
1

In Search for a Scalable & Reactive Architecture of
a Cloud Application: CQRS and Event Sourcing

Case Study
Andrzej Debski, Bartlomiej Szczepanik, Maciej Malawski, AGH University of Science and Technology, Poland,

Stefan Spahr and Dirk Muthig, Lufthansa Systems, Germany

Abstract—As cloud infrastructures are gaining popularity, new
concepts and design patterns such as Command-Query Respon-
sibility Segregation and Event Sourcing promise to facilitate
development of scalable applications. Despite recent work and
the availability of many blogs and tutorials devoted to these
topics, there are still few reports on existing implementations in
real-world use cases which would provide experimental insight
into their scalability. To bridge this gap, we have developed an
architecture which exploits both patterns in accordance with
Reactive Manifesto guidelines, and implemented a prototype
interactive flight scheduling application to experimentally answer
the key question concerning scalability. Our performance evalu-
ation in a cloud environment consisting of 15 VMs demonstrates
the horizontal scalability of the Command-Query Responsibility
Segregation and Event Sourcing patterns, observed independently
for read and write models of the application. We present in
detail how to assemble this type of architecture from smaller
building blocks, first on a conceptual level and later with specific
technologies including Akka, Cassandra, Kafka and Neo4J. Our
reference implementation is available as an open-source project.
We conclude that the evaluated concepts provide many interesting
advantages without compromising performance, and thus we can
expect to witness their rapid adoption by the industry.

Keywords—Scalability, CQRS, Event Sourcing, Domain-Driven
Design, Reactive, Akka.

I. INTRODUCTION

CLOUD technologies, owing to their capability for dy-
namic on-demand provisioning of computing resources,

create new opportunities for development of scalable appli-
cations. To fully benefit from these capabilities, however,
application architectures need to be designed with scalability
as a main design objective. This enables developers to deliver
low-latency solutions which handle a high rate of requests per
second and adjust resource usage to current needs.

In this paper we focus specifically on a movement called
the Reactive Manifesto [1], together with Command-Query
Responsibility Segregation (CQRS) [2], a new architectural
pattern for low-latency systems, and Domain-Driven Design
(DDD) [4], a software design approach originating from the
same community as CQRS.

The main goal of our work is to determine whether it
is possible to implement a fully working, scalable CQRS
application in a completely reactive fashion. We have decided
to build a prototype application using these ideas, focusing
on the Akka toolkit [3] as the implementation technology.

The prototype provides a subset of the functionality of a
real-world application and focuses on scalability, elasticity
and responsiveness as a means of demonstrating these new
architectural styles.

Our example is based on the interactive flight scheduling
application from Lufthansa Systems (LSY). Reactive and
scalable application architectures are an important concept for
airline-related software. In addition to schedule planning, they
can be applied e.g. to flight operation, passenger handling,
baggage tracking and so on. Existing client/server or n-tier
application stacks cannot fully take advantage of (nearly)
unbounded scalability offered by today’s cloud environments.

Our application has particular characteristics that make it
a good target for CQRS and Event Sourcing. While being
interactive it also requires some complex processing in the
background. The application maintains a schedule for a whole
airline. Under normal conditions, planning covers a single
season (which is 6 months); however longer periods (e.g. one
year) are also widely used. For reporting or analytics it may
be useful to consider even longer periods, such as 5 or 10
years. The corresponding volumes of data must be handled
by the application with reasonable response times. Depending
on the size of the airline, one season can include hundreds
of airplanes and airports, along with several thousand flight
events, each of them connecting two airports. The schedule
is interactively updated by human planners and allows them
to perform on-line validation checks. To simplify matters we
implemented only a small subset of the business functionality
of a real scheduling system.

A schedule is comprised of rotations with assigned air-
planes. A single rotation consists of one or more legs (flights).
Each airport defines standard ground time which is the mini-
mum time that an airplane has to spend on the ground between
consecutive legs. To ensure schedule validity, the system must
check, at every update, if all the legs in a rotation hold the
continuity property, do not violate standard ground times and
flight numbers are not duplicated. These checks are complex
graph queries that need to be performed on a node schedule
graph with approximately 200 000 nodes and a minimum
memory footprint of 450 MB. This implies high load on the
back-end database, which, in turn, greatly impacts performance
and scalability.

The main contributions of this paper are as follows:
• we survey recent architectural patterns for scalable sys-

tems with focus on reactive applications,

2

• we demonstrate how we went about development of
a flight scheduling application prototype using a novel
reactive approach that combines CQRS with DDD prin-
ciples, together with an open-source implementation of
the key components,

• we experimentally evaluate the scalability of the pro-
posed solution in a cloud environment.

Starting with the prototype flight scheduling application
(which is proprietary and owned by LSY), we extracted the
generic CQRS framework and made it available as an open-
source project [12]. We believe that it can be of interest to
professionals working on scalability problems. Moreover, we
consider the discussion presented in this paper to be of a gen-
eral nature, since many similar applications can benefit from
CQRS and Event Sourcing concepts presented in Section II,
the architecture described in Section III, implementation tech-
nologies (Section IV), our evaluation methodology detailed in
Section V as well as the outline of related work provided in
Section VI.

II. EVALUATED CONCEPTS

The CQRS principle advises separating operations that
mutate state (commands) from queries. This creates useful
possibilities, e.g. the ability to choose different databases for
write and read operations (see Fig. 1a). Developers can select
the most performant alternative for queries without sacrificing
the benefits of the original (e.g. relational) database for state
mutation operations. Furthermore, each of the queries can
be optimized separately by maintaining several different read
models at once. These benefits come with a cost associated
with synchronization of multiple data models and the under-
lying storage.

CQRS meshes well with the Event Sourcing idea, an
advanced version of the commit-log pattern, well known to
database designers and now considered a mature method of
managing persistence. System behavior is modeled in terms
of facts (events) happening in the system and state machines,
not just the state representation (see Fig. 1b). This enables
abandonment of the object-relational mapping to deliver a
fully persistence-agnostic model of the system. Moreover, this
approach automatically provides a complete audit log of the
system. It is especially useful when combined with the CQRS
architecture. New read models can be added a long time after
deployment of the write model, taking into account the events
stored thus far. The user can change the shape of projections
(i.e. how a stream of events is converted into a structural
representation) and simply recreate them from scratch. Such a
commit log may rely on storage which supports append-only
operations, usually called an event store.

Domain-Driven Design is a software development approach
meant to deal effectively with complex and evolving systems.
It defines both high-level guidelines for large system design
(strategic patterns) and class-level building blocks for business
logic modelling. The latter are called tactical patterns and in-
troduce a level of abstraction that helps experts and developers
reason about the codebase in terms of business processes and
behavior instead of classes and state. For this study the most
interesting elements are:

• aggregate - defines a transactional unit in a system,
• domain event - records the facts (events) that happened

in the system.
Reactive Manifesto emphasizes the need for building scal-

able and responsive systems. It defines basic traits for a
reactive application: elasticity, responsiveness, resiliency and a
message-driven approach. It also suggests suitable techniques
for achieving all of them. According to the manifesto, it leads
to more flexible, loosely-coupled, scalable and failure tolerant
systems.

III. APPLICATION ARCHITECTURE

We have divided our application into a write model and a
read model accordingly to the CQRS principle. Both parts are
connected with an event store. Even though we have committed
ourselves to the CQRS+ES architecture, we retain a substantial
number of degrees of freedom. Table I, which does not
attempt to provide a complete reference to all possible options,
presents the main design objectives and possible solutions that
we analyzed.

A. Write model
The flight scheduling problem domain does not require strict

consistency guarantees. This enables us to divide the write
model into smaller transactions, influenced by Pat Helland’s
idea of entities [6] (defined as a prerequisite for good scala-
bility) and the DDD aggregate pattern.

An aggregate is a group of application entities that cannot be
mutated independently. Conversely, all the operations involving
multiple aggregate instances are performed in an independent
and eventually consistent manner. That means the smaller the
aggregates, the higher the concurrency level and the lower the
cost of performing a single transaction, but also the less pow-
erful invariants the system can hold with strong consistency.

TABLE I. OBJECTIVES OF THE APPLICATION ARCHITECTURE ALONG
WITH CONSIDERED AND CHOSEN MEANS OF IMPLEMENTATION. THE

CHOSEN SOLUTIONS ARE PRESENTED IN ITALICS.

Objective Considered solutions
Write model

Consistency
guarantees

Strictly consistent model with transactions spanning multiple
entities.
Fine-grained transactional units eventually consistent with
each other.

Scalable
processing

Processing replication with efficient conflict resolution.
Processing distribution (sharding) using consistent hashing.

Decreasing
latency

Caching events from event store.
Persisting state snapshots in event store.
Caching recreated entities (event sourced state machines).

Read model

Effective data
representation

In-memory model.
Graph-oriented database.

Scalable
processing

Processing partitioning in a scatter-gather fashion.
Instance replication and round-robin routing.

Event store

Consistency
guarantees

Strict consistency.
Eventual consistency.

3

READ

MODEL

UI

WRITE

MODEL

READ

MODEL
READ

MODEL

(a)

STATE

MACHINE

EVENT

STORE

2

(b)

Fig. 1. The 1a diagram depicts the idea of CQRS. The Write Model handles all user commands, validates them and produces events. These events are published
to all Read Models which update their query models and become ready to handle new queries. Event Sourcing, depicted in the 1b diagram, introduces an
approach which differs slightly from the standard flow of dealing with entities in an enterprise world (i.e. deserialize, mutate state, serialize). In Event Sourcing,
the storage component is first asked for a list of all events for a given entity (1). Subsequently, the brand-new state machine applies all retrieved events (2).
Finally, the user command is validated and, if successful, a new event is produced and stored (3).

Fig. 2. Scalable command processing is accomplished with the idea of sharding depicted in the diagram. Requests are dispatched by a round-robin load balancer
(1) and hit the shard region service (2) on one of the write model nodes (WM1-3). The region service maintains the shard-to-node mapping with its peers on
other nodes. It recognizes the shard the command belongs to (3) and dispatches it to a proper node (4). The responsible node looks up its cache (5) and either
returns the cached aggregate or constructs a new instance using past events from the event store. Finally, the command is applied, and the generated event is
stored (6).

One of the examples from our system is a rotation aggregate.
A rotation is a list of flight legs in a schedule for a single
airplane. That requires the legs to be consecutive and not to
overlap. We defend these invariants by enclosing all of the
rotation legs in a single aggregate.

Aggregates in the system are event-sourced, i.e. they accept
commands, validate them, produce events, persist them in
the event store, and finally transition to a new state. When
fetched, a brand new instance is created and all the associated
events are replayed from the event store. Event ordering is
maintained only within a single aggregate. Different aggregate
instances are eventually consistent with each other, which
enables concurrent processing of their commands without any

interference, locking mechanism or blocking.
In order to enable scalable processing (to scale out) in

the write model, we use the idea of sharding. Instead of
replicating the command processing units and dealing with
conflict resolution, we choose to partition the commands load
using consistent hashing of aggregate identifiers. We maintain
a large number of partitions (a.k.a. shards), at least an order
of magnitude more than the number of machines for write
model deployment, and we assign multiple shards to each
machine. This allows us to balance the load when a new node
is added by transferring the shards from each of the previous
nodes. Similarly, when we want to deprovision a machine,
we transfer all the aggregates to other machines, partitioning

4

them equally. In fact, we change only the shard assignment,
as every aggregate is persisted in a database and can be easily
recreated on a new node. The same process is used for fault
tolerance, when we discover that a node in the cluster is not
available. The command processing flow is presented in Fig.
2. To decrease the latency, we cache aggregates created from
replayed events in memory.

B. Read model
In our case the read model implements constraint checks

that are executed against a configured flight schedule:
• rotation continuity – consecutive legs share arrival and

departure airports,
• minimal ground time – the airplane spends the required

minimal amount of time on the ground,
• flight designator uniqueness – each leg has a unique

flight identifier within a day.
These validations require quick graph traversal operations.
We initially considered an in-memory-only model, but finally
decided that a graph-oriented database is the most effective
data representation due to the types of queries and checks in
our model. All events processed in the read model from the
event store are transformed to fit this model.

Scalable processing is achieved by replicating the instances
of read models and balancing their load. Each node manages
its own database instance with a complete model. When there
is a need for more processing power on the read side, a new
instance of a read model is spawned. We avoid complicated
model cloning thanks to the complete history of events that a
new instance can ask the event store for in order to recreate
the current state on its own. When the replay is over, the node
joins the load balancer group to begin handling requests, and
subscribes to new events to keep the model up to date.

C. Event store
We could not achieve horizontal scalability without relaxing

consistency guarantees on the query side. Bridging two mod-
els with an asynchronous event store comes with trade-offs.
Firstly, read model instances may slightly differ at any given
time since updates are not synchronized. Secondly, when a
new command is accepted by the write side, there exists a time
frame in which data contained in read model nodes is slightly
outdated. Fortunately, these effects were deemed irrelevant in
our use case, and are typically considered acceptable in use
cases which can handle eventual consistency [13].

We decided to create our own event store. In contrast to the
most popular solutions, we did not design it from scratch and
instead assembled it from proven building blocks: a column-
oriented database and a persistent message queue. Every event
is stored in the database and pushed to the queue where it is
retained for a while (durable subscription pattern). This makes
the read model more resilient, guarantees at-least-once delivery
semantics and, most importantly, holds new events dispatched
to an initializing instance which is still processing historical
events from the database. As a result, no event is lost during
instance start-up.

D. Architecture – summary

The architecture we proposed adheres to the Reactive Man-
ifesto suggestions as it is:
• message-driven – commands trigger events, events trig-

ger model updates,
• elastic – adding new write and read model instances

results in better performance; the event store is built on
top of scalable datastores,

• resilient – losing an instance of a write or read model
does not prevent the system from working and the lost
instance may be easily recreated; the event store uses
datastores with enabled replication,

• responsive – the entire system resolves the user queries
quickly due to the selection of the most performant query
models that could be designed; aggregates in the write
model are completely independent and easy to cache,
which improves command resolution performance; the
event store is highly optimized for append-only opera-
tions and fetching events for a single aggregate.

IV. IMPLEMENTATION DETAILS

As the main technology for building the application in
the reactive approach we used the Akka toolkit. The toolkit
provides middleware which facilitates communication between
entities in the system in a message-passing style. It implements
the actor model [5] introduced many years ago by Carl Hewitt
and popularized by the Erlang community. The toolkit provides
many useful capabilities such as cluster membership service,
location transparency of actors, different routing strategies, su-
pervision of actors and implementation of the reactive streams
specification.

The application was developed using the Scala language and
its ecosystem. Load balancing is implemented by combining
routing and clustering capabilities of the Akka toolkit in
front of Akka actors. The Spray toolkit is responsible for
exposing REST endpoints and JSON serialization. We decided
to keep business logic separate from Akka actors and other
infrastructural concerns.

Apache Cassandra and Apache Kafka were chosen as the
database and persistent messaging queue respectively in the
context of event store implementation. Akka Persistence, along
with the corresponding Cassandra plugin, provide an event
store interface for event sourcing purposes. Since the event
store was not a bottleneck during our tests, we simplified its
implementation, using a single Kafka partition to store events
and running single-node deployments of both datastores.

On the write side the sharding concept is covered by the
Akka Cluster Sharding module that builds on top of Akka
Clustering functionality and requires Akka Persistence for state
management. The module also enabled us to implement a
simple cache layer as it maintains all retrieved aggregates
in memory and allows their on-demand passivation. A Neo4j
database (in the embedded mode) has been deployed in each
read model instance. We also decided upon a plain Java
API since the performance of other data access layers was
unsatisfactory.

5

V. SCALABILITY TESTS

We decided to evaluate the scalability of the read and the
write part of the flight scheduling prototype separately. We
designed two different workloads: the former contains only
queries while the latter only executes commands. Read and
write model instances were deployed to an OpenStack cloud
consisting of twelve quad-core, 4GB VMs with HDDs match-
ing the requirements of the test scenarios. We equipped this
setup with the Nginx load balancer, deployed on an identical,
independent VM and using a round-robin algorithm. The event
store was deployed on two 16-core, 16GB VMs with HDDs.
The first of these hosted Kafka with Zookeeper while the latter
provided hardware backup for Cassandra. Note, however, that
for the read model tests we simplified the event store setup to
a single VM. All VMs were located in the same cloud zone.
The load was generated using the Gatling tool running on a
single quad-core machine with 16GB memory. One additional
machine with a quad-core CPU, 4GB of RAM and 100 GB
HDD was used to gather metrics from the application and the
Gatling tool.

A complex setup of instrumentation and monitoring tools
was prepared to gain insight into the system behavior during
the evaluation. The application nodes and the Gatling tool
produce metrics that were sent either to StatsD (which, in turn,
forwarded them to InfluxDB – this includes application metrics
and performance data gathered by Kamon) or dispatched
directly to InfluxDB (Gatling). The following metrics were
gathered:

• CPU and memory – using the Kamon system-metrics
module that provides data readily available through JVM
APIs, and the native sigar library for OS-level metrics,

• GC time – both old and new generation. We used G1GC
for both Gatling and the application, since experiments
revealed that this approach produced the most favorable
response time characteristics. Response times reported
by Gatling were taken into account, along with analysis
of GC logs,

• application-level metrics – number of legs, rotations and
airplanes,

• metrics from Gatling concerning request response times
and active users,

• metrics from the HTTP server (spray-can), e.g. the
number of open connections and the number of pending
HTTP requests.

We did our best to sanitize our results, e.g. by using jitter
detection tools for JVM, by repeating each test five times
and by carefully warming up all JVM-based components:
application instances, data stores and the load testing tool.

A. Read model scalability

We decided to find the sustainable throughput for a single
read model instance. In order to do so, we began by measuring
the response time and CPU utilization. Then we checked
if a deployment consisting of several machines was able to
handle the corresponding load increase. We set the frequency
of requests in proportion to the capacity of a single node

multiplied by the number of instances. We wanted to find out
if the application could linearly increase its capabilities. If the
response time does not change between runs on the different
setups, this would prove linear scalability. We tuned the cache
configuration of the read model database in such a way that
most of the processing required using disk I/O and not only
RAM. This emulates a scenario when data is too large to fit in
memory, and processing read-model queries saturates a single
node even at a relatively low rate of 200 requests per second.
This, in turn, allowed us to carry out all the tests using a single
machine for load generation.

The workflow was designed as follows: we start with 1
request/sec and ramp it up to the maximum number of re-
quests/sec (e.g. 200 requests/sec) over a period of 300 seconds.
We then maintain this maximum rate for 600 seconds. Only the
last 300 seconds are taken into consideration when calculating
final results. The requests were distributed evenly among all
three types of schedule validation checks.

The maximum throughput which we considered sustainable
was achieved when the load testing tool was generating 175
queries per second, as shown in Fig. 3a. In this case, each
CPU core was 75% utilized, on average. Having determined
the sustainability threshold, we conducted scalability tests for
setups with 1, 2, 4, 8 and 12 read models on separate VMs.
The results are shown in Fig. 3b.

There is almost no increase in response time – only the
maximum (100th percentile) exhibits greater variance, which
was not unexpected. 99% of all requests had a nearly identical
response time upper bound in each run. That means the read
model scales very well, in a linear fashion. We double-checked
that we had selected the appropriate query rates by verifying
the CPU utilization on each node. Each one of the four cores
on each node was 75% occupied nearly all the time during
tests.

B. Write model scalability
In order to evaluate the write model, we took a different

approach. We decided to prepare a fixed command workload
and run it against several setups with a different number
of write model instances. We wanted to select a suitable
frequency of requests to be able to saturate setups with one or
two instances. We were interested in how the response time,
CPU utilization and the number of time-outs changes when
new instances are added to the setup.

The workload consisted of a simulation of multiple users
performing the same scenario: first, they create a rotation, next
they add several hundred legs to the rotation, then they create
an airplane and finally they assign the rotation to the airplane.
We ramped up the number of users, adding 50 new users every
5 seconds. We ran the same scenario twice for each test case,
separated by a five-minute pause, and only the latter scenario
was taken into account when collating results.

Results are summarized in Fig. 4. The response time for 99%
of requests drops when instances are added, with a threefold
decrease between 2 and 8 nodes. We can see timeouts indicat-
ing that the load saturated the single instance setup. These
disappear as the number of nodes increases. Furthermore,

6

 0
 250
 500
 750

 1000
 1250
 1500
 1750
 2000
 2250
 2500
 2750
 3000
 3250
 3500
 3750
 4000
 4250
 4500
 4750

1/125 1/150 1/175 1/200 1/225 1/250 1/275

re
sp

o
n
se

 t
im

e
 [

m
s]

machines/requests per second

Read model single node performance

75th percentile
95th percentile

99th percentile
100th percentile

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

1/175 2/350 4/700 8/1400 12/2100

re
sp

o
n
se

 t
im

e
 [

m
s]

machines/requests per second

Read model scalability

75th percentile
95th percentile
99th percentile

100th percentile

linear fit, 75th percentile
linear fit, 95th percentile
linear fit, 99th percentile

linear fit, 100th percentile

(b)

Fig. 3. Plot (a) presents the capacity testing results of a single read model instance. Each individual run is shown as a separate data series. We can see that
query rates of 125-200 request/sec are acceptable, but higher rates result in rapidly increasing response times. Plot (b) presents the results of the load test for an
increasing number of nodes. Each line shows a linear fit computed for each percentile. We observe no increase in the response time for 99% of the requests,
which proves linear scalability of the read model.

the CPU utilization decreased linearly with the number of
nodes. Two instances were able to handle the load with 87%
CPU utilization, but when we switched to 8 nodes, utilization
dropped to 50%.

VI. RELATED WORK

There are several tools and projects built around CQRS and
event sourcing ideas, but no comprehensive solution has been
developed so far. In contrast to our use case, other solutions
often focus on an efficient and reliable event store implemen-
tation only. For example, EventStore [7] is a database crafted
for event sourcing with Complex Event Processing capabilities.
LinkedIn Databus [8] provides a stream of change capture
events for relational databases, which enables them to be used
as event stores and allows adding read models to existing
applications.

The Axon Framework [9] is a robust framework for building
scalable CQRS-based applications with optional event sourced
persistence. Akka toolkit [3] provides extensive support for
event sourcing (e.g. rebuilding actor state from persisted
events, pluggable event stores etc.), but full CQRS coverage
is still in the experimental phase. Eventuate [11] is similar to
Akka, but unlike the aggregate-oriented approach that we used
it provides event sourcing with concurrent updates and conflict
resolution. Recently, Akka authors have rolled out Lagom [10],
a full-fledged microservice framework based on the CQRS+ES
architecture. It handles persistence in a similar way to our
prototype application, but in contrast to our toolkit approach
it enforces the entire application structure, up to the definition
of REST endpoints. Despite the high frequency of publishing
new tools influenced by CQRS+ES architecture, there have
been no in-depth performance studies of this approach we are
aware of.

Currently we observe significant industrial interest in various
stream processing technologies, from simpler, local solutions
like Reactive Streams [14] to full-fledged, distributed pro-
cessing systems like Twitter Storm [15]. Due to the fact
that one of the core parts of the CQRS+ES architecture is
event log processing, stream processing tools are frequently
chosen for its implementation. In the majority of cases they
help construct read models, especially complex ones, e.g. a
machine-learned recommendation model based on customers’
transactions. We did not use this approach in our application as
the read model was simpler and model construction would not
benefit from distribution capabilities. There are some attempts
to base the entire CQRS+ES architecture (not just its read part)
on a stream processing system. CQRS-server [16] defines the
write-side command processing as a data-flow workflow. The
community gathered around Apache Kafka promotes designing
systems to first store a log of updates and then process them
into materialized views, which closely resembles CQRS and
Event Sourcing. Processing is handled by a commit-log-aware
stream processing tool such as Apache Samza [17] or Kafka
Streams [18]. This approach is referred to as the Kappa
Architecture [19].

VII. CONCLUSION AND FUTURE WORK

As we can see, it is possible to successfully design and
implement the flight scheduling application prototype on the
basis of a CQRS+ES architecture. We learned that the actor
model and DDD building blocks are very helpful in de-
signing a scalable, distributed architecture. Our experience
in assembling the CQRS+ES architecture is embodied by
an abstract framework which is available as an open-source
project [12]. It builds upon the Akka toolkit and contains a
simple implementation of the event store.

7

We proved that the CQRS+ES architecture is horizontally
scalable. We observed no change in the response time of
the read model when scaling the load and the number of
instances respectively. Additionally, we experienced lower re-
sponse times and reduced resource consumption when scaling
the write model under constant load. We proved that actor
model approach is a good match for this type of application
architecture.

Everything comes at a price. Eventual consistency requires
developers to challenge their reasoning about control flow in
the system. Distribution entails thinking about duplications,
losses and retries. The speed at which aggregates and views
can be built from scratch by replaying events degrades slowly
with time and may require mitigation in the form of unwieldy
snapshots. Finally, since the approach is still not widely
adopted, it lacks field-proven tools, developer guides and best
practices. For instance, event versioning may be solved in
multiple ways (rewriting, upcasting, version-aware consumers,
etc.) and migration handling tools are rather scarce in the
relational database world. Fortunately, we continue to observe
great interest in CQRS and Event Sourcing patterns. New tools,
frameworks, event stores and related concepts are popping up
day by day and the situation may change quickly.

From the industrial perspective, the concept of CQRS+ES
looks very promising as a means to develop production-
grade software. LSY have decided to build new cloud-native
applications based on the results of this research and the
architecture used in our prototype.

Several ideas have been singled out for further research. We
are especially interested in stream processing systems in the
context of the CQRS+ES architecture. They may help provide
stronger consistency guarantees (e.g. causal consistency) and
build a reliable and scalable event store implementation. The
latter option may be required when creating a robust event store
benchmark and comparing existing solutions. Most notably,
the scalability which we proved is a prerequisite for achieving

automatic scaling (self-scaling) of the application, is one of the
key features of cloud platforms. We intend to take advantage
of this fact in the near future.

ACKNOWLEDGMENT

The presented work is supported by the EU FP7-ICT
PaaSage project (317715), Polish grant no. 3033/7PR/2014/2
and AGH grant no. 11.11.230.124.

REFERENCES

[1] J. Bonér, D. Farley, R. Kuhn and M. Thompson (2014, Sep), The Reactive
Manifesto, v2.0, [Online]. Available: http://www.reactivemanifesto.org

[2] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian,
Exploring CQRS and Event Sourcing: A Journey into High Scalability,
Availability, and Maintainability with Windows Azure, 1st ed., Microsoft
patterns & practices, 2013.

[3] Lightbend Inc., Akka toolkit, [Online]. Available: http://akka.io.
[4] E. Evans, Domain-Driven Design: Tacking Complexity in the Heart of

Software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[5] C. Hewitt and H. Baker, Actors and Continuous Functionals, in Proc. of
IFIP Working Conf. on Formal Description of Programming Concepts.
August 15, 1977.

[6] P. Helland, Life Beyond Distributed Transactions an Apostates Opinion,
Conf. on Innovative Database Research (CIDR) January 2007.

[7] G. Young, The Event Store database, [Online]. Available: http://www.
geteventstore.com.

[8] S. Das, et al., All Aboard the Databus!, LinkedIn’s Scalable Consistent
Change Data Capture Platform, In Proc. 3rd ACM Symp. on Cloud
Computing (SoCC 2012)

[9] A. Buijze, The Axon Framework, [Online]. Available: http://www.
axonframework.org.

[10] Lightbend Inc., Lagom, [Online]. Available: www.lightbend.com/lagom.
[11] M. Krasser (2015, Jan) The Eventuate toolkit, [Online]. Available: http:

//rbmhtechnology.github.io/eventuate/.
[12] A. Debski, B. Szczepanik, (2016, Jan) Proof-of-concept of CQRS/ES

framework, [Online]. Available: https://github.com/cqrs-endeavour/
cqrs-endeavour.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

re
sp

o
n
se

 t
im

e
 [

m
s]

ti
m

e
o
u
ts

 o
r

b
a
d
 r

e
sp

o
n
se

s

machines

Write model scalability, higher load

75th percentile
95th percentile
99th percentile

100th percentile
timeouts or bad responses

linear fit, 75th percentile
linear fit, 95th percentile
linear fit, 99th percentile

linear fit, 100th percentile

Fig. 4. The plot depicts response times and timeouts occurring in a multiple-
instance write model deployment. As we add more nodes, the timeouts
disappear. A deviation in the number of timeouts for a 4-node deployment
visible on the plot was caused by an unrecognized transient problem with the
Cassandra database. As it did not recur in any other test, we treat it as noise.

http://www.reactivemanifesto.org
http://akka.io
http://www.geteventstore.com
http://www.geteventstore.com
http://www.axonframework.org
http://www.axonframework.org
www.lightbend.com/lagom
http://rbmhtechnology.github.io/eventuate/
http://rbmhtechnology.github.io/eventuate/
https://github.com/cqrs-endeavour/cqrs-endeavour
https://github.com/cqrs-endeavour/cqrs-endeavour

8

[13] W. Vogels, Eventually consistent, Commun. ACM, vol. 52, no. 1, p. 40,
Jan. 2009.

[14] Reactive Streams, [Online]. Available: http://www.reactive-streams.org/.
[15] Apache Storm, [Online]. Available: https://storm.apache.org/.
[16] CQRS Server, [Online]. Available: https://github.com/Yuppiechef/

cqrs-server.
[17] Apache Samza, [Online]. Available: http://samza.apache.org/.
[18] Kafka Streams, [Online]. Available: http://docs.confluent.io/3.0.0/

streams/.
[19] J. Kreps, Questioning the Lambda Architecture blog

post, [Online]. Available: http://radar.oreilly.com/2014/07/
questioning-the-lambda-architecture.html.

Andrzej Debski is a Computer Science M.Sc. stu-
dent at the AGH University of Science and Tech-
nology in Krakow, Poland and a Software Engineer
in AVSystem. He is mainly interested in distributed
computing, functional programming, software engi-
neering and domain-driven design. His prior profes-
sional experience includes working for IBM Poland
and Sabre Airline Solutions.

Bartlomiej Szczepanik is a Computer Science
M.Sc. student at the AGH University of Science and
Technology in Krakow, Poland and a Software En-
gineer at Akamai Technologies. His main scientific
interests include highly distributed systems, domain-
driven design, and productivity engineering. His
prior professional experience includes internships at
Sabre Airline Solutions and Google Inc. He lives in
Krakow, Poland.

Maciej Malawski holds a Ph.D. in Computer Sci-
ence along with an M.Sc. in Computer Science and
Physics. He is an assistant professor and researcher
at the Department of Computer Science AGH and
at ACC Cyfronet AGH, Krakow, Poland. In 2011-
13 he was a postdoc and a visiting faculty at the
Center for Research Computing, University of Notre
Dame, USA. He is the coauthor of over 50 interna-
tional publications, including journal and conference
papers and book chapters. He participated in EU
ICT Cross-Grid, ViroLab, CoreGrid, VPH-Share and

PaaSage projects. His scientific interests include parallel computing, grid and
cloud systems, resource management, and scientific applications.

Stefan Spahr holds a Graduate Degree in Computer
Science (Dipl.-Inform. FH). He works as a senior
software architect for airline application software
and Cloud solutions at Lufthansa GmbH & Co.
KG in Berlin, Germany. Before his current job
he worked as a software engineer, a development-
and implementation-project manager and a database
expert at different departments of the company. He
participates in the EU FP7 PaaSage projects as well
as in the EU H2020 MUSA and BEACON projects.
His main professional interests are cloud computing

architectures and related (emerging) technologies, domain-driven design and
distributed systems.

Dirk Muthig is the CTO & Innovations of Lufthansa
Systems Hungaria Kft. and head of the Production
and Systems Design team of Lufthansa Systems
GmbH & Co. KG. He is responsible for innovations,
standards and guidelines that fully shape the lifecycle
of more than 20 major software products for the
aviation industry. This product lifecycle includes
service transition, which refers to the handover of a
software system to the operating units. These prod-
ucts must be able to be operated in various settings
that are heavily constrained by customer-specific IT

infrastructures already existing. Dirk has been with Lufthansa Systems for
nearly six years. Before he headed the Software Development division at
the Fraunhofer Institute for Experimental Software Engineering (IESE) and
thus he has intensive experience with all kinds of research projects, as well
as with bridging the gap between research and practice. His main research
topics have been software product lines, system architectures, and service- or
component-based development. He is also the chair of the software product
line hall of fame that selects and presents successful industrial case studies on
the website of the Software Engineeering Institute (SEI) in Pittsburgh, USA.
Dirk has more than 100 publications (listed by the Fraunhofer Publica, see
http://publica.fraunhofer.de/starweb/pub09/index.htm).

http://www.reactive-streams.org/
https://storm.apache.org/
https://github.com/Yuppiechef/cqrs-server
https://github.com/Yuppiechef/cqrs-server
http://samza.apache.org/
http://docs.confluent.io/3.0.0/streams/
http://docs.confluent.io/3.0.0/streams/
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html

	Introduction
	Evaluated concepts
	Application architecture
	Write model
	Read model
	Event store
	Architecture – summary

	Implementation details
	Scalability tests
	Read model scalability
	Write model scalability

	Related work
	Conclusion and future work
	References
	Biographies
	Andrzej Debski
	Bartlomiej Szczepanik
	Maciej Malawski
	Stefan Spahr
	Dirk Muthig

