result,
however, is not trivial. Of course hardness proofs for the unit-cost model translate directly to
hardness results in the model with varying costs, easiness results do not. Indeed, sometimes
we have to replace very simple greedy algorithms with more involved ones, sometimes using
dynamic programming. We summarize our results in Table 1.

Our results for the standard, prominent voting rules yield the question if adding prices
can ever increase the complexity of control problems? We give an affirmative action by
showing a scoring protocol for which destructive voter control is easy, but for which de-

2Approval and Condorcet in our model are trivially susceptible to destructive priced control by deleting
candidates — the only possible successful control action is to delete despised candidate.
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structive priced voter control is hard. This result answers our question, but leaves a bit
more to be desired: Is there a natural voting rule witch such a property? We leave this as
an open problem.

The current paper, in some sense, complements that of Faliszewski, Hemaspaandra, and
Hemaspaandra [16] regarding the complexity of control in weighted elections. However, our
results are very different. They show that adding weights to control problems often increases
the complexity of control, whereas this is not the case for adding prices. They show that
destructive weighted voter control under scoring protocols is always easy, whereas we show
that destructive priced voter control can sometimes be NP-hard.

2 Preliminaries
In this section we review the ordinal model of elections, define voting rules that we study,
and formally define (priced) election control problems.

Elections and Election Rules. An election E = (C, V ) consists of a set of candidates
C = {c1, . . . , cm} and a set of voters V = {v1, . . . , vn}. Voter’s preferences are represented
with strict total orders over the set of candidates. For example, if C = {a, b, c, d} then some
voter vi might have preference order d � c � b � a, meaning that this voter likes d best,
then c, then b, and finally he or she likes a least. For each election E = (C, V ) and each two
candidates c, d ∈ E, we define NE(c, d) to be the number of voters in V who rank c above
d.

An election rule E (voting rule, election system, voting system) is a function which given
an election E = (C, V ) maps it to the set of winners E(E) ⊆ C. In this paper we focus
on polynomial-time computable voting rules but, in general, determining election winners
can be a much more computationally demanding problem.1 There can be more than one
winner of an election. In such situations, to emphasize this fact, we refer to the winners of
the election as the nonunique winners. Similarly, if there is only one winner of an election
we refer to him or her as the unique winner. Finally, we allow situations where an election
has no winners.

There are many different voting rules. For example, under plurality rule we give a point
to each candidate that is ranked first, and choose as winners those candidates that have
the highest number of points. More generally, a scoring rule is defined through a family
of scoring vectors, one for each candidate-set cardinality, that define how many points a
candidate receives for being ranked at a given position by a voter. Formally, a scoring
vector (for an m-candidate election) is an m-tuple α = 〈α1, . . . , αm〉 of nonnegative integers
given in nonincreasing order. For each vote where a candidate is ranked i’th, the candidate
receives αi points. Candidates that have the highest number of points are the winners. For
example, plurality is defined through a family of scoring vectors of the form 〈1, 0, . . . , 0〉.

1For example in a voting scheme suggested by Lewis Caroll checking if a distinguished candidate is a
winner of an election is complete for parallel access to NP [1], [24]. The same holds for the systems of Young
[33] and Kemeny [26]
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Other interesting scoring protocols include, e.g., veto rule (defined through vectors of the
form 〈1, . . . , 1, 0〉), k-approval rule (defined through vectors that start with k ones and then
continue with zeros), k-veto (defined through vectors that end with k zeros, preceded by
ones), and Borda rule (defined through vectors of the form 〈m− 1,m− 2, . . . , 0〉).

In Condorcet method, a candidate c is a winner if he beats all the other candidates in
head-to-head contests (i.e., if NE(c, d) > NE(d, c) for all candidates d different from c). It
is possible that there is no winner under Condorcet rule, but if there is one, he or she is
unique.

Copeland’s rule is an extension of Condorcet’s rule in the sense that it elects Con-
dorcet winner whenever it exists, and otherwise picks candidates that are close to being
Condorcet winners in a certain way. Formally, for each rational α, 0 ¬ α ¬ 1, in the
Copelandα voting rule, candidate c receives one point for each candidate d, d 6= c, such that
NE(c, d) > NE(d, c), and α points for each candidate d, d 6= c, such thatNE(c, d) = NE(d, c).
Candidates with the highest number of points are the winners. Naturally, there are many
other rules that can be seen as extensions of Condorcet rule (e.g., maximin rule, Young rule,
Kemeny rule, Dodgson rule; see, e.g., the overview of Brams and Fishburn [6]). However,
among this type of rules, in this paper we focus on Copeland.

Finally, we also consider approval voting rule. Under approval, voters’ preferences are
represented differently. Instead of ranking the candidates, each voter provides a set of can-
didates that he or she approves of. A candidate receives a point for each voter that approves
of him or her. As before, the candidates with the highest number of points are the winners.

We denote the score of a candidate c in election E by scoreE(c) (the actual voting
rule will always be clear from context). When the election E is clear from context, we
sometimes write score(c) instead of scoreE(c). Further, for an election E = (C, V ) and
candidates c, d ∈ C, we write diffE(c, d) to mean difference between the score of candidate
c and the score of candidate d. For the case of Condorcet rule, by diffE(c, d) we mean
NE(c, d)−NE(d, c).

Election Control Problems. We consider priced multimode control problems. In control
problems an attacker tries to execute a basic control action such as candidate addition,
candidate deletion, voter addition or voter deletion to change the result of an election. In
priced multimode control problems several different types of basic control actions can be
combined into a single attack. Moreover, each such action has associated price and person
exercising control over the election has only a limited budget.

We assume that there is a price tag for each voter and candidate that we add or delete.
That is, for each voter v that can be added or deleted, we have number Π(v), the price
of adding/deleting v. For each candidate c that can be added or deleted, we have number
Π(c), the price of adding/deleting c. To simplify notation, if we consider, e.g., some set W
of voters, we write Π(W ) to mean

∑
v∈W Π(v). We use analogous notation for candidate

sets. Unless stated otherwise, we assume that the prices are encoded in binary.
With this notation available, we define the most general form of our control problem.

Name: E-AC-DC-AV-DV-priced-control.
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Given: An election (C, V ), a candidate c ∈ C, a set of additional candidates D, such that
C ∩D = ∅, a set of additional voters W , prices Π for candidates in C ∪D and voters
in V ∪W , and a natural number K (the budget).

Question (constructive): Are there subsets C ′ ⊆ C, D′ ⊆ D, V ′ ⊆ V , W ′ ⊆ W , such
that candidate c is the unique winner of E election ((C \ C ′) ∪D′, (V \ V ′) ∪W ′) and
Π(C ′ ∪D′) + Π(V ′ ∪W ′) ¬ K.

Question (destructive): Are there subsets C ′ ⊆ C, D′ ⊆ D, V ′ ⊆ V ,W ′ ⊆W , such that
candidate c is not the unique winner of E election ((C \ C ′) ∪D′, (V \ V ′) ∪W ′) and
Π(C ′ ∪D′) + Π(V ′ ∪W ′) ¬ K.

This definition calls for some comments. We note that subset C ′ is the set of candidates
to be removed from the election and subset D′ is the set of candidates to be added to the
election. Analogously, V ′ is the set of deleted voters and W ′ is the set of added voters. The
total price of such a control action is the sum of the prices of added/deleted) candidates and
voters. That is, the total price is Π(C ′ ∪D′) + Π(V ′ ∪W ′). For the case where all the prices
are equal to one, we refer to the above problem as E-AC-DC-AV-DV-control (omitting the
word “priced”).

We point out that even though we follow the idea of multimode control of Faliszewski,
Hemaspaandra, and Hemaspaandra [15], we slightly differ from their approach. Indeed, they
have a separate “budget” for each control type, whereas we have a single parameter K that
models the total budget. This matches our motivating example of campaign management
better. If one is running a campaign, there is a single budget that can be partitioned between
various activities in any convenient way.

We use the unique-winner model. That is, to be successful, a candidate has to be the
only winner of the election. Both unique-winner model and nonunique-winner model are fre-
quently studied in election control literature. While occasionally the choice of the particular
model matters, in our work it is immaterial.

In the constructive cases, we will often speak of the distinguished candidate c as the
preferred candidate and thus we will often denote him with p rather than with c. For the
destructive cases, we will refer to this candidate as the despised one and often use d to
denote him or her. In destructive control by deleting candidates it is usually assumed that
the despised candidate cannot be removed from the election. This condition is necessary for
the case where deleting each candidate has unit cost, because otherwise one could simply
remove the despised candidate. On the other hand, in our model, with prices, we do not
pose this requirement. If one does not want to allow the despised candidate to be deleted,
one can set his or her deletion price to be above the available budget K.

We are often interested in subproblems of E-AC-DC-AV-DV priced control where only
some nonempty subset of basic control actions, AC (adding candidates), DC (deleting candi-
dates), AV (adding voters) and DV (deleting voters), is available. We denote such subprob-
lems by leaving only relevant parts of the input and appropriately modifying the question
part of the problem. (Intuitively, one could also think that all the disallowed control actions
have prices higher than the available budget.) Names of such control problems are formed
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from the name of the voting system E , followed by the permitted basic control actions,
where all parts are separated with “-” character. For example, if we studied priced con-
trol by adding candidates and deleting voters, then the control problem’s name would be
E-AC-DV-priced-control.

We say that a voting system is susceptible to constructive control problem C if for some
instance of this control problem with an election E, a preferred candidate is not a unique
winner of the election E , but it is possible to exercise control C over the election E in
such way as to make the preferred candidate the unique winner. Similarly, in the case of
destructive control, voting system is susceptible to control if we can prevent the despised
candidate from being the unique winner, and he or she had not been the unique winner
before. A voting system is said to be immune to control if it is not susceptible to it. If a
voting system is susceptible to control and associated decision problem is in P, then we say
that the voting system is vulnerable to this type of control. If a voting system is susceptible
to control and associated decision problem is NP-hard, we say it is resistant to this type of
control.

The main goal of this paper is to establish the complexity of priced control by adding or
deleting candidates or voters for plurality rule, approval rule, Condorcet rule, and Copeland
rule. We focus on problems where only a single type of control is allowed, but occasionally
we will use the expressive power of multimode control to simplify and compress our proofs.

Computational Complexity. We assume that the reader is familiar with basic notions
of complexity theory such as classes P and NP, many-one reductions, and the notion of NP-
completeness. However, most of the proofs in this paper present polynomial-time algorithms.

3 Prices Often Do Not Affect the Complexity of Control
In this section we study priced control problems under plurality, approval, Condorcet and
Copeland rules, using the multimode control framework. Naturally, introducing prices can-
not make our control problems easier and, indeed, the following easy proposition holds.

Proposition 3.1. For each voting rule E and each control type C, it holds that constructive
(destructive) E-C-control many-one reduces to constructive (destructive) E-C-priced-control.

Thus all the hardness results for the unpriced control problems hold in the priced set-
ting. The main message of this section is that, nonetheless, all the existing vulnerability
results for adding/deleting candidates or voters for our four voting rules do carry through
to the setting with prices. In particular, we show that plurality is vulnerable to constructive
and destructive AV-DV-priced-control, approval and Condorcet are vulnerable to destruc-
tive AC-DC-AV-DV-priced-control and constructive DC-priced-control, and Copeland is
vulnerable to destructive AC-DC-priced-control. This suggests that adding prices would
never increase the complexity of control problems. However, in Section 4 we show that in
fact there are scoring protocols for which considering prices makes a difference in terms of
the complexity of control problems.
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In the following sections we present our results for plurality, approval, Condorcet, and
Copeland rules. We remark that we will phrase our results in full generality, using the
multimode control framework. However, of course, our results that regard several control
types at the same time carry through to settings with fewer control types. For example, the
fact that Condorcet rule is vulnerable to destructive AC-DC-AV-DV-priced-control means
that it is also vulnerable to destructive variants of each of AC-priced-control, DC-priced-
control, AV-priced-control, and DV-priced-control (this follows naturally from the definition
because we can set up the prices for disallowed control actions to be above the allowed
budget; a very similar result is given as Proposition 4.9 by Faliszewski, Hemaspaandra, and
Hemaspaandra [15]).

3.1 Plurality Rule

We start by considering the plurality rule. Bartholdi, Tovey, and Trick [2] have shown that
plurality is resistant to constructive control by adding/deleting candidates, but that it is
vulnerable to constructive control by adding/deleting voters. Hemaspaandra, Hemaspaan-
dra, and Rothe [25] have shown that the same results hold for the destructive cases of these
problems. We extend the vulnerability results to the priced case by showing that Plurality-
AV-DV-priced-control is in P both in the constructive and in the destructive case.

Plurality is a very simple rule. If a new vote is added to the election, then the score
of candidate who is ranked first in this vote is increased by one, while the scores of all
the other candidates remain intact. Similarly, when deleting a single vote from the election
only the score of one candidate is affected. This locality property makes it possible to con-
struct greedy algorithms for Plurality-AV-DV-priced-control. Our algorithms are natural
extensions of those for the unpriced setting.

Theorem 3.2. Constructive Plurality-AV-DV-priced-control is in P.

Proof. Input to the constructive Plurality-AV-DV priced control problem consists of an
election E = (C, V ), a preferred candidate p ∈ C, a set of additional votersW , a list of prices
Π associated with the votes from V ∪W , and a natural number K (the available budget).
We give a greedy algorithm which in each step decreases the value of maxc∈C\{p} diff(c, p)
by one, and halts either when we make p the unique winner of the election, or the available
budget is exceeded, or there are no more votes to add/remove.

Our algorithm proceeds as follows. If p is already the unique winner, then accept. Oth-
erwise keep executing one of the following actions, until the stop condition is met. There
are two possible actions, the one with lower cost is selected and executed:

1. From the set of additional votes that rank p first, pick a vote w which has not been
added to the election yet and which has minimal price Π(w). The cost of this action
is Π(w). If this action is executed, add w to the election.

2. For each candidate c in arg maxc∈C diff(c, p), pick a vote v ∈ V that ranks c first, that
has not already been deleted from the election, and that has minimal price among
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Plurality-AV-DV-Constructive-Control(C, V, p,W,Π,K)
1 E ← (C, V )
2 V ′ ←W ′ ← ∅
3 while p is not the unique winner of E and (V \ V ′) ∪ (W \W ′) 6= ∅ do
4 w ← a vote for p with minimal price from W \W ′
5 U ← votes for candidates in arg maxc∈C diff(c, p) with minimal price, one for each

candidate
6 if Π(w) ¬ Π(U) then
7 W ′ ←W ′ ∪ {w}
8 K ← K −Π(w)
9 else

10 V ′ ← V ′ ∪ U
11 K ← K −Π(U)
12 E ← (C, (V \ V ′) ∪W ′)
13 if K < 0 then reject
14 if p is the unique winner of E then accept else reject

Figure 1: The algorithm for constructive Plurality-AV-DV priced control problem.

such votes. Let U be the collection of the picked votes. The cost of this action is Π(U).
If this action is executed, all the votes from U are deleted from the election.

When the stop condition is met, we verify that p is the unique winner of the election and
the budget is not exceeded. We accept or reject accordingly. The algorithm’s pseudocode is
presented on Figure 1. The correctness and polynomial running time are straightforward to
see.

In constructive Plurality-AV-DV priced control we have to ensure that preferred candi-
date’s score is higher than score of all remaining candidates. On the other hand, in destruc-
tive control we only have to ensure that there exists at least one candidate with score equal
to or higher than the score of the despised candidate. This suggests a simple algorithm
enumerating all candidates and checking if one of them can beat or tie the despised one. As
before, this is a natural extension of algorithms for the unpriced setting.

Theorem 3.3. Destructive Plurality-AV-DV priced control is in P.

Proof. Input to the destructive Plurality-AV-DV priced control instance consists of an
election E = (C, V ), the despised candidate d ∈ C, a set of additional voters W , a list of
prices associated with voters V ∪W , and an available budget K ∈ N. For each candidate
c ∈ C \ {d} we create a list of votes from V where d is ranked first, which we could delete
from the election, and a list of votes in W where c is ranked first, which we could add
to the election. Merge these lists together, sort in the order of increasing prices, and take
first max(0,diff(d, c)) votes, i.e., the number of votes that creates a tie between candidate
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Plurality-Destructive-Control(C, V, d,W,Π,K)
1 for c ∈ C \ {d} do
2 V ′ ← list of votes for d in V
3 W ′ ← list of votes for c in W
4 L← list V ′ ∪W ′ sorted in the order of increasing prices
5 L← first max(0,diff(d, c)) votes from L
6 if diff(d, c) ¬ |L| and Π(L) ¬ K then
7 accept

8 reject

Figure 2: The algorithm for destructive Plurality-AV-DV priced control problem.

d and candidate c. If there is sufficiently many votes and their total price does not exceed
available budget K, then accept. Otherwise if this condition is not fulfilled for any candidate
c ∈ C \ {d}, reject. Pseudocode for this algorithm is presented on Figure 2.

Thus, for the case of plurality, introducing prices is seamless; we can adjust the existing
greedy algorithms in a simple way. We believe that this is a very positive results. Priced
control problems are more realistic and it is convenient that considering prices comes at
essentially no additional cost in terms of computational complexity.

3.2 Approval and Condorcet Rules

Let us now move on to the case of approval and Condorcet rules. We extend the results of
Faliszewski, Hemaspaandra and Hemaspaandra [15] (who themselves relied on the results
of Bartholdi, Tovey, and Trick [2] and Hemaspaandra, Hemaspaandra, and Rothe [25]),
who have shown that approval and Condorcet rules are vulnerable to destructive AC-AV-
DV-control, to apply to priced control. In fact, we show that approval and Condorcet are
vulnerable to destructive AC-DC-AV-DV-priced-control because, as we have argued, in
our model it makes sense to consider destructive control by deleting candidates where we
can delete the despised candidate. (In the unpriced model such action is prohibited as
it makes the problem trivial.) We also show that approval and Condorcet are vulnerable
to constructive DC-priced-control. Naturally, through proposition 3.1 and the results of
Bartholdi, Tovey, and Trick [2] and Hemaspaandra, Hemaspaandra, and Rothe [25], approval
and Condorcet are resistant to all the remaining types of control.

The reader may wonder why we consider approval and Condorcet rules jointly. The
reason is that both approval elections and Condorcet elections can be understood in terms
of the results of head-to-head contests between candidates. By head-to-head contests we
mean elections were only two candidates are present. To facilitate this approach we adopt
the following convention: we say that candidate c is preferred to candidate d in election
with voter set V if and only if diff({c,d},V )(c, d) > 0 (recall that for approval rule diffE(c, d)
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means the difference of scores of candidates c and d in election E, whereas for Condorcet it
means the value NE(c, d)−NE(d, c)).

With this notation available, we see that a candidate is the unique winner of an approval
election or of a Condorcet election if and only if he or she is the unique winner of all the
head-to-head contests with the other candidates. Thus to prevent a despised candidate d
from being a unique winner we can either:

1. delete the despised candidate from the election, or

2. ensure that another candidate beats or ties the despised candidate in their head-to-
head contest.

In the second case, the despised candidate’s loss to some candidate c can be achieved by
introducing voters who prefer c to d, or by deleting voters who prefer d to c. Each such
added or deleted voter introduces the same change in the score difference (difference in
number of approvals) between candidate c and the despised candidate. This observation
suggest a simple algorithm based on enumeration of candidates who might ensure despised
candidate’s defeat, combined with a greedy approach to selecting the votes relevant to the
head-to-head contest with the despised candidate.

Theorem 3.4. Approval voting and Condorcet voting are vulnerable to destructive AC-
DC-AV-DV priced control.

Proof. In destructive AC-DC-AV-DV priced control instance we are given an election
E = (C, V ), a despised candidate d ∈ C, a set of additional candidates D, a set of additional
voters W , prices Π associated with candidates C ∪D and voters V ∪W , and an available
budget K ∈ N.

If candidate d already is not a unique winner of election E or we can remove d from
election (i.e., Π(d) ¬ K) then control is successful and we accept. Otherwise, for each
candidate c ∈ (C∪D)\{d}, we create a list L containing votes from V , where d is preferred
to c, and votes form W , where c is preferred to d. We sort L in the order of increasing
prices, and limit it to the first diffE(d, c) votes. In our control action we delete the votes
from V that are in L, and add the votes from W that are in L. Therefore the total price of
control action is the sum over:

1. Prices associated with votes added and removed to the election.

2. The price of adding c to the election, if c ∈ D.

If there are enough votes to create a tie between candidate c and candidate d, and total cost
does not exceed K, accept. Otherwise, repeat this procedure for all remaining candidates.
If control is not possible for any candidate c ∈ (C ∪D) \ {d} reject. The final algorithm is
presented on Figure 3.

In the constructive setting, approval and Condorcet rules are vulnerable to control by
deleting candidates only. (They are immune to control by adding candidates and resistant
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Approval-Condorcet-Destructive-AC-DC-AV-DV-Control(C, V, d,D,W,Π,K)
1 E ← (C, V )
2 if d is not the unique winner of E or Π(d) ¬ K then
3 accept
4 for c ∈ (C ∪D) \ {d} do
5 V ′ ← list of votes in V , where d is preferred to c
6 W ′ ← list of votes in W , where c is preferred to d
7 L← list V ′ ∪W ′ sorted in the order of increasing prices
8 L← first diffE(d, c) votes from L
9 K ′ ← Π(L)

10 if c ∈ D then
11 K ′ ← K ′ + Π(c)
12 if diffE(d, c) ¬ |L| and K ′ ¬ K then
13 accept

14 reject

Figure 3: The algorithm for destructive AC-DC-AV-DV priced control in Approval voting
and Condorcet voting.

to voter control [2, 25].) We extend this result to the priced setting. Clearly, to make the
preferred candidate win, all the candidates that defeat him or her in their head-to-head
contest should be deleted. Furthermore, as deleting candidates does not affect in any way
the results of head-to-head contests, it is a necessary and sufficient condition. There is single
optimal control action.

Theorem 3.5. Approval voting and Condorcet voting are vulnerable to constructive DC
priced control.

Proof. In constructive DC priced control instance we are given an election E = (C, V ),
a preferred candidate p ∈ C, a list of prices associated with each candidate in C, and an
available budget K. Candidate p is the unique winner of the election E if and only if he or
she beats all remaining candidates in their head-to-head contests. Therefore, if total price
necessary to delete all candidates who tie or beat the preferred candidate p in a head-to-
head contests is within budget, then accept, otherwise reject. Pseudocode is presented on
Figure 4,

Again, introducing prices does not make the control problems significantly harder for
approval and Condorcet rules. It is easy and natural to extend existing greedy algorithms
to take prices into account. As we will see in the next section, the case of Copeland is
somewhat more involved.
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Approval-Condorcet-Constructive-DC-Control(C, V, p,Π,K)
1 E ← (C, V )
2 C ′ ← {c ∈ C \ {p} | diffE(p, c) ¬ 0}
3 if Π(C ′) ¬ K then
4 accept
5 else
6 reject

Figure 4: The algorithm for constructive DC priced control in Approval voting and Con-
dorcet voting.

3.3 Copeland Rule

Faliszewski at al. [17] have studied the Llull and Copeland voting and have shown that
Copelandα voting fully resists constructive control and, among basic types of control (AC,
DC, AV and DV), is vulnerable to destructive AC and destructive DC control only. These
vulnerability results have been combined into destructive AC-DC control vulnerability by
Faliszewski, Hemaspaandra, and Hemaspaandra [15]. Here we extend this result to the
priced control framework.

In the following theorem we extend the algorithm of Faliszewski, Hemaspaandra, and
Hemaspaandra [15, Theorem 4.10] to the case of destructive AC-DC-priced-control, for
the case of Copeland0 and Copeland1 rules. Then we explain why it does not work for
Copelandα for all rational α values, α, 0 ¬ α ¬ 1. Finally, in Theorem 3.8, we provide an
algorithm which does work for all rational values of α.

Theorem 3.6. Destructive AC-DC-priced-control is in P for Copeland0 and Copeland1

voting.

Proof. In destructive Copelandα-AC-DC priced control instance, where α is in {0, 1}, we
are given an election E = (C, V ), a despised candidate d ∈ C, a set of additional candidates
D, a list of prices Π associated with the candidates in C ∪ D, and the available budget
K ∈ N. To preclude despised candidate d from being the unique winner of the election,
apart from obvious action of prohibiting him or her from taking part in the election, we
can ensure that the score of another candidate from C ∪D, call him or her p (we try each
possible choice of p), is higher or equal to the score of d, i.e., diff(d, p) ¬ 0. The score of a
candidate in Copelandα election is a sum of his or her scores in head-to-head contents with
the remaining candidates:

score(C,V )(d) =
∑

c∈C\{d}
score({c,d},V )(c)

For each candidate c, define gain(c) to be the score difference that candidate p gains relative
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Copeland01-Destructive-AC-DC-Control(C, V, d,D,Π,K)
1 E ← (C, V )
2 if d is not the unique winner of E or Π(d) ¬ K then
3 accept
4 for p ∈ (C ∪D) \ {d} do
5 C ′ ← {c ∈ C \ {p, d} | gain(c) > 0}
6 D′ ← {c ∈ D \ {p} | gain(c) > 0}
7 L← list C ′ ∪D′ sorted in the order of increasing prices
8 L← first max(0,diffE(d, p)) votes from L
9 K ′ ← Π(L)

10 if p ∈ D then
11 K ′ ← K ′ + Π(p)
12 if diffE(d, p) ¬ |L| and K ′ ¬ K then
13 accept

14 reject

Figure 5: The algorithm for destructive AC-DC priced control in Copeland0 and Copeland1

voting.

to the despised candidate d, if candidate c is part of control action:

gain(c) =
{
score({c,d},V )(d)− score({c,p},V )(p), c ∈ C
score({c,p},V )(p)− score({c,d},V )(d), c ∈ D

It easy to see that for Copeland0 and Copeland1, for each candidate c, gain(c) is either −1, 0
or 1. Moreover, as our goal is to decrease d’s advantage over p, we are only interested in
candidates with positive gain. Consequently, the following greedy approach can be used to
select candidates to add or delete. From C \ {d, p} and D \ {p} select a list L of candidates
with positive gain. Sort L in the order of increasing prices. Take first max(0,diffE(d, p))
candidates from L and if there was a sufficient number of them, then A = L ∪ (D ∩ {p})
describes a successful control action. If the total price of control action A is within budget
K then accept, otherwise repeat this procedure for another choice of candidate p. The final
algorithm is presented on Figure 5.

The above algorithm relies on the fact that all the candidates that we add or remove
from the election introduce the same score difference between the despised candidate and our
chosen candidate p. This is a crucial element ensuring correctness of the greedy approach.
In Copelandα for some rational α, 0 < α < 1, the score difference could be 1, α or 1 − α.
This makes the candidates incomparable and the greedy approach infeasible.

Now we reformulate Copelandα into voting system Copelandx,yN that admits only natural
numbered scores to facilitate our dynamic programming solution.
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Definition 3.7. For each x, y ∈ N, and an election E = (C, V ). Candidate with the highest
score is a winner of the Copelandx,yN election, where the score of candidate c is defined to
be:

scoreE(c) = x |{d ∈ C \ {c} | NE(c, d) > NE(d, c)}|
+y |{d ∈ C \ {c} | NE(c, d) = NE(d, c)}|

It is easy to see that for each rational α, 0 < α ¬ 1, Copelandα election is equivalent to
the Copelandx,yN election where α = y/x, for some x, y ∈ N.

Theorem 3.8. For each x, y ∈ N, destructive Copelandx,yN -AC-DC-priced-control is in P.

Proof. The input to the destructive Copelandx,yN -AC-DC-priced-control problem consists
of an election E = (C, V ), a set of additional candidates D, a despised candidate d ∈ C,
a list Π of prices associated with candidates C ∪ D and available budget K ∈ N. If d is
already not a unique winner of the election or Π(d) ¬ K then accept. Otherwise for each
candidate p ∈ C ∪D distinct from d, we check if it is possible to ensure that diff(p, d)  0
by executing some control action within budget. Let A = (C ∪ D) \ {d, p} = {a1, . . . , an}
and define m(i, g) to be the minimal price of control necessary to achieve a total gain (as
defined in the previous proof) of at least g by executing control actions involving at most
candidates from the set {a1, . . . , ai}. It is easy to see that following recursive relations hold:

m(i, g) =


0 if i = 0 and g = 0
∞ if i = 0 and g 6= 0
min (m(i− 1, g),Π(ai)) if i > 0 and g ¬ gain(ai)
min (m(i− 1, g),m(i− 1, g − gain(ai)) + Π(ai)) if i > 0 and g > gain(ai)

Candidate p can beat or tie the despised candidate d if and only if m(n,diffE(d, p))+χD(p) ·
Π(p) ¬ K (where χD(p) is 1 if p ∈ D and is 0 otherwise). We can compute the value of
m(n, diffE(d, p)) in polynomial time using standard dynamic programming techniques.

Corollary 3.9. For each rational α, 0 ¬ α ¬ 1, destructive Copelandα-AC-DC priced
control is in P.

Proof. For each rational α, 0 < α ¬ 1, this follows directly from Theorem 3.8. The missing
case of α = 0 is provided by Theorem 3.6.

The above discussion shows that algorithms for priced control are not always simple
extensions of those for the unpriced cases, and indeed can require new ideas. In the next
section we show that it is even possible that introducing prices moves control problems from
being solvable in polynomial time to being NP-hard.
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4 Prices Can Increase the Complexity of Control
In the previous section, we have shown that for several prominent voting rules introducing
prices does not affect the complexity of control problem. Now we will show that, nonetheless,
there are rules for which it is not the case. First, we show that destructive AV-priced-control
and DV-priced-control problems are polynomial-time solvable for scoring rules, provided
that either the prices or the entries of used scoring vectors are encoded in unary. In partic-
ular, it means that for every scoring protocol, destructive control by adding/deleting voters
(without prices) is in P. Second, we show an example of a scoring protocol, whose entries
are encoded in binary, for which destructive Scoring-AV-priced-control and Scoring-DV-
priced-control problems are NP-hard. It is particularly interesting that our proof follows by
a reduction from the X3C problem rather than from the Partition problem, as is often the
case for election problems with binary-encoded prices/weights.

It is interesting to compare our results to those of Faliszewski, Hemaspaandra, and
Hemaspaandra [16] regarding control problems in weighted elections. While they mostly
consider constructive cases, they remark that destructive voter control for scoring protocols
in weighted elections is in P (in weighted elections for each voter v there is a natural number
wv, his or her weight, and we treat the vote of v as if it was cast by wv voters with the same
preference order). Our results show that the complexity of destructive voter control for the
case of priced elections behaves in much more intricate ways.

4.1 Vulnerability Results

We first provide our vulnerability results. To simplify the proofs, we define the following
head-to-head priced control problem in which we ask if some specific candidate can tie or
beat the despised candidate by adding voters to the election.

Name: Scoring head-to-head priced control.

Given: An election (C, V ), a scoring vector α = 〈α1, . . . , α|C|〉, a despised candidate d ∈ C,
a preferred candidate p ∈ C distinct from d, a set of additional voters W , a list of
natural numbers Π describing prices associated with voters W , and available budget
K ∈ N.

Question: Is there a subset W ′ ⊆W such that diff(C,V ∪W ′)(p, d)  0 and Π(W ′) ¬ K.

In scoring head-to-head priced control, candidates’ scores in the election are calculated
using given scoring vector α.

Lemma 4.1. Scoring head-to-head priced control is in P if scoring vectors entries are
represented in unary.

Proof. In scoring head-to-head priced control by voters addition we are given an election
E = (C, V ), a scoring vector α, distinguished candidate d, a preferred candidate p ∈ C \{d},
a set of additional voters W with their prices Π and available budget K ∈ N. We assume
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that diffE(d, p) > 0; otherwise the problem is trivial. Define gainC(v) to be diff(C,{v})(p, d),
i.e., the score difference that p gains relative to d if we add voter v to the election E.
We observe that it is of no use to add voters with nonpositive gain if we try to increase
score difference between p and d. Let W ′ = {w1, . . . , w|W ′|} be a set of voters from W with
positive gain. Let m(i, g) be the minimal price of control necessary to achieve a total gain
(summed over all votes we decided to add) equal to or higher than g, using first i voters
from W ′. If it is not possible to achieve such gain, define m(i, g) to be infinite. The value
m(i, g) can be computed using the following recursive definition:

m(i, g) =


0 if i = 0 and g = 0
∞ if i = 0 and g > 0
min [m(i− 1, g), Π(vi)] if i  1 and g ¬ gainC(vi)
min [m(i− 1, g), m(i− 1, g − gainC(vi)) + Π(vi)] if i  1 and g > gainC(vi)

Candidate p can tie or beat d if and only if m(|W ′| ,diffE(d, p)) ¬ K, which can be checked
in polynomial time using standard dynamic programming. Polynomial running time follows
from the fact that the entries in vector α are represented in unary.

Lemma 4.2. Scoring head-to-head priced control is in P if prices are represented in unary.

Proof. We give a proof similar in spirit to the proof of Lemma 4.1. In scoring head-to-head
priced control we are given an election E = (C, V ), a distinguished candidate d, a preferred
candidate p ∈ C \ {d}, a set of additional voters W and their prices Π. Assume that
diffE(d, p) > 0; otherwise the problem is trivial. Define gainE(v) to be the score difference
that p gains relative to d if we add voter v to the election E. Let W ′ = {w1, . . . , w|W ′|} be
a set of voters from W with positive gain. Let g(i, p) be the maximal total gain, summed
over all votes we decided to add, that can be achieved, using first i votes from W ′ with
total price of control not exceeding p. The value g(i, p) can be computed using the following
recursive formulation:

g(i, p) =


0 if i = 0
g(i− 1, p) if i  1 and Π(vi) > p

min [g(i− 1, p), g(i− 1, p−Π(vi)) + gainE(vi)] if i  1 and Π(vi) ¬ p

Candidate p can tie or beat d if and only if g(|W ′| ,K)  diffE(d, p), which can be checked
in polynomial time using dynamic programming.

Now we are ready to combine results from Lemma 4.1 and Lemma 4.2 and state the
following result.

Theorem 4.3. Destructive AV priced control is in P for scoring protocols if either scoring
vector entries or prices are represented in unary, and if the scoring vectors for each number
of candidates are computable in polynomial time with respect to the required number of
candidates
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Proof. In destructive AV priced control problem we are given an election E = (C, V ),
a distinguished candidate d ∈ C, a set of additional voters W with their prices Π and
available budget K. If despised candidate d is already not a unique winner of election
E then accept. Otherwise check using a procedure from Lemma 4.1 (when scoring vector
entries are represented in unary) or Lemma 4.2 (when prices are represented in unary) if
there exists candidate p ∈ C \ {d} such that p can tie or beat candidate d after addition
of some voters from W within available budget K and accept or reject accordingly. This
requires at most |C| − 1 executions of algorithms from mentioned theorems, therefore this
procedure runs in polynomial time.

The same approach can be used in destructive control by deleting voters. No significant
changes to the above proofs are required. It is simply a matter of updating the definition of
gain to reflect that we are deleting voters instead of adding them, and running the dynamic
programming over the voters already in the election instead of over those that can be added.

Corollary 4.4. Destructive DV priced control is in P for scoring protocols if either scoring
vector entries or prices are represented in unary, and if the scoring vectors for each number
of candidates are computable in polynomial time with respect to the required number of
candidates.

For most natural classes of scoring protocols, such as, e.g., Borda rule, the assumptions
of the above theorems hold. We have the following corollary.

Corollary 4.5. Plurality, veto, k-veto, k-vpproval and Borda count are vulnerable to de-
structive AV and DV priced control.

As a side comment, we mention that for some rules there is an interesting connection
between the complexity of DV-priced-control and the complexity of AV-priced-control.
Indeed, for some rules such as Borda, Condorcet, or Copeland, we can reduce the former to
the latter.

Theorem 4.6. Constructive (destructive) DV priced control is reducible in polynomial time
to constructive (destructive) AV priced control for those voting rules for which it is possible
to uniquely determine the winners in election E provided that for each two candidates c and
d we are given the value NE(c, d)−NE(d, c).

Proof. Let IDV be an instance of constructive (destructive) DV priced control with election
E = (C, V ), a distinguished candidate c ∈ C, a list of prices associated with voters Π and
available budget K ∈ N. We reduce IDV to instance IAV of constructive (destructive) AV
priced control, consisting of:

1. election E = (C, V ),

2. distinguished candidate c,

3. set of additional votersW which consists of voters from V with their preference orders
reversed, and
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4. available budget K.

Further, the price of adding voter w ∈ W is the same as the price of deleting the voter
v ∈ V (in IDV ) from which w was created.

To see why the reduction works, it suffices to make the following simple observation.
Let v be some voters in V and let w be the corresponding voter from W . Consider some
arbitrary candidates a and b. Since w’s preference order is the reverse of that of v, the
following holds:

N(C,V \{v})(a, b)−N(C,V \{v})(b, a) = N(C,V ∪{w})(a, b)−N(C,V ∪{w})(b, a).

That is, as far as the values NE(a, b)−NE(b, a) are concerned, the effect of deleting voter v
is the same as the effect of adding voter w. By the assumption that winners depend only on
the values NE(a, b)−NE(b, a) (for all the candidates a, b ∈ C), we have that the reduction
is correct. Polynomial running time is straightforward.

To see that the above result applies to Borda, we note that Borda score of a candidate c in
election E = (C, V ) can be expressed as scoreE(c) =

∑
d∈C\{c}NE(c, d) (candidate c receives

a point for each candidate d and each voter that ranks c above d). For each d ∈ C \ {c},
we have that NE(c, d) +NE(d, c) = ‖V ‖ and, so, (NE(c, d)−NE(d, c)) + ‖V ‖ = 2NE(c, d).
This means that Borda score of candidate c is equal to scoreE(c) = 1

2
∑
d∈C\{c}(NE(c, d)−

NE(d, c) + ‖V ‖). So, Borda satisfies the conditions of the above theorem.
Theorem 4.6 is quite interesting since there are relatively few relations known between

the complexities of various election related problems. Some similar results were given by
Faliszewski, Hemaspaandra, and Hemaspaandra [16] for the case of voter control under k-
approval and k-veto, by Hemaspaandra, Hemaspaandra, and Menton [23] for the case of
destructive control-by-partition problems, by Faliszewski, Hemaspaandra, and Hemaspaan-
dra [13] for a relation between manipulation and priced bribery, and by Elkind, Faliszewski,
and Slinko [10] for the case of the possible winner problem and the swap bribery problem.

4.1.1 Resistance Results

We will now show a scoring protocol for which both destructive priced control by adding
voters and destructive priced control by deleting voters are NP-hard. By our previous results,
we know that the entries of our scoring protocol cannot be polynomially bounded in the
number of candidates.

We design our scoring protocol to facilitate an NP-hardness proof based on a reduction
from the X3C (eXact 3 Cover) problem. X3C is a well-known NP-complete problem [21].
We are given a set X and a family S of three-element subsets of X. We ask if there is an
exact cover of X using sets from S. Formally, we define X3C problem as follows:

Name: X3C
Given: Set X = {0, . . . , 3k − 1}, family S = {S1, . . . , Sn} of three-elements subsets of X.
Question: Is there I ⊆ {1, . . . , n} such that |I| = k and

⋃
i∈I Si = X?
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We now move on to defining our scoring protocol. For a given positive integer n and
three integers 0 ¬ x < y < z < n, let fn(x, y, z) be the number of 3-element subsequences of
〈n−1, . . . , 0〉, that are greater or equal to 〈z, y, x〉 in lexicographical order. For example, if we
consider all 3-element subsequences of 〈5, . . . , 0〉, the greatest tuple in lexicographical order
is 〈5, 4, 3〉, therefore f6(3, 4, 5) = 1. On the other hand 〈2, 1, 0〉 is the least subsequence and
we have that f6(0, 1, 2) =

(6
3
)

= 20. More generally, we have that f3k(3k−3, 3k−2, 3k−1) = 1
and f3k(0, 1, 2) =

(3k
3
)
.

Definition 4.7. Define scoring protocol SPH as follows. If the number of candidates in an
election is equal to m =

(3k
3
)

+ 1 for some k ∈ N, then we use scoring vector 〈α1, . . . , αm〉
such that:

1. αf3k(x,y,z) =
(3k

3
)x +

(3k
3
)y +

(3k
3
)z where 〈z, y, x〉 is a subsequence of 〈3k − 1, . . . , 0〉

2. αm = 0

Otherwise, we use the Borda scoring vector.

Note that if f3k(a, b, c) < f3k(x, y, z), where tuple 〈z, y, x〉 and tuple 〈c, b, a〉 are subse-
quences of 〈3k−1, . . . , 0〉, then 〈c, b, a〉 >lex 〈z, y, x〉. Applying the definition of lexicograph-
ical order, we have that c > z or c = z ∧ b > y or c = z ∧ b = y ∧ a > x and in each of
these cases it is easy to verify that αf3k(a,b,c) > αf3k(x,y,z). Therefore scoring vectors in SPH
protocol are monotone.

Before presenting our main resistance results of this section, we give some intuition
regarding SPH scoring protocol in the following example.

Example 4.8. Let us consider SPH scoring vector for the case where the number of can-
didates is of the form

(3k
3
)

+ 1 for some k ∈ N. The entries of scoring vector, for k = 2,
are presented on the Figure 6. The entries of our scoring vector, in base

(3k
3
)
encoding, are

either all zeros or are all zeros with three ones. The first important property of SPH that we
will use in our proofs is a one-to-one correspondence between the entries α1, . . . , α(3k

3 ) and
three element subsets of {0, . . . , 3k − 1}. The second one is the fact that to cause overflow
when adding numbers base

(3k
3
)
whose digits are only zeros and ones, we need to add at

least
(3k

3
)
numbers. By contrapositive, when we sum fewer than

(3k
3
)
such numbers, there is

no overflow.

Now we can state and prove our main results of this section.

Theorem 4.9. SPH is resistant to destructive AV-priced-control.

Proof. SPH is clearly susceptible to control. To show NP-hardness we give a reduction from
X3C. Let (X,S) be an X3C instance, where X = {0, . . . , 3k−1}, and S = {S1, . . . , Sn}. We
assume that k < n <

(3k
3
)
, as otherwise there is a trivial solution. Let m =

(3k
3
)
. Destructive

AV priced control instance is created in the following way:
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α1 =
α2 =
α3 =
α4 =
α5 =

α6 =
α7 =
α8 =
α9 =
α10 =

α11 =
α12 =
α13 =
α14 =
α15 =

α16 =
α17 =
α18 =
α19 =
α20 =
α21 =

Figure 6: SPH scoring vector entries for election with 21 candidates. Values of scoring vector
are represented in 20-ary numeral system, ones are depicted by cells with black dot inside,
and zeros are depicted by empty cells.

1. Candidate set C consist of {d, p} ∪ B where B = {bj | 1 ¬ j ¬ m − 1} and d is the
despised candidate.

2. The voter set V contains the following voters (when writing a � B we mean that
(∀b∈B)[a � b], and the order among candidates in B is arbitrary unless further speci-
fied, similarly for B � a):

(a) (n+ k)m2 + 6m voters with preference order d � p � B.
(b) (n+ k)m2 + 6m voters with preference order p � d � B.
(c) k voters with preference order B∪{d} � p, where candidate d is placed in position

f3k(3i− 3, 3i− 2, 3i− 1) for i, 1 ¬ i ¬ k

3. The set ofW of additional voters consists of one additional vote wi for each set Si in S.
In vote wi, candidate d is least preferred, and candidate p is placed in such a way that
the addition of wi to the election increases p’s score by

∑
j∈Si

mj (e.g., if Si = {7, 9, 13}
then candidate p is placed in position f3k(7, 9, 13)). The remaining candidates are
placed arbitrarily in the vote. The cost of adding wi is equal to

∑
j∈Si

mj .

4. Total available budget K is equal to
∑3k−1
i=0 mi.

In election E = (C, V ), prior to adding any of the voters from W , the candidates have
the following scores:

scoreE(d) =
[
(n+ k)m2 + 6m

] [
2m3k−1 + 2m3k−2 +m3k−3 +m3k−4

]
+

3k−1∑
i=0

mi

scoreE(p) =
[
(n+ k)m2 + 6m

] [
2m3k−1 + 2m3k−2 +m3k−3 +m3k−4

]
scoreE(bi) ¬

[
(n+ k)m2 + 6m

] [
2m3k−1 + 2m3k−2 + 2m3k−5

]
+ k

[
m3k−1 +m3k−2 +m3k−3

]
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Candidate d is the unique winner of this election with score advantage of
∑3k−1
i=0 mi

(equal to the available budget K) over the candidate p, and score advantage of more than
n(m3k−1 +m3k−2 +m3k−3) over candidates in B.

If the input X3C instance has a solution, then adding votes from W that correspond
to the sets Si that constitute an exact cover of X increases the score of candidate p by
K and requires budget of K. The score of the despised candidate d remains the same and
destructive control is successful.

For the reverse direction, if control is possible then it must be a result of a tie between
d and p. This is so because the scores of candidates from B can be increased by no more
than n(m3k−1 +m3k−2 +m3k−3), which is not sufficient to tie or beat with d. Moreover, the
score of candidate p must be increased by at least diffE(d, p) = K, and by no more than
the available budget K. Thus the sets Si that correspond to the added voters must form an
exact cover of X (recall the second property from Example 4.8).

Destructive priced control by deleting voters also is NP-hard for our scoring rule.

Theorem 4.10. SPH is resistant to destructive DV priced control.

Proof. We give a reduction from X3C. Let (X,S) be an X3C instance, whereX = {0, . . . , 3k−
1}, and S = {S1, . . . , Sn} . We assume that k < n <

(3k
3
)
(otherwise there is a trivial solu-

tion). Let m =
(3k

3
)
. Destructive priced control by deleting voters instance is created in the

following way:

1. Candidate set C consists of {d, p} ∪ B where B = {bi | 1 ¬ i ¬ m − 1}, and d is the
despised candidate.

2. The available budget K is
∑3k−1
i=0 mi.

3. Voters set V contains the following voters:

(a) (2n+ k)m2 + 9m voters with preference order d � p � B and cost K + 1.
(b) (2n+ k)m2 + 9m voters with preference order p � d � B and cost K + 1.
(c) k voters with preference orders of the form B ∪ {d} � p, where candidate d is

placed in position f3k(3i− 3, 3i− 2, 3i− 1) for each i in {1, . . . , k}, cost of each
vote is K + 1

(d) n voters with preference orders of the form B ∪ {p} � d. For each Si ∈ S, there
is a vote in which p is placed in such a way as to receive score

∑
j∈Si

mj from
this vote. The cost of each vote is K + 1.

(e) n voters, one for each Si in S, with preference orders of the form B ∪ {d} � p,
where in the vote corresponding to set Si, candidate d is placed in such a way as
to receive score of

∑
j∈Si

mj . For each i, the cost of the vote corresponding to Si
is
∑
j∈Si

mj .
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Candidates receive the following scores in election E = (C, V ):

scoreE(d) =
[
(2n+ k)m2 + 9m

] [
2m3k−1 + 2m3k−2 +m3k−3 +m3k−4

]
+

n∑
i=1

∑
j∈Si

mj +
3k−1∑
i=0

mi

scoreE(p) =
[
(2n+ k)m2 + 9m

] [
2m3k−1 + 2m3k−2 +m3k−3 +m3k−4

]
+

n∑
i=1

∑
j∈Si

mj

scoreE(bi) ¬
[
(2n+ k)m2 + 9m

] [
2m3k−1 + 2m3k−2 + 2m3k−5

]
+ (2n+ k)

[
m3k−1 +m3k−2 +m3k−3

]
Candidate d is the unique winner of election E with score advantage of

∑3k−1
i=0 mi (equal

to the available budgetK) over p, and with score advantage of more than n(m3k−1+m3k−2+
m3k−3) over candidates from B.

If input X3C instance has a solution, then deleting votes from V of type (3e) that
correspond to sets Si that constitute exact cover of X, decreases the score d by K and
requires budget of K. The score of candidate p is unchanged, and thus p and d tie and, so,
destructive control is successful.

In the other direction, if control is possible it must be a result of a tie between d and p.
This is so because existing score differences between candidates in B and d is higher than a
change that could be introduced by deleting votes of type (3e) (and no other types of votes
can be removed from the election). The score of candidate d must be therefore decreased by
at least K to ensure d ties or loses with p. But at the same time it must not exceed K, to
be within budget, as the introduced score difference between d and p is equal to the price of
the control action. Thus the total price must be exactly K and the deleted voters directly
correspond to sets Si constituting exact cover of X.

We believe that the above results are quite intriguing. While our scoring protocol SPH
is not likely to be used in any real-life election, it also is not completely unnatural. It is
interesting if one can show that destructive control by adding/deleting voters is NP-hard
for scoring vectors of the form 〈2m−1, 2m−2, . . . , 21, 20〉. We leave this as an interesting open
problem.

5 Summary
In this work we examined the computational complexity of election control for the case
where different control actions (such as adding/deleting different candidates or voters) may
come at different prices. We argued that such problems are useful ways of modeling problems
that arise in planning political campaigns.

We examined plurality, approval, Condorcet, and Copeland rules and we have shown
that introducing prices does not affect the complexity of control problems for these rules.
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On the other hand, we have shown that there are scoring protocols for which unpriced
destructive control is polynomial-time solvable, but for which introducing prices moves the
problem to be NP-hard. This is particularly interesting when we compare the complexity of
priced control with the complexity of unpriced control, for weighted elections. For the latter,
Faliszewski, Hemaspaandra, and Hemaspaandra [16] argue that destructive voter control is
polynomial-time solvable for all scoring protocols. We have shown that this is not the case
for priced control.

Our work opens several interesting research directions. First, one could seek if there
are natural voting rules for which introducing prices increases the complexity of control
problems. It is also interesting to consider the complexity of priced control in restricted
domains, such as the single-peaked domain or the single-crossing domains. Another potential
research direction is to consider approximation algorithms for the priced control problems.
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