Nprowadzenie ၁၀၀	Teoria 00000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura

Automaty komórkowe http://home.agh.edu.pl/malarz/dyd/ak/ v. 2.718281828459045235360287 Zastosowania w fizyce magnetyzmu

Krzysztof Malarz

1 maja 2024

Wprowadzenie ●●●	Teoria 0000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Wprowad	zenie I				

Oryginalnie sformułowany przez Lenza [1] i rozwiązany dla jednowymiarowego ferromagnetyka w E. Ising. "Beitrag zur Theorie des Ferromagnetismus". *Zeitschrift für Physik* **31** (1925), 253–258.

Całkowita energia układu

$$E = -\frac{1}{2}\sum_{ij}J_{ij}S_iS_j - H\sum_i S_i,$$

gdzie zmienna spinowa S_i przyjmuje tylko dwie wartości $S_i = \pm 1$ (czasami $S_i = \pm 1/2$, czasami $S_i = 0, 1$)

(4月) キョン キョン

Wprowadzenie ●●●	Teoria 0000000000000	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Wprowad	zenie II				

Całka oddziaływania wymiany

$$J_{ij} = \begin{cases} J_{ji} = J, & \text{dla } ij \text{ będących najbliższymi sąsiadami;} \\ 0, & \text{w przeciwnym wypadku.} \end{cases}$$

(W magnetyzmie jest to prawie zawsze prawdą.)

- J>0 sprzężenie ferromagnetyczne preferowane ustawienie $\uparrow \uparrow$ i/lub $\downarrow \downarrow$
- J<0 sprzężenie antyferromagnetyczne preferowane ustawianie $\downarrow-\uparrow$ i/lub $\uparrow-\downarrow$

(日) (圖) (문) (문) (문)

Na H możemy patrzeć jak na energię oddziaływania spinów z zewnętrznym polem magnetycznym bądź wprost jak na pole **H**. Wówczas $H \sum_i S_i$ jest sumą energii zeemannowskich $\mathbf{H} \circ \mathbf{S_i}$. Pole **H** stara się ustawić spiny zgodnie ze sobą.

Reguła DAK = tendencja układu do zmniejszania energii:

$$S_i(t+1) = \operatorname{sign}\left(\sum_j J_{ij}S_j + H\right).$$
(1)

A (1) < A (1) </p>

Fizycznie odpowiada to T = 0.

Wprowadzenie	Teoria ●●●○○○○○○○○○○○	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Dowód D)erridv I				

- Dla prostoty dowodu załóżmy H = 0.
- $g_i(t) = \sum_j J_{ij} S_j(t)$
- Funkcja pracy:

$$W(t) = -\sum_{ij} J_{ij} S_i(t) S_j(t+1)$$

• W(t) można zapisać na dwa sposoby:

$$W(t) =$$

$$= -\sum_{i} g_i(t)S_i(t+1)$$

$$= -\sum_{i} g_i(t+1)S_i(t)$$
(2)

Wprowadzenie	Teoria ●●●○○○○○○○○○○	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Dowód D	Perridy II				

• Z reguły (1) DAK mamy:

$$S_i(t+2) = \operatorname{sign}(g_i(t+1))$$

• Z pierwszej równości w (2):

$$W(t+1) = -\sum_{i} g_i(t+1)S_i(t+2) = -\sum_{i} |g_i(t+1)|$$

• Z drugiej równości w (2):

$$\begin{split} W(t) &= \\ &= -\sum_{i} |g_i(t+1)| \cdot \operatorname{sign}[g_i(t+1)] S_i(t) \\ &= -\sum_{i} |g_i(t+1)| \cdot S_i(t+2) S_i(t+2) \\ &= -\sum_{i} |g_i(t+1)| \cdot S_i(t+2$$

Wprowadzenie	Teoria ●●●○○○○○○○○○○○	Wyniki 00000000	Obliczanie Z 0000000	Lawiny dla <i>J</i> < 0 0000	Literatura
Dowód D)erridy III				

Różnica

$$W(t+1) - W(t) = -\sum_{i} |g_i(t+1)| \cdot [1 - S_i(t+2)S_i(t)]$$

jest niedodatnia.

- Z tego wnioskujemy, że W(t) jest nierosnąca.
- Dla układów skończonych wiecznie maleć nie może, więc $S_i(t+2)=S_i(t).$
- Mamy więc do czynienia z AK klasy II. A gdy $S_i(t \to \infty) \to \text{const} \text{z} \text{ AK klasy I.}$

 Do obliczania równowagowych wartości charakterystycznych wielkości układu opisanego modelem Isinga możemy się posłużyć

formalizmem sumy statystycznej:

$$Z = \sum_{\sigma} \exp[-\beta E(\sigma)].$$
 (3)

A (1) < A (1) </p>

Sumowanie odbywa się po wszystkich stanach układu σ .

• Odwrotność energii termicznej:

$$\beta = \frac{1}{k_B T}$$

- Dla układu N spinów mamy jednak 2^N możliwych stanów układu i tyle samo składników Z problem jest więc klasy NP.
- Ścisłe obliczenia (oprócz pracy doktorskiej lsinga dla 1D) powiodły się dla sieci dwuwymiarowej pod nieobecność pola magnetycznego [3].
- Dlatego w celu obliczenia *magnetyzacji* w zależności od pola *H* i temperatury *T* musimy posiłkować się *probabilistycznymi automatami komórkowymi*.

• Niech p_i będzie prawdopodobieństwem, ze i-ty spin jest zwrócony w górę.

• Zmiana tego p_i może być zapisana w czasie:

$$\frac{dp_i}{dt} = -p_i w_i(\uparrow \to \downarrow) + (1 - p_i) w_i(\downarrow \to \uparrow),$$

gdzie $w_i(\uparrow \rightarrow \downarrow)$ jest prawdopodobieństwem odwrócenia *i*-tego spinu z \uparrow na \downarrow .

• W równowadze

$$\frac{dp_i}{dt} = 0$$

.

• A samo p_i dane jest rozkładem Gibbsa $p_i \propto \exp[-\beta E(\uparrow)]$. • Skad

$$\frac{w_i(\uparrow \rightarrow \downarrow)}{w_i(\downarrow \rightarrow \uparrow)} = \exp\{\beta[E(\uparrow) - E(\downarrow)]\} = \exp[2\beta E(\uparrow)]$$

niezależnie czy w równowadze czy nie (bo w_i nie zależą od p_i).

W schemacie Metropolisa [4], prawdopodobieństwo akceptacji nowej konfiguracji jest dane poprzez

$$p_{\mu_i \to \eta_i}^M = \min\{1, \exp[-(E_{\eta_i} - E_{\mu_i})/k_B T]\}.$$
 (4)

W przeciwieństwie jednak do dynamiki glauberowskiej spiny są odwiedzane w losowej kolejności (losowa permutacja etykiet spinów strzeże by każdy spin był odwiedzony i to dokładnie raz na MCS).

- Wybieramy losowo komórkę *i*.
- Tworzymy konfigurację próbną z losowo wybranym spinem $S'_i = \pm 1$ i obliczamy z wiązaną z tym wyborem zmianę energii ΔE :

Dla każdego spinu i znajdującego się w otoczeniu (rozumianym "razem z nim") o konfiguracji μ_i , nowa konfiguracja η_i powstała poprzez wylosowanie $(S'_i=\pm 1)$ jest tworzona i akceptowana z prawdopodobieństwem

$$p_{\mu_i \to \eta_i}^G = \frac{\exp(-E_{\eta_i}/k_B T)}{\exp(-E_{\mu_i}/k_B T) + \exp(-E_{\eta_i}/k_B T)},$$
 (5)

gdzie E_{η_i} jest energią konfiguracji η_i , E_{μ_i} jest energią konfiguracji μ_i a k_B jest stałą Boltzmanna [5].

• Dla każdego *i* obliczamy:

$$r_i(t) = \frac{1}{1 + \exp\{-2\beta [\sum_j J_{ij} S_j(t)]\}}$$

|| (同) || (回) || (\cup) ||

Wyniki 00000000 Obliczanie Z

Lawiny dla *J* < 0

▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

Literatura

Dynamika Glaubera II

- Losujemy liczbę $R \in [0; 1]$
- Jeśli $S_i(t) = -1$
 - $R \le r_i(t) \to S_i(t+1) = +1$ • $R > r_i(t) \to S_i(t+1) = -1$
- Jeśli $S_i(t) = +1$
 - $R \le 1 r_i(t) \to S_i(t+1) = +1$
 - $R > 1 r_i(t) \to S_i(t+1) = -1$

Wprowadzenie	Teoria ०००००००० ● ०००	Wyniki 00000000	Obliczanie Z	Lawiny dla $J < 0$	Literatura
Kąpiel cie	plna				

- Komórki modyfikujemy jedna za drugą.
- Dla każdej obliczamy:

$$r_i(t) = \frac{1}{1 + \exp\{-2\beta [\sum_j J_{ij} S_j(t)]\}}$$

• Losujemy liczbę $R \in [0;1].$ Jeśli

$$\begin{cases} R \leq r_i(t) & \text{to } S_i(t+1) = +1; \\ R > r_i(t) & \text{to } S_i(t+1) = -1. \end{cases}$$

- Dla T = 0 wszystkie te trzy metody sprowadzają się do reguły deterministycznej (1).
- Dla niskich temperatur algorytm "lubi" się zawiesić na metastabilnej konfiguracji spinów (np. dla temperatury poniżej T_C i w polu równym zero H = 0 jeśli zaczniemy symulację od stanu z m = 0).
- Układ będzie dążył do stanu równowagi w sposób niewyobrażalnie powolny.
- Wprowadza się "demony Creutza" błądzące po siatce i odwracające "domeny" niezależnie od reguł.
- Najlepiej więc rozpoczynać symulacje zm = 1.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Kilka uwag natury technicznej II

- Dla najbardziej interesującego tj. 3D przypadku nie ma rozwiązań analitycznych i symulacja jest jedynym podejściem teoretycznym.
- "*Multispin coding*" jest techniką pozwalającą na przyspieszenie obliczeń poprzez operowanie na 32-bitach jednocześnie.
- Przy sprzężeniu antyferromagnetycznym w celu ominięcia przerzucania wszystkich stanów sieci z ↑ na ↓ przy początkowej m = 1 należy przechodzić przez siatkę rozsądnie (tj. co drugi węzeł).

Obliczanie Z

<u>Kilka uw</u>ag natury technicznej III

• Energia spinu na siatkach regularnych jest "skwantowana": nie ma co jej za każdym razem obliczać. To oznacza, że zmiana energii związana z odwróceniem spinu również przyjmuje kilka wielkości w zależności do liczby koordynacyjnej węzła sieci w której umieszczony jest spin. Wystarczy stworzyć tablice prawdopodobieństw akceptacji nowej konfiguracji/odwrócenia spinu r w zależności od "zwrotu" spinu i liczby spinów skierowanych w określoną stronę w jego otoczeniu (nie licząc jego).

Wprowadzenie	Teoria 0000000000000	Wyniki ●0000000	Obliczanie Z 0000000	Lawiny dla $J < 0$	Literatura

1d

Rysunek: Gęstość energii i ciepło właściwe

(四) (종) (종)

æ

Wprowadzenie	Teoria 0000000000000	Wyniki o●oooooo	Obliczanie Z	Literatura

Rysunek: Namagnesowanie i podatność

표 문 표

Wprowadzenie	Teoria 0000000000000	Wyniki ००●०००००	Obliczanie Z	Lawiny dla $J < 0$	Literatura
3d					

K. Malarz, KISiFK WFiIS AGH Automaty Komórkowe

T_C na sieciach regularnych z dodatkowymi sąsiadami

Rysunek: Wrócimy do tego [6] i nadamy wynikowi (nad)interpretacje socjologiczną...

Wprowadzenie

Teoria

Wyniki

Obliczanie Z

eZ La

Lawiny dla J < 0

・ロト ・日ト ・ヨト ・ヨト

э

Literatura

T_C na sieciach Archimedesa I

T_C na sieciach Archimedesa II

Rysunek: Zależność $\langle m \rangle$ od temperatury T dla sieci Archimedesa $(3^4, 6)$, (3, 4, 6, 4), (4, 6, 12), $(4, 8^2)$ i (4^4) . $N \approx 6 \cdot 10^4$ spinów, po $N_{\text{iter}} = 2 \cdot 10^5$ [MCS]. $\langle m \rangle$ jest uśrednione po ostatnich 10^5 [MCS].

Tabela: Temperatury Curie T_C na sieciach Archimedesa [7–9]

z	sieć	$T_C [J$	$[/k_B]$	źródło			
3	$(3, 12^2)$	$1,\!25$		[10]			
	(4, 6, 12)	$1,\!40$		[10]			
	$(4, 8^2)$	$1,\!45$		[10]			
	(6^3)	$1,\!52$					
4	(3, 4, 6, 4)	2,15		[10]			
	(4^4)	$2/\operatorname{arc}$	$\sinh 1 \approx 2,27$				
	(3,6,3,6)	$2,\!27$					
5	$(3^4, 6)$	$2,\!80$	< 🗆 >	[10]) < ≣ >	ų.	
K	. Malarz, KISiFK WF	IS AGH	Automaty Komórkowe	3			

WprowadzenieTeoriaWynikiObliczanieZLawiny dla J < 000

Literatura

T_C na sieciach Archimedesa III

Rysunek: Zależność $\langle m \rangle$ od zredukowanej temperatury T/T_C dla sieci $(3^4, 6)$, (3, 4, 6, 4), (4, 6, 12), $(4, 8^2)$ i (4^4)

∢ ≣⇒

T_C na sieciach Archimedesa IV

Dla każdej z rozważanych sieci, zależność $m(T/T_C)$ jest zgrubsza taka sama jak dla sieci kwadratowej [10]. W tym ostatnim przypadku znamy zaś przepis analityczny

$$|m(\kappa)| = \sqrt[8]{\frac{\cosh^2(2/\kappa)}{\sinh^4(2/\kappa)}} [\sinh^2(2/\kappa) - 1],$$

gdzie $\kappa \equiv T/T_C$.

W przeciwieństwie do półdokładnego wzoru Galama–Maugera na zależność T_C od wymiaru przestrzeni d i liczby koordynacyjnej sieci z, pokazujemy, że temperatura krytyczna dla IM różni się nieznacznie dla kilku AL (gdzie d = 2) z tymi samymi wartościami z. Podobnie jak w przypadku zjawiska perkolacji, także dla IM wymiar d i liczba koordynacyjna z nie są wystarczające do wyznaczenia punktu krytycznego T_C .

(本部) (문) (문) (문

Efektywny algorytm obliczania sumy statystycznej I

- n liczba spinów do góry ($S_i = +1$)
- k liczba wiązań antyrównoległych ($S_i S_j = -1$)
- *L* rozmiar sieci
- $N = L^2$ liczba wszystkich spinów
- $\Omega(n,k)$ liczba konfiguracji siatki $L \times L$ o zadanej liczbienik
- $1/\beta = k_B T$

Efektywny algorytm obliczania sumy statystycznej II

$$E(n,k) = -J \sum_{\langle i,j \rangle} S_i S_j - H \sum_i S_i = 2J(k - L^2 + L) - H(L^2 - 2n)$$
(6)

$$Z = \sum_{n,k} \Omega(n,k) \cdot \exp[-\beta E(n,k)]$$
(7)

イロト イヨト イヨト イヨト

3

$$\langle A \rangle = Z^{-1} \sum_{n,k} A(n,k) \cdot \Omega(n,k) \cdot \exp[-\beta E(n,k)]$$
 (8)

$$\chi = \beta [\langle S_i^2 \rangle - \langle S_i \rangle^2] = \beta [\langle (2n - L^2)^2 \rangle - \langle 2n - L^2 \rangle^2]$$
 (9)

Efektywny algorytm obliczania sumy statystycznej III

metodą brutalnej s	iły					
M	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}
t_{CPU} [sec]	0,86	6,90	66,4	660	6648	65752
na SGI 2800 $\rightarrow 2^6$	$^4 \approx 10$	¹⁹ — 4	.6 milio	onów l	at!	

$$\Omega_{8\times4}(b^8, n_1+n_2, k_1+k_2+k') = \sum_{\substack{b_1^7, n_1, k_1\\b_2^7, n_2, k_2}} \Omega_{4\times4}(b_1^7, n_1, k_1) \cdot \Omega_{4\times4}(b_2^7, n_2, k_2),$$

gdzie $0 \le k' \le 4$ jest dodatkową liczbą wiązań antyrównoległych na "zgrzewie" dwóch sieci 4×4 a b^8 tworzy się na podstawie b_1^7 i b_2^7 .

Efektywny algorytm obliczania sumy statystycznej IV

Podobnie

$$\Omega_{8\times8}(n_1+n_2,k_1+k_2+k'') = \sum_{\substack{b_1^8,n_1,k_1\\b_2^8,n_2,k_2}} \Omega_{8\times4}(b_1^8,n_1,k_1) \cdot \Omega_{8\times4}(b_2^8,n_2,k_2),$$

i znów $0 \le k'' \le 8$ jest dodatkową liczbą wiązań antyrównoległych na złączu dwóch siatek $8 \times 4.$

Procedura ta pozwoliła określić $\Omega_{8 \times 8}$

na SGI 2800 w zaledwie 22 godziny, co daje przyspieszenie 1 831 636 363 $\approx 2\cdot 10^9$ [11].

Efektywny algorytm obliczania sumy statystycznej V

Podejście średniopolowe J < 0 i $\chi = (m_{\alpha} + m_{\gamma})/H \ (H \to 0)$:

$$\begin{cases} m_{\alpha} = \operatorname{tgh} \left(\beta (Jm_{\gamma} + H) \right) \\ m_{\gamma} = \operatorname{tgh} \left(\beta (Jm_{\alpha} + H) \right) \end{cases}$$
(10)

(日) (四) (三) (三) (三) (三)

Efektywny algorytm obliczania sumy statystycznej VI

▲ □ ▶ < ≥ ▶</p>

< ∃⇒

æ

< (27) ▶ < 三

Efektywny algorytm obliczania sumy statystycznej VII

Lawiny odwróceń spinów w antyferromagnetyku

Sieci spinów ze sprzeżeniem antyfermognatycznym ($J<0)\,$ przemiatane wolnozmiennym zewnętrznym polem magnetycznym H.

Przykłady pętli histerezy m(H) dla małych grafów i obniżanego poła (ciągła czerwona linia) i zwiększanwego pola (kropkowana czarna linia) [12, 13].

Rysunek: Pętle histerezy

・ロト ・回ト ・ヨト

< ≣⇒

æ

Rysunek: Snapshots from simulation for scale-free tree (M = 1, left) and scale-free simple graph (M = 2, right) for N = 200 and magnetic field $H = 0 - \delta$. Spins $S_i = -1$ (red) and $S_i = +1$ (yellow) and their pairs $S_iS_j = +1$ (black) $S_iS_j = -1$ (blue) for all $1 \le i, j \le N$. (Figures using Pajek)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Obliczanie Z

Lawiny dla J < 0

・ロト ・日ト ・ヨト ・ヨト

Э

Literatura

Rysunek: Histogramy rozmiarów s lawin odwróceń spinów

Wprowadzenie	Teoria 00000000000000	Wyniki 00000000	Obliczanie Z 0000000	Lawiny dla $J < 0$	Literatura

- W. Lenz. "Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern". Zeitschrift für Physik 21 (1920), 613–615.
- [2] E. Ising. "Beitrag zur Theorie des Ferromagnetismus". Zeitschrift für Physik 31 (1925), 253–258.
- [3] L. Onsager. "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition". *Physical Review* 65 (3-4 1944), 117–149.
- [4] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
 A. H. Teller, and E. Teller. "Equation of State Calculations by Fast Computing Machines". *The Journal of Chemical Physics* 21.6 (1953), 1087–1092.

伺下 イヨト イヨト

- Wprowadzenie
 Teoria
 Wyniki
 Obliczanie Z
 Lawiny dla J < 0</th>
 Literatura

 [5]
 R. J. Glauber. "Time-Dependent Statistics of the Ising Model". Journal of Mathematical Physics 4.2 (1963), 294–307.
 1963
 - [6] K. Malarz. "Social phase transition in Solomon network". International Journal of Modern Physics C 14.5 (2003), 561–565.
 - J. M. Dixon, J. A. Tuszyński, and E. J. Carpenter.
 "Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models". *Physica A: Statistical Mechanics and its Applications* 349.3 (2005), 487–510.
 - J. Adler. "Series expansions versus simulations". Annual Reviews of Computational Physics IV. Ed. by D. Stauffer. World Scientific, 1996, 241–266.

イロト イヨト イヨト イヨト

- [9] C. J. Thompson and M. J. Wardrop. "Critical points of two-dimensional Ising models". *Journal of Physics A: Mathematical, Nuclear and General* 7.5 (1974), L65.
- [10] K. Malarz, M. Zborek, and B. Wróbel. "Curie temperatures for the Ising model on Archimedean lattices". TASK Quarterly 9.4 (2005), 475–480.
- K. Malarz, M. S. Magdoń-Maksymowicz,
 A. Z. Maksymowicz, B. Kawecka-Magiera, and
 K. Kułakowski. "New algorithm for the computation of the partition function for the Ising model on a square lattice". *International Journal of Modern Physics C* 14.5 (2003), 689–694.
- [12] B. Tadić, K. Malarz, and K. Kułakowski. "Magnetization reversal in spin patterns with complex geometry". *Physical Review Letters* 94.13 (2005), 137204.

[13] K. Malarz, W. Antosiewicz, J. Karpińska, K. Kułakowski, and B. Tadić. "Avalanches in complex spin networks". *Physica A* 373 (2007), 785–795.

イロト イヨト イヨト イヨト

3