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Abstract

This document presents concepts and implementation of the middleware infrastructure for
the CERN accelerator controls redeveloped and improved for the needs of the Large Hadron
Collider operation. The first part depicts the CERN organization. The second one takes a look
at the fundamentals of control systems as they are implemented in nowadays CERN facilities.
Next chapters describe work of the author with CERN Control Middleware system (CMW),
which at the time of author’s stay at CERN, underwent final phase of its development. Almost
all main functionality had already existed. What was to be done was to implement a testing
platform that would guarantee its reliability, stability and infallibility during the operation of the
LHC. This included general testing of the libraries and development of scalability tests that would
show the limits of the software, also with comparison to other, already existing solutions. These
topics are described in chapter three. Chapter four shows the details on CMW-RecorderPlayer,
an application developed by the author for more complex testing scenarios and diagnosis of
running software. The last part focuses on the details of implementation and functionality
of the CMW-Proxy, another application developed by the author of the thesis. CMW-Proxy
is mainly being used to take off load from overloaded front-end servers and to decrease data
transfer bandwidth between the servers and their clients. The proxy can also be used as a
gateway from general network into the realm of the Technical Network by any authorized client
seeking a transparent way to communicate with front-end computers.
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1 Introduction

1.1 CERN, The European Organization for Nuclear Research

The European Organization for Nuclear Research, known as CERN, is the world’s largest
particle physics laboratory. Established in 1954 in the northwest suburbs of Geneva, spans its
territory over Franco-Swiss border between Jura Mountains and Lake Geneva. The organization
consists of twenty European member states. An additional eight international organizations
or countries have ”observer status”. Apart from that, there are other forms of collaboration
between CERN and other countries resulting in approximately 12,000 people from 80 different
nationalities working together. This makes CERN a real multi-cultural melting pot adequate
to the nearby international city of Geneva [1].

Soon after its establishment, CERN’s main research objectives went beyond the study of
the atomic nucleus. CERN, studying interactions between particles, have become European
laboratory for particle physics, achieving many spectacular successes in the field. Amongst
them the discovery of W and Z bosons (1983), the first creation of antihydrogen atoms (1995)
and the discovery of the direct CP-violation1 (1999) [2].

Apart from its achievements in particle physics CERN has greatly donated to the other
fields of research: nanotechnology, vacuum technology, cryogenics and electronics, not to forget
about computer science and networking with the World Wide Web, the GRID and speed records
in long-distance data transfer [3].

At the moment, the main activity at CERN concerns the Large Hadron Collider (LHC) [4]
and six accompanying experiments - ATLAS, CMS, Alice, LHCb, LHCf and TOTEM [5].

1.2 The accelerator complex

The main CERN’s accelerator complex consists of the Antiproton Decelerator and 7 particle
accelerators that can reach increasingly higher energies and is shown in Figure 1. The biggest
of them is the LHC measuring 27 km in circumference. Its tunnel located 100 metres under-
ground was previously occupied by the Large Electron-Positron Collider (LEP) [6], which was
dismantled in November 2000. For the upcoming experiments both protons and lead ions are
going to be accelerated in LHC. Protons obtained by removing electrons from hydrogen atoms
will start their life cycle in the linear accelerator (LINAC2) from which they will be injec-
ted into the PS Booster, then to the Proton Synchrotron (PS), followed by the Super Proton
Synchrotron (SPS), before finally reaching the Large Hadron Collider (LHC). In the LHC two
beams circulating around the ring in opposite directions will collide in the so called interaction
points at maximum energy of 14 TeV in the centre of mass.

Lead ions will start from a source of vaporized lead and enter LINAC3 before being collected
and accelerated in the Low Energy Ion Ring (LEIR). Then they will follow exactly the same
way as protons, reaching a final collision energy of 1150 TeV.

The whole complex of 8 accelerators, the cryogenic distribution system and other technical
infrastructure is controlled from the recently established CERN Control Centre (CCC). The
LHC has already been turned on, and first beams went around the whole ring on 10 September
2008. The beam calibration process went smoothly; both hardware and software were working
properly. Unfortunately, due to a faulty connection between superconducting magnets the

1In particle physics, CP-violation is a violation of the CP symmetry. CP symmetry states that the laws of
physics should be the same if a particle was interchanged with its antiparticle (C stands for charge), and left
and right were swapped (P stands for parity) as in a mirror reflection. Various experiments have proved that
this symmetry is violated during certain types of weak decay.
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Figure 1: CERN Accelerator Complex

system was taken down for repairs on 19 September 2008. The restart of LHC is expected in
October of 2009.

1.3 Experiments

All six LHC experiments have been developed and will be operated by international collabora-
tions. Each experiment is distinct, characterized by its unique particle detector.

The two largest and most known are ATLAS (A Toroidal LHC Apparatus) [7] and CMS
(Compact Muon Solenoid) [8]. They were designed to investigate a large range of physics topics
- confirmation of the Standard Model (SM), investigation on the Higgs boson, CP violation
(asymmetry between the behaviour of matter and antimatter), properties of top quarks and
new physics beyond the SM, such as supersymmetry2 and extra dimensions. Independent
development and different design of the detectors is vital for cross-confirmation of any new
discoveries.

The smaller experiment, ALICE (A Large Ion Collider Experiment) [9], will study heavy
ion collisions (Pb-Pb), which are expected to generate a new state of matter called quark-gluon
plasma, where quarks and gluons are deconfined. LHCb (Large Hadron Collider beauty3) [10]
will focus on CP violation in the interactions of heavy particles containing a bottom quark.

The smallest, TOTEM [11] and LHCf [12], which are housed by the caverns of CMS and
ATLAS respectively, are designed to focus on ”forward particles”, i.e. those that just brush
past each other as the beams collide rather than meeting head-on.

2Supersymmetry (SuSy) is a symmetry that relates elementary particles of one spin to another particle that
differs by half a unit of spin and are known as superpartners. In other words, for every type of boson there exists
a corresponding type of fermion, and vice-versa. The theory has not been yet validated by any experiment.

3Where ”beauty” refers to the bottom quark
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2 Control System

The CERN accelerator control system is described in detail in [13]. Only the main features
are presented here. This serves later on as an explanation of the software concepts and mo-
dels used to implement the main controls communication library, namely Controls Middleware
(CMW) [14]. Thus, emphasis has been put on presenting the impact of the control environment
on the CMW and the communication model it delivers.

2.1 Introduction

The control systems at CERN have greatly evolved over time. Until 1993, industrial equipment
was connected to the control network via CERN specific front ends. Since then, the experiments
and corresponding complexity of apparatus have grown immensely, and so did the demands
towards the control systems. To meet anticipations and to guarantee safe operation of the
machine under expected high energies, the whole system was redesigned and reimplemented.
Moreover, a new CERN control room – CERN Control Centre (CCC) – was established to
bring together control and operation of the site services, cryogenics, injector chain and the new
collider [15].

2.2 Architecture

The LHC control system architecture is mainly based on standard components employed world-
wide for the control of accelerators as well as components used for the PS, SPS and LEP.
Comparing current control systems with the ones used at CERN earlier, one can see two major
differences:

• use of object oriented technologies in software systems,

• use of industrial controls solutions for the supervision of complete subsystems of the LHC.

As shown in Figure 2, the LHC control system consists of three hierarchical layers of equip-
ment communicating through the CERN Technical Network, a flat Gigabit Ethernet network
using the TCP/IP protocol. Starting from the bottom of the figure:

• At the equipment level, the various actuators, sensors, and measuring devices are inter-
faced to the control system through three different types of front-end computers:

– VME computers running LynxOS4, dealing with high performance acquisitions and
real-time processing,

– PC based gateways interfacing systems where a large quantity of identical equipment
is controlled through fieldbuses,

– Programmable Logic Controllers (PLCs)5 driving various industrial actuators and
sensors.

4The LynxOS [16] is a Unix-like real-time operating system. LynxOS features full POSIX (Portable Opera-
ting System Interface) [17] conformance and Linux compatibility. LynxOS is mostly used in real-time embedded
systems, in applications for avionics, aerospace, the military, industrial process control and telecommunications.

5A programmable logic controller (PLC) is a digital computer used for automation of electromechanical
processes, such as control of machinery on factory assembly lines. Difference between a PLC and a general-
purpose computer is that PLC is designed for multiple inputs and output arrangements, immunity to electrical
noise, extended temperature ranges, and resistance to vibration and impact. These let them operate in the
vicinity of the LHC machine.
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Figure 2: Control System Architecture

As TCP/IP protocol does not meet Quality of Service (QoS) expectations on the level
required by communication between Front End and PLC computers, and measurement
devices and other tunnel equipment, it is therefore not used for this part of communica-
tion. What is used instead is Fieldbus – a family of industrial computer network protocols
used for real-time distributed control. Amongst them, the two major ones are Profibus
[18] and WorldFIP [19]. They allow longer distance transmission (without repeaters) and
are more robust than Ethernet protocols. In addition, they are the only means to connect
equipment located in the LHC tunnel or other radioactive areas [20].

• In the middle tier, powerful UNIX servers host the operational files and run the LHC
applications. Hardware reliability and availability is ensured by selecting multi-CPU
architectures with redundant and hot swappable power supplies, discs and fans. Mirroring
and RAID6 techniques are used to ensure data integrity and error recovery. Main servers

6RAID, Redundant Array of Independent Disks is a technology that employs the simultaneous use of two or
more hard disk drives to achieve greater levels of performance, reliability, and/or larger data volume sizes [21].
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of the middle tier are:

– application servers hosting the software required to operate the LHC beams and
running the Supervisory Control and Data Acquisition (SCADA)7 systems,

– data servers containing the LHC layout and the control configuration as well as all
the machine settings needed to operate the machine or to diagnose its behaviour,

– central timing which provides the cycling information of the whole complex of
machines involved in the production of the LHC beam and the timestamp reference.

• At the control room level, consoles running the Graphical User Interfaces (GUI) allow
machine operators to control and optimise the LHC beams and to supervise the state
of the whole system. Dedicated fixed displays also provide real-time summaries of key
machine parameters.

2.3 Equipment access

2.3.1 The PLCs

Non-industrial hardware in the PS, SPS and LHC sites is connected to the control system via
VME or PC based Front End Computers (FEC). These systems mainly run a LynxOS real-
time operating system. Several hundred FECs are distributed in the surface buildings of the
LHC and some in the underground areas. Where possible they are diskless in order to increase
reliability and connected to the remote reboot and terminal server systems, thereby allowing
remote management.

FECs run hardware access software, which is part of the resource tier (see Fig. 2) and
provides access to equipment data. The data may be accessed by any authorized software
agent in the control system via a subscription or a single demand/response call. A dedicated
FEC software framework has been developed in order to simplify and standardize the software
running in the FECs (see Sec. 2.8).

PLCs are chosen when the process is not synchronized to accelerator timing and when the
sampling period required is not smaller than 100 msec. They are cost efficient, highly reliable,
adaptable to industrial environment and offer ease of programming via high-level languages.
Additionally, they benefit from generic facilities such as remote reset, monitoring and optionally
clock synchronization. As market standards, only PLCs from Schneider and Siemens are used
for LHC.

2.3.2 The Fieldbuses

The two fieldbuses used in the LHC accelerator, namely WorldFIP and Profibus, are part of
the three fieldbuses recommended at CERN. They are both supported by an internal CERN
service. These fieldbuses allow longer distance and more robust protocols than Ethernet. In
addition they are the only means to connect equipment located in the LHC tunnel or other
radioactive areas.

The WorldFIP Fieldbus [19] is used when the following features are required:

• Determinism (up to 10µs) required for:

– real-time control and synchronization of LHC equipment,

7SCADA is an industrial control system. Usually it is a computer system which is monitoring and controlling
various processes [22].
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– high precision time distribution,

– management of periodic data.

• Robustness in severe environments and in particular:

– resistance to electromagnetic noise,

– good resistance to high radiation levels.

• Data rates:

– WorldFIP is used to control largely distributed LHC systems at high (in the given
environment) data rates of 1 MBits/s and 2.5 MBits/s,

– high load factor possible (70 to 80% of the network bandwidth).

The Profibus Fieldbus [18] has been selected for several applications in the LHC, such
as cooling and ventilation, vacuum, cryogenics, fast kicker magnets, and magnet and power
interlock controllers. The main reasons to select the Profibus are:

• robustness of the protocol and simplicity of configuration,

• large variety of remote I/O systems available with Profibus,

• availability of radiation-tolerant remote I/O,

• ease of integration with Siemens PLCs,

• capacity to be used as an instrumentation bus with a wide range of instrumentation
products offering Profibus as standard means of connection.

2.4 Servers and operator consoles

The presentation tier of the LHC control system (see Fig. 2) is deployed on operation consoles
and fixed displays. The LHC middle tier software runs on the servers and hosts operational
programs and data files, furthermore it offers specific services (web services for operation, fixed
displays, SCADA servers, Database servers, etc.). The servers run the Linux operating system.
Emphasis has been put on the hardware reliability and availability issues by selecting multi-
CPU architectures with redundant and hot swappable power supplies, discs and fans. To ensure
data integrity and error recovery mirroring, RAID techniques are used. The fixed displays and
operator consoles are both based on desktop PCs with a large amount of memory. They run
GUI applications from their local disks and use one to three screens to display the data. More
than 20 fixed displays and around 10 consoles are needed in the CCC to operate the LHC
machine. Around 50 servers located nearby and in the LHC surface buildings are used to
deploy and run the operational LHC software.

2.5 Machine timing and UTC

2.5.1 Central Beam and Cycle Management

The production of the LHC beam involves a long chain of injectors which need to be tightly
synchronized. Moreover, the various types of beams to be produced for the LHC are only
a subset of all beams that the injectors must be capable of producing, e.g. beams for fixed
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target physics, for ISOLDE (On-Line Isotope Mass Separator) [23] and AD (Antiproton Dece-
lerator) [24]. These beams are produced in sequences of typically a few tens of seconds. The
composition of these sequences changes many times a day and the transition between different
sequences must be seamless.

To manage the settings of the machines and to synchronize precisely the beam transfer from
one injector to another until the beam is injected into the LHC, a Central Beam and Cycle
Manager (CBCM) was developed. The CBCM:

• delivers General Machine Timing (GMT),

• provides Beam Synchronous Timings (BST),

• elaborates the ”telegrams” specific to each machine and broadcasts over the GMT net-
works. A ”telegram” describes the type of beam that has to be produced and provides
detailed information for sequencing real-time tasks running in the FECs and for setting
up equipment.

In total the CBCM drives seven separate GMT networks dedicated to the different CERN
accelerators. To achieve absolute reliability, a CBCM is running in parallel on two different ma-
chines. A selector module capable of seamlessly switching between them guarantees continuous
operation of the system.

2.5.2 Timing generation, transmission and reception

Several hardware timing modules have been built either to produce reference clocks and timing
events or to extract the timing pulses or the interrupts needed to drive the equipment from the
distributed timing data.

• The CTSYNC module provides the ”master” clocks from a 10MHz oscillator which has
a stability greater than 10−10s.

• The CTGU module encodes events to be transmitted over the GMT network: the mil-
lisecond events, machine timing events, telegrams, and the Universal Coordinated Time
(UTC) events.

• The CTGB is the driver module for the BST network; Also, the CTGB sends the 1 Pulse
per Second (1PPS) UTC time and some telegram events over these networks.

• The CTRP is a GMT multi-channel reception module. It can generate timing pulses
with very low jitter. The CTRP recognizes the various types of timing events: UTC
time, the telegrams, the millisecond and other machine events; furthermore it can use
them to trigger pre-programmed actions.

2.5.3 UTC generation, transmission and reception

A Global Positioning System (GPS) time receiver connected to the CTGU serves as the source
of date and time for all CERN accelerators. The GPS provides UTC referenced date and
time plus a very accurate 1 PPS tick, which is used by the CTGUs to synchronize with the
UTC time. At initialization the CTGUs receive the date and time information from the GPS
receiver and then run independently, using the clock delivered by the CTSYNC until a manual
resynchronization is made. CTGUs provide the time every second in UNIX standard format.
This format allows easy conversion to year, month, day, hour, minute and second. UTC time
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Table 1: LHC time stamping accuracy

Beam dump

< 0.05 ms
Beam instrumentation
Radio frequency
Injection (kickers)
General machine timing
Machine interlocks

< 1 msQuench protection
Power converters
Feedbacks (orbit, tune ...)

1 – 10 ms
Cryogenics
Vacuum
All other systems

can be provided by the CTRP modules to timestamp the data to be logged with a 25 ns
resolution. Using an optional CERN-developed chip the resolution can be brought down to
1 ns. The required time-stamping granularity for the different LHC systems is shown in Table
1. In principal, the 1 ns performance is required only in the injector chain.

2.6 Data management

The LHC machine is of unequaled complexity in terms of number of components and possibili-
ties of their operational parameters settings. To name a few, the cryogenics, machine protection
and beam monitoring systems alone, give the control room access to more than 100,000 signals.
Similarly, the powering layout for the LHC, including 1232 main dipole magnets, about 450
quadrupole magnets and a few thousand corrector magnets, powered in more than 1600 electri-
cal circuits is of enormous complexity. As operation of the machine relies on the precise setting
of all those parameters, it is crucial to investigate, understand and control them, so as to make
the LHC work optimally. To be able to do that, all the settings are stored in a database. Apart
from that, the database system contains information about the whole control system, which is
composed of a large number of application programs, a middleware layer, VME- and PC-based
FECs with control software, industrial PLCs, fieldbuses, and hardware interface modules. Sha-
red characteristics of these components enable all control room software to be data-driven and
more generic, greatly reducing the software communication layer. Moreover, this also allows
reuse of the database system to hold the control configuration of the injection accelerator chain
of the PS and SPS complexes. The database system also provides the possibility of automatic
configuration and bootstraping of all FECs: storing their configuration data and their physical
addresses. The whole database system at CERN runs on Oracle systems.

2.7 Controls Middleware – the communication software framework

The Controls Middleware (CMW) [14] is a software framework that provides a common software
communication infrastructure for the CERN accelerator controls. CMW provides its users with
a consistent and easy to use Application Programming Interfaces (API) that allows seamless
communication between the software entities of the control system. This API has full imple-
mentation in both C++ and Java programming languages and is called RDA (Remote Device
Access) (see Fig. 4).
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In CMW two conceptual models are supported: the device access model and the messaging
model [25]. The device access model is mainly used in the communication between the resource
and middle tiers while the messaging model is mainly used within the business tier or between
the business tier and applications running in the presentation tier.

2.7.1 Device access model – RDA

Within the device access model, all accelerator equipment can be accessed as a device. A device
is a named entity of the control system, which usually corresponds to a physical device or
equipment (e.g. beam position monitor, power converter) or to a virtual controls entity (e.g.
transfer line). Each device has a number of properties that describe its state and through
which it can be controlled. By getting the value of a property, the state of the device can be
read. Accordingly, a device can be controlled by setting one of its properties with the required
value. Get and set operations can be either synchronous or asynchronous. In addition to the
get and set operations on device properties, it is possible to monitor changes of the property
via listeners. Listeners are implemented as callbacks and set with monitorOn and monitorOff

functions. Apart from sending commands to a device and receiving its state it is often necessary
to specify under which conditions the operations had to take place, for instance to which cycle
of the machine the operation applies. These conditions are commonly referred to as filters
and as implementation code they are called context. The basic system use case is shown in
Figure 3.

As communication abstraction, the device access model is usually used between CMW
equipment servers running in FECs and Java applications running in the middle tier (see Fig. 2).
These processes communicate together through the RDA library. Using accompanying services
and CORBA8 as its backbone, RDA implements this model in a distributed environment with
devices hosted by servers that can run anywhere in the controls network [27]. From client’s
point of view, RDA provides reliable and location-independent access to the devices. This
functionality is provided by an RDA name server called Directory Service.

CMW’s device access model is shown in details in Figure 4. Beside the RDA’s software layers

8CORBA (Common Object Request Broker Architecture), is Object Management Group’s (OMG) open,
vendor-independent architecture and infrastructure that computer applications use to work together over net-
works. Using the standard protocol IIOP, a CORBA-based program can interoperate with any other CORBA-
based program, even if they were written in different languages and run on machines with different architectures
and operating systems [26].
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Figure 4: CMW Device Access Architecture

used on client’s and server’s side, one can also see more parts of the middleware infrastructure.
One of them is the administration console, which officially is called CMW Admin. CMW Admin
is a client side application that monitors states and conditions of all available CMW servers.
Next, a few servers, the PS-GM and SL-Equip servers, give access to old but still used software
operating on the equipment running in the PS and SPS tunnels [15]; PVSS gateway gives
access to PVSS (Prozessvisualisierungs- und Steuerungs-System, an object-oriented process
visualization and control system)), which is a SCADA system; FESA servers are all new servers
developed with FESA application (see Sec. 2.8). Moreover there is the Directory Service,
which maps logical names (device and server names) to their real locations (IP address and
port number) and later to physical devices and pieces of hardware used in controlling and
monitoring the accelerators.

2.7.2 Messaging model – JMS

Complementary to the device access model, the messaging model allows to send and receive
asynchronous messages. This approach to communication, though simpler in concept, is also
very important in the accelerator control system. It is a natural solution when it comes to
exchange of timing and logging events, notifications and alarms. These events, characterized by
asynchronous generation from a number of producers that potentially have multiple consumers.

To meet these demands Java Message Service (JMS)-compliant messaging system has been
incorporated into the CMW system. JMS provides a common API, which with the addition
of a provider framework, enables development of portable, message based applications in the
Java environment [28]. Additionally, JMS is an integral part of the Java 2, Enterprise Edition
(J2EE)9 platform, which allows easy usage of all its components.

9Java 2, Enterprise Edition (J2EE), is build on the foundation of Java Standard Edition. Being the industry
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2.8 FEC Software Framework

The Front-End Software Architecture (FESA) is the new CERN accelerator real-time software
architecture, a complete environment providing access to the accelerators’ physical elements.
The project started in 2003 with its primary objective being to develop an infrastructure that
would speed-up, simplify and standardize development of front-end software.

In order to simplify development of a server for a new FEC, needs and characteristics of
each type of equipment were studied. As a result, a clear separation between the generic
and the equipment specific parts was found and incorporated into FESA, letting it to become
rather a whole structure-and-flow control framework than just a library implementing common
functionalities. Thus, the framework organizes the server activity, and when needed calls the
functions provided by the application developer to provide application-specific behaviour. Such
approach not only cuts down to minimum development time but also enhances maintainability
of the code.

To build the control software, the programmer is provided with a set of configuration tools:

• A graphical tool: developing a FESA class requires three XML10 documents: Design,
Deployment and Instantiation. As part of FESA framework there exists a graphical
application, which is basically a generic XML editor, configured by dedicated W3C XML
Schemas11 To put it more clearly, the application itself is a general XML file editor, but
its present look (graphical elements such as buttons, text input fields, etc.) and behaviour
depends on an XML Schema that is loaded at the time of use. Following schemas have
been defined for FESA:

– FESA Design Schema drives the design tool and encodes the model of all possible
models of equipment software. It allows equipment specialists to think of an equip-
ment design as of:

∗ a public Interface, a collection of get/set/subscribe properties. Equipment is
controlled through remote invocation of these properties using the CMW;

∗ a set of fields (data-holders) composing software abstraction of an underlying
hardware device;

∗ a set of server actions, implementing the properties get/set services;

∗ a set of real-time actions transferring data between the hardware device and its
software representation;

∗ a set of events which trigger the equipment’s action.

– FESA Deployment Schema: conducts the deployment tool used to deploy the FESA
class on a particular FEC.

– FESA Instantiation Schema: drives the instantiation tool that configures and creates
device instances of deployed FESA class on a FEC where it was previously deployed.

standard it is widely used for development of service-oriented architecture (SOA) applications, as well as next-
generation web applications [29].

10Extensible Markup Language (XML) is a simple flexible text format. Originally designed to meet the
challenges of large-scale electronic publishing, XML is getting more and more popular as a medium to store
data or to exchange it on the Web and elsewhere [30].

11The W3C definition says: ”XML Schemas express shared vocabularies and allow machines to carry out
rules made by people. They provide a means for defining the structure, content and semantics of XML docu-
ments” [31].
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• A code generation tool which using XML file with the previously specified equipment de-
sign allows automatic generation of makefiles and source code with C++ implementation
of the equipment. This is done using another XML-based technology, namely XSL12.

• Test environment: using XSL, FESA can automatically create a Java GUI application
that gives access to each property of any defined device instance [33].

Despite the huge diversity of devices, such as Beam-Loss monitors, Cryogenic systems,
Kickers and many others, FESA has successfully fulfilled all the aims, becoming the new deve-
lopment standard for the LHC and the whole injector chain. The framework allowing equipment
specialists to design, develop, test and deploy real-time control software for FECs in a fast and
easy way, speeds up the whole process of software development and its maintenance. On top of
these all, using the high level language to describe the equipment software makes it easy to un-
derstand its structure and behaviour, just by examining the design document. Being a generic,
well tested tool, FESA has found many clients outside CERN. Amongst the others, it is going
to be used at the Fermi National Accelerator Laboratory (FERMILAB) and the Gesellschaft fr
Schwerionenforschung research centre (GSI, Association for Heavy Ion Research), despite small
hardware and equipment discrepancies [34].

2.9 Java software – J2EE, Spring, JAPC and LSA

Apart from CMW, depending on the need and ease of utilization, there are other communication
systems or extra software layers used. The second concept – ease of utilization and extra
software layers – mainly concerns Java applications and goes perfectly with its ”yet-another-
software-layer” language philosophy. Top-level applications controlling LHC, written mainly
in Java must handle a huge variety of tasks such as equipment and database access, data
visualization and quite often, significant computation. Considering the complexity of those
undertakings Java philosophy does not seem to be superfluous anymore.

To perform the tasks, applications need some common services: security, transactions (ato-
micity of complex operations), remote access and remote resource management. In this ex-
pansive and confusing environment, it is very important to keep the application’s code short
and clear, and to reuse good existing solutions as often as possible. At CERN, at the begin-
ning of the development process of new control applications for the LHC machine, majority of
them chose J2EE as a common platform providing all the needed functionalities. As J2EE’s
container, Oracle’s OC4J implementation was used [35]. But, because of J2EE’s complexity
and cumbersomeness it was mostly replaced with the Spring13 framework [37].

Being an established industrial standard, based on the Java programming language and
using all its functionality, Spring not only satisfies the previously mentioned requirements but
also provides some extra advantages. Firstly, it provides implementation of needed services
in the form of independent, strictly defined modules. Secondly, it offers a clear separation
between the graphical-presentation layer and application logic layer. For applications developed
at CERN such separation, between the implementation of graphic user interface (GUI), the
control part of an application (the core business of the application) and the abstract model
of the accelerator control on which it operates, leads to a simple and very popular three-tier

12XSL (The Extensible Stylesheet Language) is a family of languages defining XML document transformation
and presentation, thus letting to transform one XML file into another XML document [32]. This in the end
makes it possible to generate for instance C++ source file from an XML file.

13Spring is a leading platform to build and run enterprise applications. Features of its framework can be used
by any Java application, but its extensions can also be used for building web applications on top of the J2EE
platform [36].
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Figure 5: Typical usage of JAPC and LSA libraries.

architecture, with independent, clearly separated, well defined interfaces and tasks for each of
the layers.

Coming back to what was said in the first paragraph about additional communication
frameworks and layers, one of them is called Java API for Parameter Control (JAPC). JAPC
is a framework to build Java applications that control accelerator devices. Its main concept
is a parameter which represents a controlled entity, such as physical equipment, databases,
timing events and others. Client programs can modify and check status of JAPC parameters
with set and get functions, and they can subscribe for an automatic notification of its value
changes. The concept is quite similar to the CMW device access model (see Sec. 2.7.1). In
fact, JAPC not only serves as a wrapper for Java applications, providing a straightforward and
uniform interface to equipment communicating using CMW but also to other entities using
different means of communication. JAPC saves developers from the tediousness of writing
specific applications for all the different kinds of devices, accessed through a large number of
different protocols [38]. As a communication wrapper, JAPC usage can be seen in Figure 5.

Another important project is the LHC Software Architecture (LSA). The system covers
all of the most important aspects of accelerator controls. Its main tasks are to store and
give access to layout of machine optics and other control equipment and make it easier to
set and read machine parameters. LSA organizes the parameters in tree structures. Their
roots are usually physics-oriented, high-level abstraction parameters (e.g. momentum of the
particles), while leaves correspond to hardware settings (such as value of currents creating the
magnetic field). A change of the root element instantly propagates down to the lower levels
in the hierarchy between parameters. The changes are specified by appropriate algorithms or
equations. Operators usually control the machine by modifying the root parameters and letting
the LSA system recalculate values of the dependent ones.

21



SCADA

SCADA object parameters

Object status request

PLC

Communication Middleware

parametersPLC object logic

requestObject status

TCP-Modbus

Operator

Human requsts

Information
display

Direct I/O or 
Fieldbus

Process
Output

Process
Input

Process

Programmer

Programmer

Figure 6: The UNICOS object model.

Since 2005, providing a clean and clear API, LSA has been a powerful tool used by all the
operational applications in the LHC, SPS and LEIR. The system is entirely written in Java
and uses the Spring framework; it provides services like transactions or remote access (JAPC
or RMI14). Through a JAPC interface, it also gives an independent access to its database
containing layout and parameters settings. LSA architecture and usage can be seen at Figure 5.

2.10 UNICOS

UNICOS (UNified Industrial COntrol System) is a hardware and software framework which
provides components, methodology and tools to design, build and program industrial control
systems for the LHC [40]. At CERN it is used mainly with the cryogenic equipment and
experimental magnets in the LHC complex. In the supervision layer UNICOS uses popular
industrial controls architecture, which is the PVSS SCADA15. Schneider PLCs are used for
process control at the control layer. Communication is based on Ethernet and FIPIO (Factory
Instrumentation Protocol Input Output).

From programmer’s point of view, development philosophy inherits partly from object-
oriented approach. That is, each process device is represented as an object, which integrates
both its behaviour and the GUI. Though in one object, the two parts are separated. The GUI
part is programmed in the SCADA. It includes interaction with the operator through graphical
components which shows the current status of the object, and dedicated panels which allow sen-
ding orders. The PLC contains the process behaviour of the object, and orchestrates it either
by direct I/O connection or by a fieldbus. The SCADA and PLC object parts are connec-
ted together by a communication layer based on the TCP-Modbus protocol. For simplified
architecture of the UNICOS object model see Figure 6.

14The Java Remote Method Invocation (RMI) is one of the standards of remote communication for Java
language. Using it an object running in one Java virtual machine can easily invoke methods of an object
running in another Java virtual machine [39].

15SCADA (Supervisory Control And Data Acquisition) is a system supervising course of a technological or
manufacturing process. Main responsibilities of a SCADA system are collecting data, on-line measurements
visualization, controlling the ongoing process and alarming in case of a problem.

22



3 Remote Device Access

3.1 Introduction

The LHC machine consists of a number of important parts. Not less important is the steering
equipment conducting the way the machine works and monitoring its states. As explained
in the previous chapter the equipment consists of physical parts such as cable infrastructure,
actuators, sensors, various measurement devices and computer hardware. Besides, there is also
software operating on them:

• Programs specifying the actions of the underlying hardware.

• Protocols and communication layers responsible for transferring commands over the net-
work.

• Programs that take care of on-line results filtering, collecting and presenting, as well as
transferring and storing of the results into various database systems.

• Finally, applications used for off-line analysis of data, recorded during a run, about the
machine behaviour. Such analysis helps to calibrate the machine’s settings and improve
its behaviour in the following runs.

The complexity and variety of necessary services led to an inclusion of many new software
concepts and technologies. Some of them were already well established industrial standards
taken as they were or slightly modified according to the needs. Others were developed from
scratch. Amongst them was CMW.

In 1999 a proposition was raised to create a common software communication infrastructure
for the CERN accelerator controls. The proposed new infrastructure would replace the old
heterogeneous system used during the operation of LEP and would provide a new uniform
facilities for the LHC era. In particular, that would include support for the standard Accelerator
Device Model, publish and subscribe paradigms and inter-operability with industrial control
systems solutions. Based on these requests, a more precise study on requirements and available
middleware technology was started. Thus, the CMW project was launched, and as one of its
main parts, the RDA package.

3.2 Design choices

Apart from already mentioned general requirements, the design of RDA was significantly in-
fluenced by its purpose of providing access to the accelerator devices from application programs.
The parts of the system should inter-operate transparently and efficiently, independently of the
programming language or platform used. Officially, the library supports applications developed
in C++ and Java programming languages, running on any platform used at CERN accelerator
controls (Linux, LynxOS, Microsoft Windows).

At that time the best solution satisfying all the demands was CORBA. Without hesitation it
was chosen as the communication technology. Though, it was decided that RDA interface would
hide all the CORBA-oriented details. This standard approach in object oriented programming
would make eventual changes of underlying implementation easy without requiring any changes
in the code developed by the library clients. Such an API also simplifies and speeds up the
development process for people using the library as they do not need to know anything about
CORBA or any other software used beneath the RDA.
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To avoid compile-time dependencies because of some specific device data types, generic
container objects were implemented and are used by RDA to pass the values between applica-
tions and devices. A container holds the values and their run-time type description allowing
proper retrieval and interpretation of the data.

3.2.1 C++ generic data container

The first official versions of the C++ Standard Template Library (STL)16 were implemented
and released as early as 1994. However it still was not very popular in 1999 when work on
CMW started. Furthermore, controls at CERN still use platforms for which there is no STL
implementation or which do not fully support recent specifications of the C++ language. These
yielded a code which does its work properly, but is hard to maintain and unfortunately does
not fully exploit the robustness and power of the language.

The C++ implementation of the generic data container consists of three main classes:
rdaSet, rdaDataEntry and rdaData, though only the last one is usually seen and used by
a user. Together they allow the easy combination of data of various simple types (Booleans,
integers, floating point numbers, strings, . . . ) and their arrays into objects of almost unlimited
size and complexity (at the moment it is impossible to nest a structure into another one, yet
such extension is planned for a future release). The class design, though not making everything
out of the newer C++ specifications, makes it easy and intuitive to work with the classes. At
the same time, the implementation details guarantee type safety of the created objects and
their size optimization. The object size minimization is achieved mainly through the use of the
C++ unions, and is a crucial element to improving the efficiency of any communication library.

In computer science, a union is a data structure that stores one of several types of data at
a single location. There are two types of unions: a tagged union, where apart from the data
stored there is also a tag describing what kind of data has been stored and an untagged union,
which needs less space because it stores only the data without the describing name. On the
other hand the lack of a describing field makes untagged unions type unsafe as it is the user
of such a union who must remember what kind (type) of data has been placed there recently.
The C++ language offers untagged unions with its union keyword. The rdaDataEntry class
adds to the C++ union a tag and data type validation creating in principal a tagged union.

To create an object ready to send through a network; the user creates an object of rdaData
type and feeds it with data using methods insert or put. As parameters such a call takes a
basic data type (or an array of them) and a name by which it will be called and retrieved later
on. Internally, this name is the union tag of which was mentioned in the previous paragraph.
Figure 7 presents in a conceptual way the dependencies between the classes and main parts
of their interfaces and structures. Corresponding Listing 1 shows an example use of the real
classes.

A few things may need further explanation. When RDA was written for the first time the
new features of the C++ language were not yet implemented for compilers on the LynxOS
platform, which was the main system for controls at that time. This explains why instead
of using a namespace, the C++ RDA classes have a prefix rda. There was also no standard
STL implementation, and because of that a basic set like data structure was implemented and
named rdaSet. Concerning the lack of C++ templates, all the needed insertion methods in
the rdaData class were overloaded by hand. The methods support addition, extraction and

16The Standard Template Library, or STL, is a C++ library of container classes, algorithms and iterators.
It provides many of computer science data structures (vectors, lists, maps, ) and basic algorithms working with
them. The STL is a generic library. It extensively uses C++ templates making all its components heavily
parameterized and thus allows working in a type-safe manner with any built-in type or user defined class
type [41].
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Figure 7: Concept view of the C++ data holding classes.

removal of an entry of any type specified by the union in the rdaDataEntry. There are a few
ways to access the internally stored values of the rdaData. For basic types one can use insert

and extract methods. These functions exist also for arrays of basic types. When used they
perform a deep copy of the passed values. Put and get methods exist only for array types and
instead of making a copy of the arrays they just set a pointer to them. As long as the user
takes care of the lifetime of the objects, this can greatly speed up the creation of an rdaData

object.

Listing 1: The rdaData use.

1 rdaData man ipu la teData ( const rdaData & data )
2 {
3 unsigned long s i z e ;
4 const bool ∗ a r r a yO fBoo l s = data . ge tBoo l eanAr ray ( ” theBoo l eanAr ray ” , s i z e ) ;
5 rdaData newData ;
6 newData . i n s e r t ( ” t h e F i r s t V a l u e ” , a r r a yO fBoo l s [ 0 ] ) ;
7 newData . i n s e r t ( ” th eLa s tVa l u e ” , a r r a yO fBoo l s [ s i z e − 1 ] ) ;
8
9 double db l = data . e x t r a c tDoub l e ( ” theDoub leVa lue ” ) ;

10 newData . i n s e r t ( ” doub ledDoub leVa lue ” , 2 ∗ db l ) ;
11
12 return newData ;
13 }

3.2.2 Java generic data container

Since the days of its creation, shortly before the first release of the CMW, the Java language
underwent even greater changes than C++ and its standard libraries. From a toy used mainly
for writing Java Web applets17 Java evolved into a powerful tool. New language structures

17A Java applet is an applet (a software component that runs in the context of another program) delivered to
users in a form of Java bytecode. Java applets can run in a Web browser using a Java Virtual Machine (JVM),
or in Sun’s AppletViewer, a stand-alone tool for executing applets.
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appeared, one of them are generics, which to some extent offer a functionality that is similar
to that of C++ templates. Libraries grew large, supporting almost any type of functionality
one could ever think of.

Thanks to existence of standard containers, the Java version of RDA data holding structures
is less complicated than the C++ one. It consists of only two main classes kept in a cern.cmw

package. These are DataEntry and Data. As in the C++ implementation, the Data class is
responsible for storing and giving access to type safe tagged unions (DataEntry objects). Figure
8 presents in a conceptual way the dependencies between the classes and main parts of their
interfaces and structures. Corresponding Listing 2 shows an example use of the real classes.

Listing 2: The cern.cmw.Data use.

1 pr i va te s t a t i c Data man ipu la teData ( f i n a l Data data ) throws BadParameter ,
TypeMismatch {

2 boolean [ ] a r r a yOfBoo l ean s = data . e x t r a c tBoo l e anA r r a y ( ” theBoo l eanAr ray ” ) ;
3 Data newData = new Data ( ) ;
4 newData . i n s e r t ( ” t h e F i r s t V a l u e ” , a r r ayOfBoo l ean s [ 0 ] ) ;
5 newData . i n s e r t ( ” th eLa s tVa l u e ” , a r r ayOfBoo l ean s [ a r r a yOfBoo l ean s . l e n g t h − 1

] ) ;
6
7 double db l = data . e x t r a c tDoub l e ( ” theDoub leVa lue ” ) ;
8 newData . i n s e r t ( ” doub ledDoub leVa lue ” , 2 ∗ db l ) ;
9

10 return newData ;
11 }

For both C++ and Java programs using the rdaData/Data structures, the type safety is
checked at runtime. In case of a type mismatch or wrong name of an entry (not existing entry)
an appropriate exception is thrown.
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3.3 Architecture

RDA is based on a client-server model. Accelerator devices are implemented in device ser-
vers, and are accessed by applications using classes and interfaces of the RDA client part.
The RDAService class manages communications with remote devices. It is also a factory for
DeviceHandle objects. A client application uses a DeviceHandle to remotely invoke access
methods on a device. The DeviceHandle delegates the calls over the transport layer to the
DeviceServerBase object. DeviceServerBase is an abstract class that on its own implements
and hides from users the way the calls are received. Being derived by the users leaves them to
implement at least four abstract methods. They are automatically called whenever a corres-
ponding method is invoked on an associated device handle.

The get and set methods come in two modes: synchronous (blocking) and asynchronous
(nonblocking). The asynchronous calls require a reference to the object implementing the
ReplyHandler interface as a parameter; when a reply to the request arrives at the client, the
RDA passes the operation results to the specified object using methods defined in this interface.

Aparat from simple get and set calls, the DeviceHandle interface also has a monitorOn

method dedicated for subscriptions. Similar to the asynchronous get and set, it requires an
object that implements the ReplyHandler interface. This object receives subscription reports
from the associated ValueChangeListener object on the server side. A new object of the
ValueChangeListener class is created on the RDA server-side for each incoming subscription
request. The server implementation uses this object to forward updates of a property value or
errors to the client. There they are received with the above mentioned ReplyHandler object.
A client can cancel a subscription with a call to the monitorOff method.

All the remote calls make use of the connection classes which are implemented as CORBA
objects. This allows the object representing one end of the connection to invoke remotely
methods of the associated object on the other end. On the client side the connection classes
are represented by the ServerConnection and on the server side by the ClientConnection.
These two classes provide all functionality needed to send operation requests and receive replies
and also control the network connection they represent. To create a new connection, firstly,
using CORBA objects, a server creates an entry point for the connection establishment. Then
it notifies a Naming Service of its existence and location. When a client wants to send a request
to that server it asks RDAService for the server location. Then using the CORBA object on
its side it communicates with the server.

Under normal conditions the connection is closed on a client demand. Abnormal disconnec-
tions (e.g., due to a client or a server crash) are detected by the RDA connection monitoring
mechanism which is based on a ping mechanism from a client to a server. When the client dies
the server no longer receives the ping and releases all local resources related to it. On the other
hand, if the client cannot successfully perform the ping call or an ordinary call to the server
(due to some communication errors or a server crash), the client-side of the ServerConnection
assumes that the server is inaccessible and invokes the disconnected method on all reply hand-
lers waiting for subscription reports. Afterwards it starts to monitor the server reference on
the Namig Service. When the server is up again it reregisters with the Naming Service. This
triggers the reconnection procedure: the client tries to reconnect to the server and resend all
pending subscription requests. The whole procedure is performed internally by the RDA library
and is invisible to the users.

RDA architecture and basic flow of requests and data are depicted in Figure 9.
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Figure 9: RDA architecture.

3.4 Example use

Below basic examples of client and server code using RDA are presented. The examples show
how easy it is to send and receive data using the framework. Besides, looking at a basic
implementation makes it easier to understand the architecture of the framework and the way
the whole system works. Finally, these basics are cornerstones found in the implementation of
all real client and server applications. Similarly, the client and server based programs described
in the following parts of this work are also based on those snippets.

At CERN, but also outside of it, it is quite common to implement the client side with the
Java language. Java makes GUI application development fast and easy. Unfortunately, due
to many programming simplifications, Java also has many limitations. Java is expensive in
terms of memory consumption and to run, it needs the Java Virtual Machine (JVM). Therefore
C++, even though harder but at the same time much faster and giving to the users full control
over the program behaviour for writing servers and similar services. Moreover, in the CERN
environment almost all RDA servers run on FECs where it is impossible to run JVM. Following
this thought, client code snippets are presented in Java, while the server ones in C++.
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3.4.1 Java client side

Listing 3: Simple Java client using RDA library.

1 /// @b r i e f S imple c l i e n t example . Get a v a l u e from a s e r v e r ,
2 /// make a s u b s c r i p t i o n and un s ub s c r i b e a f t e r a few seconds .
3 pub l i c c l a s s C l i e n t
4 {
5 pub l i c s t a t i c void main ( S t r i n g [ ] a r g s ) {
6 t ry {
7 RDAService rda = RDAService . i n i t ( ) ;
8 Dev iceHand le d e v i c e = rda . ge tDev i c eHand l e ( ”DEV 01” ) ;
9 Data data = de v i c e . ge t ( ”PRP 08” ) ;

10 System . out . p r i n t l n ( ” v a l u e = ”+ data . e x t r a c tDoub l e ( ) ) ;
11
12 Sub s c r i p t i o nHand l e r h and l e r = new Sub s c r i p t i o nHand l e r ( ) ;
13 Sub s c r i p t i o nRequ e s t rq = de v i c e . monitorOn ( ”PRP 08” , ”CYCLE03 LHC” ,

f a l s e , h and l e r ) ;
14 Thread . s l e e p (4000) ;
15 d e v i c e . mon i to rOf f ( rq ) ;
16 }
17 catch ( Throwable ex ) {
18 System . out . p r i n t l n ( ” e r r o r : ” + ex ) ;
19 }
20 System . e x i t (0 ) ;
21 }
22 }

As described previously, for communication purposes, client side uses DeviceHandle class.
In Listing 3, the user starts by initializing RDA service. The call to RDAService.init initia-
lizes RDA: loading configuration, setting up logging, initializing ORB and connecting to the
Directory Service server name. Later on in the program, RDAService is important because it
serves as a factory of DeviceHandle objects. It is used as in the example, by calling method
getDeviceHandle with name of a device. This call queries the Directory Service for the physi-
cal location of the device and returns a handle to it. Later, the handle can be used to perform
one of the get, set or monitorOn calls. In the example, a query for DEV 01 device is made,
then user asks for the property named PRP 08 and in the end displays its value.

The next four lines of code present how to make a subscription. A user creates a Subscrip-

tionHandler object shown in Listing 4 and passes it to DeviceHandle monitorOn method. This
makes a remote subscription to the server and starts a new thread that waits for notifications
from the server, and when they arrive, executes proper methods in the SubscriptionHandler

object. That is why the main thread executes sleep method, putting itself to sleep and waiting
for some data instead of just quitting the program. After a predefined four seconds, the main
thread wakes up and executes monitorOff to cancel the subscription. This, again, makes a
remote call to the server asking for the subscription cancelation. The program ends.

Listing 4: Simple Java subscription handler using RDA library.

1 ///
2 /// @b r i e f S u b s c r i p t i o n hand l e r . P r i n t out r e c e i v e d data and/ or e r r o r s .
3 ///
4 c l a s s Sub s c r i p t i o nHand l e r extends Rep lyAdapte r {
5
6 @Over r ide
7 pub l i c void hand l eRep l y ( Request rq , Data v a l u e ) {
8 System . out . p r i n t l n ( ”VALUE RECEIVED : ” + va l u e . t o S t r i n g ( ) ) ;
9 }

10
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11 @Over r ide
12 pub l i c void hand l eE r r o r ( Request rq , CmwException ex ) {
13 System . out . p r i n t l n ( ”ERROR RECEIVED : ” + ex . t o S t r i n g ( ) ) ;
14 }
15
16 @Over r ide
17 pub l i c void d i s c onn e c t e d ( Sub s c r i p t i o nRequ e s t rq ) {
18 System . out . p r i n t l n ( ”DISCONNECTED FROM ” + rq . t o S t r i n g ( ) ) ;
19 }
20
21 @Over r ide
22 pub l i c void r e connec t ed ( Sub s c r i p t i o nRequ e s t rq ) {
23 System . out . p r i n t l n ( ”RECONNECTED TO ” + rq . t o S t r i n g ( ) ) ;
24 }
25
26 @Over r ide
27 pub l i c void c a n c e l l e d ( Sub s c r i p t i o nRequ e s t rq ) {
28 System . out . p r i n t l n ( ”CANCELLED ” + rq . t o S t r i n g ( ) ) ;
29 }
30 } ;

Listing 4 presents the implementation of a basic subscription handler class. The class
extends ReplyAdapter, which implements the ReplyHandler interface. Inheriting from Re-

plyAdapter saves us from writing all of the ReplyHandler methods on our own, making the
Client code shorter. The most important method is handleReply which is remotely called by
the server. It delivers data from the server to the client side. Here, in the example, we only
print it to the screen, but in a typical client application the information would be logged or
displayed on a GUI panel. The second important method is handleError which notifies the
client about various errors. This includes connection problems with the server, but also any
error sent to the client by the server.

3.4.2 C++ server side

Though in CMW world, servers are usually created with the FESA framework; a fully hand-
written code is presented here. Although writing everything by hand is slower than using a tool
to generate nearly complete server code, doing so gives a full control over the program, and
allows for greater flexibility when it comes to the designing and coding such a server. Moreover,
the majority of the application examples described later on, are not quite typical servers.

Listing 5: Simple C++ Server declaration using RDA library.

1 ///
2 /// Bas i c s e r v e r to t e s t RDA communicat ion methods .
3 ///
4 c l a s s Se r v e r : pub l i c r d aDev i c eSe r v e rBa s e
5 {
6 pub l i c :
7
8 /// Ctor s e t s the s e r v e r name and s l e e p t ime [ms ] between the nex t

s u b s c r i p t i o n update s .
9 Se r v e r ( const char ∗ serverName , i n t s l e e p ) ;

10
11 /// Get
12 v i r t u a l rdaData ∗ get ( const rda IOPo in t & iop , const rdaData & ctx ) ;
13
14 /// Set
15 v i r t u a l void s e t ( const rda IOPo in t & iop , const rdaData & ctx , const rdaData

& va l u e ) ;
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16
17 /// Add l i s t e n e r to the l i s t .
18 v i r t u a l void monitorOn ( const rda IOPo in t & iop , const rdaData & ctx ,

r daVa l u eChangeL i s t en e r ∗ l i s t e n e r ) ;
19
20 /// De l e t e l i s t e n e r from the l i s t .
21 v i r t u a l void mon i to rOf f ( const rda IOPo in t & iop , r daVa l u eChangeL i s t en e r ∗

l i s t e n e r ) ;
22
23 pr i va te :
24
25 /// A th r ead g e n e r a t i n g data .
26 DataGeneratorThread ∗ da t aGene r a t o r ;
27 } ;

As shown in Figure 9, the main server class inherits from the DeviceServerBase class. The
interface of a stripped-down server is presented in Listing 5. Developer’s work is to implement
at least the four methods: get, set, monitorOn and monitorOff, which are automatically
called by RDA when a respective call is recieved from the client side. Another important thing
is to provide the server name to the DeviceServerBase constructor. That is why the Server
constructor takes the serverName parameter and in the implementation (see Listing 6) passes
it to its base class. In CMW, a server name advertises itself to the Directory Service and also
allows clients to connect directly to the server (without device-parameter resolution by the
Directory Service). Coming back to the constructor, it also creates and starts a thread that
will provide data to its subscribers.

Listing 6: Simple C++ Server implementation using RDA library.

1 Se r v e r : : S e r v e r : r d aDev i c eSe r v e rBa s e ( serverName )
2 {
3 da t aGene r a t o r = new DataGeneratorThread ( 1000 ∗ s l e e p ) ;
4 da taGene ra to r −>s t a r t ( ) ;
5 }
6
7 rdaData ∗ Se r v e r : : ge t ( const rda IOPo in t & iop , const rdaData & c tx )
8 {
9 rdaData ∗ data = new rdaData ( ) ;

10 f i l l I n D a t a ( ∗ data ) ;
11 return data ;
12 }
13
14 void Se r v e r : : s e t ( const rda IOPo in t & iop , const rdaData & ctx , const rdaData &

va l u e )
15 {
16 s e tOp t i o n s ( v a l u e ) ;
17 }
18
19 void Se r v e r : : monitorOn ( const rda IOPo in t & iop , const rdaData & ctx ,

r daVa l u eChangeL i s t en e r ∗ l i s t e n e r )
20 {
21 da taGene ra to r −>add ( l i s t e n e r ) ;
22 }
23
24 void Se r v e r : : mon i to rOf f ( const rda IOPo in t & iop , r daVa l u eChangeL i s t en e r ∗

l i s t e n e r )
25 {
26 da taGene ra to r −>remove ( l i s t e n e r ) ;
27 }
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In case of get and set implementation, a call to get simply returns to the client some data
provided by an external function fillInData (e.g. a read-out data from a device). A call to
set passes the sent-by-client data to a function setOptions, e.g. which may alter some options
of a physical device. A call to monitorOn adds a listener to the list of listeners while calling
monitorOff removes the listener from the list.

Listing 7: Simple C++ data generating class definition.

1 /// \ b r i e f Gene ra te some data e v e r y second .
2 c l a s s DataGeneratorThread : pub l i c I c e U t i l : : Thread
3 {
4 pub l i c :
5
6 /// Set the s l e e p t ime .
7 DataGeneratorThread ( i n t s l e e p ) ;
8
9 /// Send new data to a l l the l i s t e n e r s .

10 v i r t u a l void run ( ) ;
11
12 /// Add a l i s t e n e r i n a concu r en t s a f e way .
13 void add ( r daVa l u eChangeL i s t en e r ∗ l i s t e n e r ) ;
14
15 /// Remove a l i s t e n e r i n a concu r en t s a f e way .
16 void remove ( r daVa l u eChangeL i s t en e r ∗ l i s t e n e r ) ;
17
18 pr i va te :
19
20 /// Type d e f i n i t i o n o f l i s t o f l i s t e n e r s .
21 typedef s t d : : v e c to r < r d aVa l u eChangeL i s t en e r ∗ > L i s t O f L i s t e n e r s ;
22
23 /// L i s t o f l i s t e n e r s .
24 L i s t O f L i s t e n e r s l i s t e n e r s ;
25
26 /// S l e ep i n m ic ro s econds between next updates .
27 const i n t s l e e p ;
28
29 /// Mutex o b j e c t f o r s y n c h r o n i z a t i o n o f the c l a s s c o l l e c t i o n .
30 I c e U t i l : : Mutex mutex ;
31
32 /// Copy o f the data gene r a t ed p r e v i o u s l y .
33 rdaData o ldData ;
34 } ;

The class DataGeneratorThread (Listing 7) is responsible for storing listeners in the form of
pointers to ValueChangeListener objects. For this a standard collection is used and a mutex18

that synchronizes access to the collection are used. But keeping client handlers is not its main
responsibility. The main one is to send updates to them. This task is performed by the run

method. As one can see in Listing 8 it is done by calling valueUpdated on the handlers, and
passing to it rdaData objects with previous and present values, and a Boolean flag set to true
if the previous and present data differ between each other.

Listing 8: Simple C++ data generating class implementation.

1 DataGeneratorThread : : DataGeneratorThread ( i n t s l e e p ) : s l e e p ( s l e e p )
2 {
3 }
4

18Mutex is an abbreviation for mutual exclusion, an algorithm used in concurrent programming to avoid the
simultaneous use of a common resource.
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5 void DataGeneratorThread : : run ( )
6 {
7 whi le ( true )
8 {
9 u s l e e p ( s l e e p ) ;

10
11 rdaData ∗ data = new rdaData ( ) ;
12 f i l l I n D a t a ( ∗ data ) ;
13
14 I c e U t i l : : Mutex : : Lock l o c k ( mutex ) ;
15 f o r ( unsigned i n t i = 0 ; i < l i s t e n e r s . s i z e ( ) ; ++i )
16 {
17 l i s t e n e r s [ i ]−>va lueUpdated ( oldData , ∗data , true ) ;
18 }
19 o ldData = ∗ data ;
20 }
21 }
22
23 void DataGeneratorThread : : add ( r daVa l u eChangeL i s t en e r ∗ l i s t e n e r )
24 {
25 I c e U t i l : : Mutex : : Lock l o c k ( mutex ) ;
26 l i s t e n e r s . push back ( l i s t e n e r ) ;
27 }
28
29 void DataGeneratorThread : : remove ( r daVa l u eChangeL i s t en e r ∗ l i s t e n e r )
30 {
31 I c e U t i l : : Mutex : : Lock l o c k ( mutex ) ;
32 L i s t O f L i s t e n e r s : : i t e r a t o r i t = s td : : f i n d ( l i s t e n e r s . beg in ( ) , l i s t e n e r s . end

( ) , l i s t e n e r ) ;
33 l i s t e n e r s . e r a s e ( i t ) ;
34 }

Now, the final thing is to instantiate the Server class and let it run. Listing 9 shows the
initialization of the RDA, then the creation of the Server object and a call to the runServer

method inherited from DeviceServerBase. This method should be called when the server is
ready to accept client requests. By registering the server in the naming service and entering
an event loop, it makes the server available to the clients. The event loop finishes, and if the
shutDown method is called on the server, the runServer method returns. But as this basic
server is supposed to run forever it is not needed to implement such functionality here.

Listing 9: Simple C++ server main function.

1 i n t main ( i n t argc , char ∗ argv [ ] )
2 {
3 r d aDev i c eSe r v e rBa s e : : i n i t ( argc , a rgv ) ;
4
5 const char ∗ serverName = ”myServer ” ;
6 i n t s l e e p = 1000 ;
7 Se r v e r s e r v e r ( serverName , s l e e p ) ;
8 s e r v e r . r u nS e r v e r ( ) ;
9

10 return EXIT SUCCESS ;
11 }

The presented code implements a basic RDA server. The server is stripped of any exception
and error handling, yet fully working. There is only one catch: this server always returns
the same values regarless of the supplied device name and the property the client is supposed
to make calls to. On the server side, data indicating the client’s wish for the device and
property names, with which he wants to communicate, is stored in the IOPoint class. Such
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knowledge is enough to allow implementation of different handling methods for the different
device-property pairs. For instance, it is enough to pass this data to the fillInData and
setOptions functions, and store them along with the listeners in the data generating class.
For simplicity, this functionality was not implemented in the example.

3.5 Testing and improving

Software Testing is the process of executing a program or system with the intent of finding
errors [42] or, it involves any activity aimed at evaluating an attribute or capability of a program
or system and determining that it meets its specifications. Software is not unlike other physical
processes where inputs are received and outputs are produced. Where software differs is in the
manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of
ways. By contrast, software can fail in many bizarre ways. Detecting all of the different failure
modes for software is generally infeasible [43].

Testing is more than just eliminating bugs and guarunteeing the correctness of the soft-
ware. It includes quality assurance, reliability estimation and is performed to provide a generic
metric on software efficiency (system resources used, performance, latency, etc.). Testing for
correctness is performed to prove that functional requirements are fulfilled and that the system
does what it is supposed to do. The other tests are performed to show that the system meets
its non-functional requirements or to estimate the non-functional characteristics of the system.

3.5.1 Correctness testing and a unit-testing framework of choice

Correctness is the minimum requirement for software, the essential purpose of testing. Correct-
ness tests are performed to prove that software meets its functional requirements. There are
two basic approaches to test for correctness: black-box and white-box testing. In the first case,
a tester does not care about the internal behaviour of the software. Usually these tests are the
only choice when no access to the source code is given. The tester applies some input data
and expects a specific answer according to the documentation or other specifications. In the
second case, the structure and flow of the software under test are visible to the tester. He knows
the inside details of the software, its control flow and data flow. Thus he is able to execute
each line of code at least once (statement coverage), traverse each branch (branch coverage), or
cover all the possible combinations of true and false conditional statements (multiple condition
coverage) [44].

Unfortunately, even with white-box testing it is hard or almost impossible to cover all the
possible flow branches. This is because of the exception mechanism and exception control flow.
In C++ or Java, an exception can be thrown almost from any statement. In a typical case it
at least doubles the number of execution paths that tests should follow. The exception can be
almost of any type which only makes things worse.

In Java this problem is solved with method exception specification. Each method specifies
what types of exceptions it can throw. The Java compiler checks this during compilation and
fails accordingly in case of any inconsistency. More than that, the objects that can be thrown
are limited only to those that are derived from the Throwable class. This limits the number
of possibilities and guarantees a common interface with two key methods: getMessage and
printStackTrace; Usually, standard exceptions are used or developers inherit their own ex-
ceptions from the Exception class (see Fig. 10 and Listing 10). Exceptions derived from the
Error class are thrown in case of a hard failure in the Java virtual machine; the exceptions
derived from RuntimeException are reserved to indicate incorrect use of the API. Java appli-
cations do not usually throw or catch exceptions of those two types, which are not mentioned
in the method exception specification.
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Figure 10: Java exception hierarchy. In grey user defined exceptions.

Listing 10: Java supports exception specification at compilation time.

1 c l a s s MyException extends Excep t i on {}
2
3 c l a s s SomeOtherExcept ion extends Excep t i on {}
4
5 c l a s s Excep t i onTe s t s {
6 // promi se tha t on l y MyException can be thrown from t h i s method
7 pub l i c void fun ( i n t ex ) throws MyException {
8 switch ( ex ) {
9 case 0 : throw new MyException ( ) ;

10 // t h i s would not comp i l e :
11 // ca se 1 : throw new SomeOtherExcept ion ( ) ;
12 }
13 }
14 }

In C++, exception specification does not really work as expected. First, C++ exception
specifications are optional (backward compatibility with old C++ standards before exception
introduction), and second, no compile-time check is performed. A developer can specify that
a function does not throw any exceptions, while in fact it does. A standard C++ compiler
will compile such code without even a warning, and the only time a developer will be noti-
fied (that despite the specification an exception has been thrown) is only after executing the
function. Moreover, such a call will do nothing more but unexpectedly finish the program
execution without even indicating which line of the code was responsible for the termination
(see Listing 11).

Listing 11: C++ lacks compile time support for exception specification.

1 void f ( ) throw ( ) // promi se tha t no th i ng w i l l be thrown from t h i s f u n c t i o n
2 {
3 throw in t ( ) ; // t h i s comp i l e s , but du r i ng runt ime i t immed i a t e l y b r eak s

the program
4 }
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Listing 12 presents all the errors and misunderstandings to which the lack of compile time
support for exception specification can lead. These include:

• The function specifies that it throws an exception which in fact it doesn’t;

• The function can throw an exception against the exception specification;

• Throwing an exception against the specification terminates the program (calls unexpec-
ted handler which terminates the program by default); even having a proper catch block
does not resolve this;

• Catch statements defined against the specification (catch blocks that should never be
executed);

The problem is serious and difficult to detect. GCC19 for instance, compiles the source with
neither error nor warning, even if run with flags −pedantic − Wall − Wextra. The flag,
−pedantic, issues all the warnings demanded by strict ISO C++, and rejects all programs that
use forbidden extensions and some other programs that do not follow ISO C++. The −Wall
and −Wextra flags together turn on all other GCC-supported warnings. [45]

Listing 12: C++ lacks compile time support for exception specification.

1 #inc lude <c s t d l i b >
2
3 void f ( ) throw ( double ) // promi se tha t on l y doub l e can be thrown
4 {
5 throw in t ( ) ; // t h i s c omp i l e s !
6 }
7
8 i n t main ( )
9 {

10 t ry
11 {
12 f ( ) ;
13 }
14 catch ( i n t ) // t h i s does not ca tch i n t , the program br eak s a l l the same !
15 {
16 }
17 catch ( char ) // t h i s i s a g a i n s t the s p e c i f i c a t i o n , y e t c omp i l e r a l l ow s i t

!
18 {
19 }
20
21 return EXIT SUCCESS ;
22 }

Similar to the Java Exception, the C++ Standard library provides a base class specifically
designed to declare objects to be thrown as exceptions. It is called exception and is defined in
the <exception> header file under the namespace std [46]. This class has a virtual function,
what, that returns a null-terminated character sequence (char *) and that can be overwritten
in derived classes to contain some sort of description of the exception. Yet, there is no obligation
to use that class, and a developer can throw a variable of any type.

19GCC, the GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, and Ada,
as well as libraries for these languages. It is the official compiler of the GNU system and has been adopted as
the standard compiler by most other modern Unix-like computer operating systems, including GNU/Linux, the
BSD family and Mac OS X.
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On top of that, the C++ exception specification generates additional code which enlarges
and slows down the executable; furthermore, it is no longer being promoted in modern coding
guidelines.

Fortunately a tester can choose from a number of tools intended to help him with the
tests. To facilitate correctness testing in Java there exists a standard, commonly-used JUnit
library. For C++ no standard unit-testing library exists. For this reason, people writing tests
in C++ either create their own testing tools or use one of the existing unit-testing frameworks.
With respect to RDA, to find the unit-testing framework of choice a short list of expectations
was created before actually writing the tests. In particular, tests should run on all CMW-
supported operating systems (Windows, Linux and LynxOS). This implies that they should
have no dependencies on non-standard libraries, nor should they rely on the newest C++
features (templates, STL, RTTI, etc). Writing test code should be fast and easy. Testing
library should be small and easy to install, or it should be possible to copy it along with the
test files without any installation. It should provide a good assert functionality, meaning that
a failing assert statements should print the content of the variables that were compared and
of course the place where it happened. Lastly, good documentation is necessary in order for
any new person taking over the tests to understand their purpose and to maintain them in the
future.

Bearing in mind the list of expectations a few libraries were examined: CppUnit, Unit++,
Boost.Test and CppUnitLite. Here, a short outcome of the examination is presented:

• CppUnit [47] — fails with the most important issue because it requires STL and RTTI
to run. This would be a problem when running the tests on LynxOS with the old gcc
compiler. Besides, CppUnit requires quite a bit of work by the tester, even for the simplest
possible test.

• Unit++ [48] — uses STL and iostreams which would not let it run on LynxOS. Besides,
to run a test one has to register it manually and then add it to a suite, it is all a bit
cumbersome. In addition, assertion support is very poor.

• Boost.Test [49] — as any C++ libraries with the Boost logo, it is very well documented
and strictly follows the language definition; as a result there are no problems with running
it on Windows and Linux systems in conjunction with new compilers. Unfortunately, it
extensively uses new language features and includes quite a few supporting headers from
other Boost libraries. Therefore it is not small and self-contained rendering it useless on
LynxOS.

• CppUnitLite [50] — does not make use of any new C++ features like STL, templates,
RTTI or even exceptions. To guarantee compatability with the old systems and compilers
it defines its own string type instead of using std::string. As the name indicates, it is
a light version of CppUnit, which consists of only a few files that could be distributed
with the test files. Unfortunately, this is where the positives end. First CppUnitLite
does not even have an official website. There is neither license to dictate the terms of
usage nor documentation. Using assertions is uncomfortable because they are macros
that do not use streams to print out the contents of their variables; as a result, one needs
separate custom macros for each object type one wants to use. For anything else more
than doubles, longs, or strings, one has to add custom macros by hand. It has only
equality checks.

Of these libraries, CppUnitLite best fits the requirements, yet it does not provide much
more functionality than a simple assertion. In conclusion, for the purpose of testing, standard
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assertions and macros are sufficient. Such an approach yields a platform independent, simple,
fast and easy to understand solution.

In this vein tests for Java version of the library use only a simple assert function. Even the
standard JUnit library was abandoned to maintain consistency between the language-specific
versions of the tests.

3.5.2 Tests performed and their results

With assertions used as a main weapon against bugs, RDA was thoroughly tested for cor-
rectness. Both black-box and white-box approaches were used when testing the library. The
majority of the testing was focused on ensuring proper handling of the data structures. This is
especially valid for the C++ implementation, for which the whole data structure system was
developed from scratch (see Figure 7 in page 25). Java implementation needed less testing as it
reused many standard Java containers wrapping around them and adding extra functionality.

The test suites20 consist of a large number of calls to the data structures under various
states. They cover all statements, branches and multiple conditions of the implementation of
the data objects. A significant effort was also made to cover the execution paths caused by the
exceptions. As previously described, it is hard, or rather impossible, to guarantee that such
coverage is complete. A test case21 is evaluated as passed when a data structure depending on
its state returns an expected value or behaves in an expected way e.g. changes properly its
internal state, throws an appropriate exception or sets a proper flag.

While performing the tests a few small bugs have been found. For example, wrong exceptions
were thrown in the event of certain errors; sometimes not all the exceptions caught were handled
properly, which led to memory corruptions and further errors. After mending the bugs, the
C++ unit tests were rerun under the Valgrind [51] environment22.

Valgrind was of great help, and found a few memory bugs. In some places memory was
never released, and in others it was not released even when the exception was thrown. But
the most common error found by Valgrind was due to discrepancy between the way memory
chunks were allocated and deallocated afterwards. The problem appeared due to the fact that
in C++ there are two independent ways of allocating and deallocating memory on the heap.
They should not be mixed: if memory was allocated using one method it should also be released
using the same method. The first one comes from C language in the <cstdlib> library in the
form of two functions malloc and free. The other is the C++ new operator and corresponding
delete operator. The new operator first allocates memory with a call to operator new function
and afterwards executes object constructor. Similarly the delete operator first calls object
destructor and then releases the memory with a call to the operator delete function. In
RDA, implementation clashes appeared between the two allocation methods especially on the
border between RDA and CORBA. It is common for CORBA to return heap allocated variables
which users should release on their own or should use provided smart pointers that will release
the memory automatically. Usually the CORBA variables were released in an appropriate way,
but sometimes a copy of them was needed. The copy was created as memory chunks allocated
with the old malloc function; these chunks should be later released with a call to the free

function belonging to the same library. Yet, these variables were quite often incorrectly released
with delete operator. Such code generally yields undefined behaviour. On some platforms,
where the operator new and operator delete are implemented in terms of malloc and free,

20A test suite is a collection of test cases that are gathered together to test a piece of software and to show
that it performs properly the tasks it promises to perform.

21A test case is a set of conditions or variables under which a tester will determine whether a piece of software
meets specifications.

22Valgrind is a program which helps to find memory management and threading bugs.
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this problem is illusive and many people do not consider it to be a bug as everything seems
to be working correctly. In fact, it is a very serious bug, which may surface when moving the
code to another platform or when the destructor of the allocated object fails to perform some
important task because it was never called. All these errors have been fixed.

Listing 13: Typical C++ memory allocation inconsistency errors.

1 c l a s s C
2 {
3 pub l i c :
4 C( ) // c t o r o f the c l a s s may per fo rm some impor tan t t a s k s
5 {
6 s t d : : cout << ”C( ) some impor tan t t a s k ” << s t d : : e nd l ;
7 }
8
9 ˜C( ) // d to r o f the c l a s s may per fo rm some impor tan t t a s k s

10 {
11 s t d : : cout << ”˜C( ) some impor tan t t a s k ” << s t d : : e nd l ;
12 }
13 } ;
14
15 void f ( )
16 {
17 { // f i n e , c t o r and d to r c a l l e d
18 C ∗ c = new C ;
19 de lete c ;
20 }
21 { // wrong ! ! u n s p e c i f i e d behav i ou r ; d e s t r u c t o r not c a l l e d
22 C ∗ c = new C ;
23 f r e e ( c ) ;
24 }
25 { // f i n e , but note tha t n e i t h e r c o n s t r u c t o r nor d e s t r u c t o r a r e c a l l e d
26 C ∗ c = s t a t i c ca s t < C ∗ >( ma l l o c ( s i z eo f (C) ) ) ;
27 f r e e ( c ) ;
28 }
29 { // wrong ! ! u n s p e c i f i e d behav i ou r ; c t o r not c a l l e d
30 C ∗ c = s t a t i c ca s t < C ∗ >( ma l l o c ( s i z eo f (C) ) ) ;
31 de lete c ;
32 }
33
34 { // f i n e ; 3 t imes c t o r c a l l e d and 3 t imes d to r c a l l e d
35 C ∗ c = new C [ 3 ] ;
36 de lete [ ] c ;
37 }
38 { // wrong ! ! u n s p e c i f i e d behav i ou r ; 3 t imes c t o r c a l l e d and d to r on l y once
39 C ∗ c = new C [ 3 ] ;
40 de lete c ;
41 }
42 }

In addition to new operator and delete operator there are also new[] operator and delete[]

operator in C++. They exist to allocate and release memory for arrays of elements. new[]

operator first allocates memory for an array of objects with a call to operator new[] function
and then calls constructor for each object. delete[] operator first calls destructors for each
element in its array, and then calls function operator delete[] to release the storage. Again
the new[] and delete[] operators should not be mixed with malloc and free, or with new

and delete operators. Valgrind found in the RDA also a few bugs of this type. All of them
have been fixed. Listing 13 presents in a simplified way most commonly found errors of the
type.
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The communication part of the library was tested by writing a server in C++ and clients
both in C++ and Java. The clients performed various calls to the server sending and receiving
data (via value and context parameters). Upon receiving the data, the object was checked for
consistency. In particular, for set calls, the data was set on the client side and send to the
server where it was checked. For get and monitorOn calls, the data was set on the server side
and checked by the receiving clients. The consistency check relied on an extra parameter sent
in the data object, which specified the other data of which the data object should consist.

3.5.3 Reliability tests

It is a hard task to measure software reliability23, especially when the product is still undergoing
improvements. Throughout its development cyle RDA has been used by thousands of real
applications whose users reported all the bugs directly to the developers. Recently, the RDA
library has stabilized. No new functionality has been introduced since then. A number of tests
run on previous versions to prove their reliability were then rerun on the newest version and
no flaws were found. No crash occurred nor did process memory consumption increase, which
would indicate a memory leak. Apart from that many clients have already updated to the
newest version of the library and are using it with success.

3.5.4 Performance testing environment

RDA provides a very user friendly API. This of course has an impact on its performance. To
verify that the friendly API does not cost too much in terms of efficiency, the same perfor-
mance tests were performed for two other communication standards, namely CORBA (om-
niORB ver. 4.1.2) and ZeroC’s Ice24.

RDA library runs on all platforms supported by CERN and is easily accessible on all CERN
computers, and so is CORBA. Unfortunately, Ice is not widely used at CERN, and with strict
software policies the library could not be installed on a typical CERN machine. Because of
that, a special machine running Linux was devoted to testing, where all the needed libraries
were installed. To keep as many similarities to RDA as possible, the libraries were compiled on
the local machine without optimization options, and with the debug flag turned on.

The test machine was 64 bit and ran an unsupported version of SLC525. Unfortunately,
that was the only machine on which software not supported by CERN could be installed, and
therefore the only place where tests of all three frameworks could be performed. The machine
in the rest of the document is referred to as SLC5 machine.

Tests were repeated on official machines running SLC426 but only with RDA and CORBA
libraries. The particular settings of the machines are not important as it is the ratio of the
execution times that has more meaning than the absolute results.

23IEEE defines reliability as the ability of a system or component to perform its required functions under
stated conditions for a specified period of time [52].

24The Internet Communications Engine (Ice) is a modern object-oriented middleware with support for C++,
.NET, Java, Python, Ruby, and PHP. Supporting and making use of the newest standards of so many languages
Ice is used in many mission-critical projects by companies all over the world. Ice is easy to learn, yet provides
a powerful network infrastructure and vast array of features for demanding technical applications. It shines
where technologies such as SOAP or CORBA are too slow and complex [53].

25SLC5, Scientific Linux CERN 5, is a Linux distribution build within the framework of Scientific Linux
which in turn is rebuilt from the freely available Red Hat Enterprise Linux 5 (Server). Scientific Linux CERN
is built to integrate into the CERN computing environment but it is not a site-specific product: all CERN site
customizations are optional and can be deactivated for external users. Formal certification has not yet started
and at the time of writing this thesis SLC5 should be used for tests and SLC4 for production use [54].

26SLC4, Scientific Linux CERN 4 [55], at the time of writing this paper it is the officially supported Linux
system at CERN. For more information see the note on SLC5.
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Figure 11: a) Proper performance test (proper to estimate number of messages per second).
b) Scalability or throughput test (sometimes wrongly referred to as performance test).

3.5.5 Response time

The system response time is the interval between the moment at which an inquiry message
has been fully sent and the beginning of the transmission of a response message to the station
originating the inquiry. In terms of RDA, the response time characteristic might be interesting
for those that exchange small packets of data (e.g. sending notifications that something has
been done) or are interested in how much time it will take before the other side starts executing
an action which they demanded. It would show the scale of delay that a client (a person sitting
in CCC or a program running on an outside machine and managing FECs) may experience.

In this section only the time needed to exchange small packets of data is presented. The
time needed to exchange big packets of data between a client and a server will be presented in
the next section. This is because from the client’s point of view, receiving a response from a
server is an atomic operation, in the sense that a client receives either a whole data object or
nothing. So it is impossible to measure response time in accordance with its definition. Thus,
in fact, what we measure here as the response time is the time for the whole communication.
For small objects the result could be treated as the response time approximation, while for the
big ones, it is more natural to call it performance.

For the tests performed, the response time is defined as time span between sending an
integer value from a client to a server and receiving a response back on the client side. Server’s
work for this test is receiving the client’s message (the integer value) and sending it back to
the client.

The results of the tests were also used to estimate the number of messages per second that
RDA can handle. The client performs a synchronous call sending to the server a message (an
integer value) after that it awaits for an answer (receiving back the same integer value). Only
one message is sent at a time, the client side waits for the answer, and then sends another
one. A message has to finish its full round trip before another one can start. Even if this
sounds obvious, many developers do not understand the concept. They boast about their
libraries being able to handle millions of messages per second, just because they send at a
time, asynchronously, many of them, and then collect the responses. Of course, such a test is
a scalability test, not a performance one. The idea is presented in Figure 11.
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The response time was measured by writing appropriate client and server application and
performing the communication 105 times to average the results. For comparison the same tests
were written and performed with plain CORBA and Ice. The results are presented in the
Table 2.

Table 2: Response time

SLC4 RDA 55µs 18182 messages/s
SLC4 CORBA 25µs 40000 messages/s
SLC5 RDA 120µs 8333 messages/s
SLC5 CORBA 55µs 18182 messages/s
SLC5 Ice 110µs 9090 messages/s

Table 3: Time needed to feed RDA Data object with an integer value and then to retrieve it.

SLC4 2.5µs
SLC5 5.0µs

At first, the results are a bit shocking. CORBA is approximately two times faster than
RDA. RDA is slower because of all the work RDA does in the background and because of the
RDA Data object transformation into a proper CORBA object that is afterwards sent by an
underlying CORBA layer. By studying the time needed to fill in an RDA Data object with
integer value, one can learn that in this case the container design on its own is not the main
reason of extra time needed by RDA, see Table 3. There are a few factors which together sum
up and make the big difference:

• Transformation of the data between RDA and CORBA.

• The fact that CORBA object to which RDA Data is transformed is not a plain CORBA
integer type, but a dynamic structure corresponding to the RDA Data object but defined
in the CORBA IDL. Similarly to the RDA Data, the CORBA version is a collection
(sequence) of tagged unions. In case of an integer value, the wrapping object, which is
sent automatically, is bigger than the plain integer we have started with. In the tests
performed, the respective CORBA object is six times bigger than plain integer would be.

• It is not only the CORBA version of the RDA Data that is sent when communicating
using RDA. The underlying CORBA layer sends additional data, e.g. strings describing
the provenance of the Data object: device and property names. The more things to send,
the more time it takes.

• All the objects created by CORBA are created dynamically.

There is no such excuse for Ice. It performed poorly when it was tested by sending the plain
integer value back and forth between the client and server. The results are disappointing. Ice
performs poorly with basic types.
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3.5.6 Scalability and performance

Both scalability27 and performance have been tested together. With a typical system, as with
RDA, increasing the load decreases the performance. To perform the tests a new client and
server programs were written. The client performed get calls on the server, sending data in the
context field and retrieving its copy from the server through the return value. Thus only one
connection was made for bidirectional communication. The data sent to and from the server
had a typical structure of the data sent between FECs and their clients. It consisted of an
array of fixed length, thirty-character long strings (which could be associated with the names
of the measured values) and an array of doubles (the measurement values themselves). On the
SLC5 machine, for the array of size one, the size of data was 34 bytes.

As expected, the results show a linear time consumption growth in the length of the array
size28. Tests up to the number of two million elements (around 70 MB in size) were performed.
Up to this threshold, no problems with the data transmission occurred. After exceeding the
threshold value, with the precise limit hard to estimate, the data transfer failed occasionally.
As the need to transfer such amounts of data at one go hardly ever arises, this does not pose a
problem. Yet, if there was a need for such capacity, one could divide the data into a few smaller
chunks and send them separately. Graphs below show results obtained within range [103; 105]
of elements, which corresponds approximately to [34; 3400] KB.

An important factor is that the data structures used for the mesurements both on the
client and server side were not deep-copied. Instead the pointers were set to previously created
structures. Because of that, the measurements include only the time spent internally by the
library on preparing the data to be sent and the very act of communication. For each measured
data quantity, the measurements were repeated ten times and an average value was taken; this
cuts off random local distortions.

As it has been metnioned before, RDA provides a very user friendly API. This of course has
an impact on its performance. To verify the impact of thefriendly API on efficiency, the same
test cases were developed and executed for the other two communication standards, namely
CORBA (omniORB ver. 4.1.2) and ZeroC’s Ice. To read more about the testing environment
see Section 3.5.4 on page 40.

Figure 12 presents the results for all described middleware systems obtained by running the
client and server on the same 64 bit test machine running SLC5; the same tests were repeated on
an SLC4 machine (without Ice). At first, the results are a bit shocking. RDA is approximately
two times slower than its counterparts. This is the price that has to be paid for its internal
data structures management mechanism. Dynamic allocation/deallocation of the memory is
an expensive operation.

There are few things that explain why RDA underperforms. First, the performance cost
comes not without a gain: there is no need to write an IDL or Ice interface specification for
either the client or server; no need to generate stubs and skeletons and keep them all up to date
and coherent with the IDLs; RDA interface is very flexible and lets users create type safe data
structures that are of unlimited complexity. Another thing is that middleware systems like the
ones here are meant not only for inter-process communication which in fact was just tested.
They are usually used to transfer data over network. At CERN in particular between servers
running on FECs and client programs running on machines widely spread over the whole CERN
site. In such a case, difference in performance of this size might be acceptable as it can be only

27In the context of a computer application, scalability is the ability to continue to function well when the
problem with which the system is dealing is changed in size. Typically, the rescaling is to a larger size. Often
scalability concerns also system performance improvement proportional to the capacity of added hardware.
Here, we consider only the first part of the definition.

28It gets slower as the array gets bigger
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Figure 12: Performance tests (communication time).

Figure 13: Performance tests. Comparison between IPC and over network communication.

a fraction of time spent on actual data transfer over network (loading and reading network card
buffers, transmitting data). This strongly depends on the hardware used, network parameters
and is hard to estimate or measure, and as shown on Figure 13, is not always the case.

Figure 13 presents comparison in communication time between client and server running
on the same machine, and client and server running on different machines. Both computers
were running SLC4 and were in the CERN LAN. In the second case, the test was run on one
machine which was on the CERN Prevesin site, and the other one on Meyrin site. CERN
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Figure 14: RDA Data put-get shallow copy performance test. Peaks are due to momentary
server load increases.

Gigabit Ethernet network infrastructure works fast and on such small distances it does not
introduce any measurable delays. The time spent on sending the data through the network is
just a fraction of the whole communication procedure.

Figure 15: RDA Data insert-extract deep copy performance test.

Finally, a test was performed to see how much time on its own it takes to fill in an RDA Data
object with arrays of strings and double values. Such tests could shed some light on the RDA
efficiency shortcomings. Two methods of filling in an object were tested. First, filling by pointer
(put-get calls; see Figure 14), which of course does not depend on the data size. Second, filling
by a deep copy of the data (insert-extract calls; see Figure 15). The ”by pointer” methods
(put-get) were used in performance tests shown in Figure 12 when the client side was setting
the RDA Data, and then when it was reading out the response from the server. Therefore it
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is only the communication time that was measured, without the time needed for RDA Data
object preparation. Yet, inside the RDA library the deep-copy functions (insert-extract)
are used. In particular, when receiving the data both on the client and server side an RDA
object is created by deep copying the data from an incoming CORBA object. As results show
for the big data packets sent, the time spent on creating the RDA objects is more than half of
the extra time that RDA uses.

3.5.7 Summary

RDA library was thoroughly tested. The tests cover the data storage classes, user interface
classes along with exception specifications, and the whole process of communication (establi-
shing a connection, exchanging data, closing the connection). They helped to eliminate a few
bugs and provided more reliable code.

Recently an idea emerged to incorporate a continuous integration server29 in the CERN
BE-CO group for all its projects. The idea was widely approved and already a product has
been chosen that will serve as the server. The server name is Bamboo and apart from other
functionality it will also provide a testbed30 for automatic test run (amongst them RDA tests).
Integration and usage of the server will increase productivity of the whole group, improve code
quality and facilitate information flow between the group sections.

Apart from RDA functionality tests also non functional software tests were performed.
Reliability tests and efficiency tests (response time, scalability and performance tests) proved
library dependability and gave an insight on its efficiency and limits.

29Continuous integration describes a set of software engineering practices that speed up the delivery of software
by decreasing integration times. The practices include maintaining a code repository, automating build process
and making the build process self-testing. Programmers should commit their code on every day basis and each
of the head commits should end with a build, which should be kept as fast as possible. Finally everyone should
see the results of the latest build, latest deliverables should be easily accessible and the deployment should be
automated.

30Testbed is a platform for testing large development projects. With established tests, testbed allows rigorous,
transparent and replicable testing.
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4 CMW-RecorderPlayer

4.1 Introduction

Software products before their final release are usually thoroughly tested. It is the same case
with libraries and utilities coming out with CMW logo. Unfortunately, testing does not gua-
rantee error-free, 100% working and reliable products. On the contrary, as our own experience
and experience of many other software development teams show – software is never bug free
and there are always things to mend or improve. Bearing that in mind a suggestion came to
develop another testing-oriented product. It came out under a name of CWM-RecorderPlayer.

FEC 
Server

Clients

Publishing
history

Recorder Player

store

monitorOn

retrieve

monitorOn
monitorOn

monitorOn

Figure 16: CMW-RecorderPlayer.

CMW-RecorderPlayer is a general testing product written to support eventual bug-hunt
in case when an error was revealed during the run period of machines in the LHC complex.
In particular, it is a tool that during the run will register the real data published by FECs.
Afterwards, it will allow off-line diagnosis of the previously recorder data by republishing it as
it was originally published by the FECs and recorded by the CMW-RecorderPlayer. By such
functionality whole publishing scenarios can be played and analyzed without incorporation of
the real software or hardware components. This can be used to track bugs spotted during the
run, and being able to reproduce a bug is a vital part of finding and mending it. Product usage
can be extended and further benefits may be obtained by analyzing the data send by the RDA
and the way it is used. More profound understanding on such matters could lead to a stronger
library optimization on its own, as well as server and client applications using the library.

CMW-RecorderPlayer consists of two independent yet cooperating parts. The first one,
the Recorder part, is responsible for subscribing to servers while they are publishing, and
afterwards storing the received data into files. The second one, the Player part, started on
demand, republishes the data saved previously by the Recorder. Figure 16 presents the whole
system.

4.2 Recorder

Recorder may serve as an example of a typical CMW client application. Figure 17 presents
its static structure. Recorder inherits from rdaReplyHandler and implements its functions.
Recorder main functionality is to subscribe to a server while it is publishing data, and then
store the received data in files. On data arrival the handleReply function is called, which in
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Figure 17: Recorder static structure.

turn calls store method, which actually writes down the received information into a file. When
all desired data is stored monitorOff function is called and Recorder finishes its execution.

Figure 18 contains a sequence diagram with a typical run. There is an RDA server publishing
data to which Recorder subscribes. Just after the subscription is established, Recorder starts
receiving data. The first packet received is called first-update and it contains data that was
most recently published by the server (functionality of the first-update is implemented in almost
all servers using the RDA library). All the data packets received are immediately stamped by
Recorder with present local machine time. The time stamp is made just in case if the data packet
did not contain an acqStamp field and it is just an approximation of the original publishing time
(which is synchronized among all the FECs). In the next step, Recorder checks if in the arriving
data packet there is the acqStamp field. If it is there, it is used instead of the approximating
local time stamp. Next, the received data is written to a file. File name contains the time
stamp, device, property and eventually cycle names to which the received data belonged. This
information is all what Player will need to republish the recorded data properly. The data itself
is written to the file in a form of hex-coded RDA Data object.

4.3 Player

Player is a server application. Figure 19 presents its static structure. Player main functionality
is performed by two classes: Player class which inherits rdaDeviceServerBase and implements
its virtual functions and Worker class inheriting from IceUtil::Thread. Player class manages
client subscriptions, while Worker class sends the previously recorded data to all listening
clients.

A typical run of the application is shown on Figure 20. The main Player thread creates
a Worker thread which starts publishing the data. If a client wants to receive the updates
he subscribes for them by calling monitorOn. The call is performed directly on the server
(without the device-property naming resolution) and the subscription covers everything that
is being published, regardless device, property or cycle selector names. This is an intended
functionality but can be easily changed to one supporting differentiation between the collected
data objects corresponding to other device, parameter and cycle selector triple. After receiving
monitorOn call, the Player thread adds the client to a list of subscribers and waits for eventual
new ones. In the mean time Worker thread notifies the subscribers about the published data.

In fact, what Worker does is a little bit more complicated and the state diagram in Figure
21 sheds light on the details. After forking-off from the main thread Worker collects all the
file names containing encoded data. As said before, they consist of timestamp (time when the
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Figure 18: Recorder sequence diagram.
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Figure 19: Player static structure.
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Figure 20: Player monitorOn and publishing sequence diagram.

data was recorded), device, property and eventual cycle selector names. The timestamp allows
the sorting of all the data packets by the time at which they were recorded and the time at
which they will be republished. The later three names might be crucial if the functionality
of differentiation between device, property and cycle selector triple was needed on the level of
CMW-RecorderPlayer (one can always guarantee that functionality by running more than one
Player with segregated data files).

The files are sorted by the recording time. First the oldest one is read and decoded into
RDA Data object. If the original server which published the object inserted into it an acqStamp

timestamp field with publication time, the field is being updated with present time, so the data
object seems to be present and not from the past. Next, the whole object is being published.
Worker checks if the list of objects to sent is exhausted and if not it reads and decodes the
next file on the list repeating the whole procedure. When the list is exhausted the Worker

announces the fact to the main thread, awaits till all the data is delivered to the clients and
finishes its execution. After receiving the message the Player thread also finishes its execution.
The server stops.

In case when a client wants to stop receiving updates before they are finished, he calls
monitorOff on the Player. As shown in Figure 22 he is being removed from the clients
list, and does not receive any more updates. Obviously, this does not stop the Worker from
publishing or other clients from receiving the updates.
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Initializing (Creating a Player)

Creating a worker.

Starting the worker.

Waiting for a message.
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Reading file names.
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Reading the oldest file.

Sending the current data pack.
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Cleaning up.
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If exists, changing acqStamp field.

Figure 21: Player state diagram. The main thread is painted in blue and the Worker thread in
green.

4.4 Testing

One of the most important part of the CMW-RecorderPlayer is its management of timing
information. Recorder receives data and checks if the packet contains the acqStamp field,
precise time of the data publication provided by FECs. If data contains the field it is being
written as publication time. If data does not contain it, Recorder measures time on the local
machine it is running on. This roughly estimates the value that should be provided by the
acqStamp field. Afterwards, when the Player part is generating notifications it is using the
time written down by the Recorder (either from acqStamp or the generated one) increased by
the time that passed since the first publication was received till the first publication performed
by the Player.

Time calculations are performed with accuracy to 1 µs. Even though it seems to be very
accurate, it is much less than accuracy of the acqStamp field, which is 1 ns.

Tests were performed with a server publishing data at a rate of one publication per second.
Recorder was receiving the updates and so was a client program which wrote down the time
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 : Player  : Clientworker : Worker

monitorOff

removeClient

data5

data4

read data4

read data5

 : Client

data4

Figure 22: Player monitorOff sequence diagram.

Figure 23: CMW-RecorderPlayer delay in relation to direct publication.

of notification arrival. 600 notifications were sent, received and recorded like that, which is a
little over 10 minutes of the server run. After that, Player was publishing the data, and again
a client subscribed to it was writing down time at which it received the updates. Later, the
times measured by both clients (the one receiving from the server and the other one receiving
from Player) were subtracted from each other. Tests were performed for both cases: a server
sending the acqStamp field, and a one which did not send it. As can be seen in Figure 23,
the result did not depend on the acqStamp field presence. CMW-RecorderPlayer performed
equally in both cases.

CMW-RecorderPlayer prolonged each publication by 1 µs. This is not much, and is exactly
on the border of time scales that CMW-RecorderPlayer functions operate at. After a day
and night of server run (24h), that would result in 86,4 ms of difference between server and
Player, and 24 hour long test would be quite a long one. Either way, in the future version of
CMW-RecorderPlayer an update to support nanosecond scale might be considered.
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5 CMW-Proxy

5.1 Introduction

Before the first LHC startup on Wednesday, 10 September 2008, the whole accelerator complex
and the software that manages it were exhaustively tested. The tests indicated that under
full load the FECs running CMW servers might be overloaded if there are too many client
subscriptions. Such conditions may render the servers to be unstable, which is unacceptable
during the machine operation.

FEC 
Server

Clients

CMW-Proxy

monitorOn

get

set
set

monitorOn

get

Figure 24: Client – Proxy – Server three-tier architecture.

As it was impossible to exchange the FEC hardware with any newer and stronger computers,
other methods were looked for. As a solution a proxy application was suggested. It would run
between client applications and FEC servers creating a nice three-tier architecture (Figure
24), and if possible it would decrease the number of calls to the servers. Overloading the
proxy application would not be a problem, first, because it can run on a modern, strong
machine running normal (non real-time) operating system. Second, because there could be
many instances of the proxy running.

Apart from taking the load from the servers, an ideal proxy should be transparent to clients.
They should not change anything in their application code; in fact they should not know that
they are using proxy at all. It should allow clients to perform all the standard RDA calls (gets,
sets, monitorOns and monitorOffs). Being a server application it should support the same
safety-guarantee procedures that real end-servers do, e.g. controlling what a typical client can
and cannot do on the server side.

The idea led to creation of the CMW-Proxy application that fulfills all the needs stated
above: it is transparent, and the only thing a client application has to do extra is to donate an
argument with the proxy name it wants to use; it supports all main RDA ways of communication
and standard safety procedures. Moreover, the application usage does not end with lessening
the load from FECs; it may serve as a general purpose proxy forwarding messages between any
clients and servers. As such it might be used as a gateway for clients that are running outside
the Technical Network, yet they want to contact CMW servers running inside of it, e.g. on
FECs.

5.2 Architecture

CMW-Proxy architecture is quite straightforward. There are only two basic concepts one has
to know to understand how it performs its work and why it was implemented in the particular
way.

First, CMW-Proxy is an application which actually implements both server and client sides.
It is a server for all client applications that direct their requests through it. At the same time
it is a client of any RDA server to which it redirects the clients calls. This concept is illustrated
on Figure 25.
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Figure 25: CMW-Proxy combines client and server functionality.
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monitorOn( device2, property2 )

monitorOn( device1, property1 )

monitorOn( device2, property1 )

monitorOn( device2, property2 )

monitorOn( device1, property1 )

Figure 26: CMW-Proxy takes off load from FECs by combining subscriptions to the same
device and property.

Second, the only time when CMW-Proxy can decrease load that is put on a FEC server
is when there is more than one client subscribing to the same data published by the FEC.
This means, that there are at least two clients subscribing to the same device-property pair
(or device-property-cycle selector triple) without specifying the call context, see Figure 26. For
any other calls: simple gets, sets or monitorOns with context, CMW-Proxy just forwards the
calls as they come without any effective optimization.

The mentioned reasons led to the structure presented on Figure 27. The main class called
Server inherits from rdaDeviceServerBase. This makes it a CMW server, and methods that it
implements from its base class: get, set, monitorOn and monitorOff are going to be executed
by CMW system when a connected client calls them on his side. While get and set calls are
forwarded directly to a destination server (Figure 28), monitorOn and monitorOff calls are
passed to helper objects: ManagerWithContext if a call has a context or ManagerWithout-

Context if it does not have it. Both managers keep a list of handler objects which extend
rdaReplyHandler class. The difference between the two managers lies in the way they manage
subscriptions between their clients and the destination servers.

In case of the manager with context for any monitorOn call a new handler object is created
and added to the manager list of handlers. Afterwards, a new connection is established and
a new handler object is set as the one responsible for receiving updates from the destination
server and pushing them to an appropriate client. Because of such behaviour, the handler keeps
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+get()
+set()
+monitorOn()
+monitorOff()

rdaDeviceServerBase

+addListener()
+eraseListener()
+setRequest()
+getRequest()
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rdaValueChangeListener
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+log()
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Proxy::GatewayUtil

+WithContextHandler()
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Proxy::HandlerWithContext

+monitorOn()
+monitorOff()

Proxy::ManagerWithoutContext
1

1

1

0..*

1

0..*

1

1

1
1..*

1

1
1

1

+get()
+set()
+monitorOn()
+monitorOff()

Proxy::Server

+monitorOn()
+monitorOff()

Proxy::ManagerWithContext

1

1

Figure 27: CMW-Proxy static diagram. CMW-Proxy classes are painted in blue while RDA li-
brary classes are in green. The two white classes represent an outside CMW-Proxy project RDA
client and server, which knowing nothing about the proxy may still profit from its existence.

only one object of the type rdaRequest31 and one of the rdaValueChangeListener32.
In case of the manager without context, if it is a monitorOn call to a not yet subscribed

device-property pair, everything happens similarly as for the manager with context. Yet, if a
client tries to subscribe to a device and a property to which there already exists a connection
the procedure is a bit different. No new handler object is created or new connection established;
only to the existing appropriate handler object the client listener is added. Because of that the
handler instead of keeping only one listener keeps a list of them.

Class HandlerWithoutContext compared to HandlerWithContext contains some extra
class fields. They keep data which is used to support the first-update functionality. The data

field stores last received notification while the exception field stores a last received exception.
Field lastReceived is an enumeration indicating what type of notification (normal data or

31An rdaRequest object identifies connection with a server on the client side. It is needed to finish a sub-
scription with monitorOff call.

32An rdaValueChangeListener object is a server side object identifying a client that subscribed to the server
with monitorOn call, and expects being notified about the server publications.
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ProxyClient DeviceServer

get(propertyName)

getDeviceHandle(deviceName)

getDeviceHandle(deviceName)

get(propertyName)

rdaData

rdaData

set(propertyName, rdaData)

getDeviceHandle(deviceName)

set(propertyName, rdaData)

getDeviceHandle(deviceName)

Figure 28: Get and set calls are forwarded by the main Server class to a destination server
without any grouping or optimization.

an exception) the CMW-Proxy received most recently. It is set to NOTHING if the proxy has
not yet been notified. HandlerWithContext does not need those fields because when it receives
first update from an end server it resends it immediately to its only listener. It does not have
to lay aside the data for future use because it will not have another subscriber.

Apart from the main implementation classes, the project contains also a set of utilities
which are described in Section 5.4.

5.3 Optimization and execution issues

Even if the overall functionality of CMW-Proxy and the way it achieves it are not complicated,
there are a few details worth looking at. As they all concern ManagerWithoutContext class let
us concentrate on monitorOn calls carrying no context and respective monitorOff calls.

Figure 29 shows a sequence diagram depicting an optimization done by the proxy when
there is more than one subscription to the same device-property pair. In the example the
DeviceServer (FEC) instead of dealing with two subscriptions from clients deals only with one
coming from CMW-Proxy. CMW-Proxy manages connection between itself and the server as
well as with the clients. When CMW-Proxy receives request from a client to subscribe to a
device-property pair to which the proxy was not subscribed yet the connection is established
and forwards to the client received from the server first-update. From this time on the proxy
regularly forwards received updates to the client.
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ProxyClient DeviceServer

monitorOn(prop1)

getDeviceHandle(dev1)

getDeviceHandle(dev1)

monitorOn(prop1)

request
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Client

request
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produce data1

produce data2

request

data1

data1

data1

data2

data2

data2

Figure 29: ManagerWithoutContext optimizes subscriptions to the same device-property pairs.

If there is a new client subscribing to the proxy to a pair that is already served by Manager-

WithoutContext, the client handler is simply added to the list of listeners in an appropriate
HandlerWithoutContext object. Next, the client is notified with a first-update and all conse-
cutive ones.

The monitorOn call is presented in details on Figure 30. If the ManagerWithoutContext

already has a connection established with an RDA server it just adds the new client listener to
the list in an appropriate HandlerWithoutContext object. If the connection does not exist yet,
the manager asks getDeviceHandle (which can perform extra optimization, see Section 5.4)
for the address of the server responsible for the device. The address is obtained from Directory
Service, and in the end used by the manager to establish the connection. As a result of creating
the new connection, an rdaRequest object is received and saved for future use.

As long as a client who cancels a subscription is not the last one subscribed to a device-
property pair, CMW-Proxy only removes its listener from an appropriate list of clients. In
order to still be able to send updates to other clients it keeps connection with the FEC, and
does not cancel it with monitorOff call. But if the client was the last one subscribed, apart
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Figure 30: Details on monitorOn to the same device-property pairs. In blue the calls that are
performed only for the first client subscription.

from deleting its handler the CMW-Proxy also cancels the connection with the FEC with a call
to monitorOff. This behaviour is shown on Figure 31.

Figure 32 presents what specifically happens during a monitorOff call. If there are still
other clients subscribed to device-property pair only client listener is erased. If the client is
the last one, the ManagerWithoutContext calls also monitorOff on the destination server.
To do that it obtains a device handle (in the same manner it did it in monitorOn call) and
invokes monitorOff on that handle using rdaRequest object obtained when the monitorOn

was performed.

5.4 Utilities

Apart from the main implementation classes, the CMW-Proxy project contains also a set of
utilities. One of them is its own logging infrastructure.

A small Log class was implemented to support thread-safe yet almost non-blocking logging
functionality. This property has been achieved thanks to the fact that for each logging a
temporary object of the class is created. To its local buffer the log message is written. Because
of that there is no need for synchronization with other log objects. When the log message is
created it is written down by the class destructor which is called automatically and manages
synchronization on its own. So, the user does not even have to flush the message. Everything is
done automatically. An ease of use is provided by template overloaded bitwise left shift operator
(operator<<) which makes using the logging object similar to using the stream classes from
the standard C++ library.

Each log message starts with date and time of logging. Moreover, logging facility contains
also a macro definition which creates a local Log object and adds to each message name of the
file and line on which the logging was performed.

Short listings present the Log interface (see Listing 14), its basic usage (see Listing 15) and
an exemplary output (see Listing 16).
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Figure 31: ManagerWithoutContext optimizes subscriptions to the same device-property pairs.
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Figure 32: Details on monitorOff for clients subscribed to the same device-property pairs. In
blue the calls that are performed only for the unsubscription of the last client.
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Listing 14: Simplified Log interface.

1 /// @b r i e f Logg ing c l a s s . Thread s a f e .
2 c l a s s Log
3 {
4 pub l i c :
5
6 /// Log the o c cu r r e n c e date .
7 Log ( s td : : ost ream & o s t r ) ;
8
9 /// F lu sh the b u f f e r w i th l o g s .

10 ˜Log ( ) ;
11
12 /// @b r i e f Log the message / v a l u e . Do not f l u s h i t ,
13 /// i t i s go ing to be f l u s h e d by the c l a s s i t s e l f .
14 template <typename T>
15 Log & operator<<(T const & va l u e ) ;
16
17 pr i va te :
18
19 /// Output st ream .
20 s t d : : ost ream & o s t r ;
21
22 /// Logg ing b u f f e r .
23 s t d : : o s t r i n g s t r e am b u f f e r ;
24 } ;
25
26 #def ine l o g E r r RecPlay : : Log ( s td : : c e r r ) << F I LE << ” : ” << L INE << ” ”

Listing 15: Log ussage.

1 catch ( const rdaBadParameter & ex )
2 {
3 l o gE r r << ” f a i l e d : s e t ( ” << i o p . getDeviceName ( )
4 << ” , ” << i o p . getPropertyName ( ) << ” ) ” << ex ;
5 throw ;
6 }

Listing 16: Log output.

1 2009/04/27 13 : 09 : 06 [1240830546 :417582 ] S e r v e r . cpp :98 f a i l e d : s e t ( someDevice ,
someProperty ) r d a IOE r r o r : [GW 0 ] Dev ice ’ someDevice ’ i s not known by naming
s e r v e r

Another utility is getDeviceHandle function. Its role is to cache addresses of computers on
which specific devices are running. If there is a request to the proxy to make a connection to a
device first it looks up for it on the cache list. If it finds it there it simply returns the already
possessed address. If it does not, it asks for it the Directory Service, stores it in the cache and
returns the address. As a CMW-Proxy instance serves usually only a narrow group of devices
such functionality has high hit rate. It shortens the proxy time response and reduces network
traffic and number of calls received by Directory Service.

5.5 Security policy

In the virtual word of software, security is as important as it is in the real life. Without
any security policy CMW middleware framework could not be safely used. Any client could
perform any operation on any FEC. That would definitely lead to disastrous consequences. If
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not because of some outside CERN hostile hacker attack, then by chance, by absent-mindedness
of one of the casual users.

Fortunately the framework provides as its part the RBAC33 library. Every operation (get,
set or subscription demand) is subject to the authorization process and its execution can be
denied in case of issuer having insufficient privileges.

Decision whether a particular operation is valid or not is dependent on a set of access rules.
They are specified by an equipment specialist for every device, stored and managed centrally
in the Controls database. The access rules are mirrored also in a tab-separated text file located
in the Controls Network File System. Every server can read access rules (referred to as access
map) for devices it is providing access to.

Access rules are parameterized using all factors related to the authorization process. More
specifically, an equipment specialist has to specify the following fields to define an access rule:

• device class name,

• property name,

• device name,

• role name,

• application name,

• location name,

• accelerator mode,

• operation type (set, get, or subscribe).

The interactions between a client, the server and the RBAC server during an execution of
a server access can be described in a few steps. First, upon start-up, the server reads its access
map from a file. Consequently, it is ready to receive calls from client applications. To allow
access to the server, a client must authenticate himself and obtain an RBAC token from the
RBAC server. The token is transferred to the server in order to provide information needed
for authorization. Now client access request can be sent to the server. To properly authorize
a request, the server obtains current accelerator mode from the timing source (different rules
may be in force at different stages of the run). Finally, authorization decision is taken and in
case of access denial an RBAC exception is handled back to the client [56].

There are two modes into which CMW operations can be authorized: token per connection
and token per operation. In the first case a token is transmitted to the server upon the
connection establishment and is stored there. It is subsequently used to authorize every CMW
operation. In the token per operation mode the RBAC token is sent encapsulated in the context
of every CMW operation. This approach is more expensive to use than token per connection
but allows a flexible switching between credentials used to authorize subsequent operations.

When connecting to a FEC, CMW-Proxy has to use RBAC as any other client. Following the
security policies in this case is very important. To decrease the server load as much as possible,
most commonly a token per connection method is used, and the proxy is authenticated and
authorized only once at its startup. Besides, the RBAC role for the proxy usually authorizes
it to perform all the calls on the server side, occasionally forbidding only the calls it definitely
should not perform.

33RBAC (role-based access control) is an approach to restricting access to a system only to authorized users.
Each user has assigned roles which specify what he is allowed to do in the system.
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Of course if the things were left like that the system would be unsafe and vulnerable to
attacks. To keep it safe the CMW-Proxy side takes on it part of the authorization process.
Simply it uses whole access map defined previously for a FEC to which it gives access. Such
solution brings no changes on the client side, and hardly any changes on the FEC side. It also
generates no effort for anyone to develop new access rules to the proxy because they are copied
from FEC ones. This is a simple and safe solution which additionally can take off some load
from any destination server by taking over the authorization functionality.

5.6 Testing

CMW-Proxy has been carefully tested. It proved to perform properly all expected tasks. Tests
consisted of various communication layouts: single client with a single server, many clients with
a single server and many clients with many servers. All tests finished with positive results.

Figure 33: CMW-Proxy delay in relation to direct publication.

However, reliability tests revealed, that because of specific system and underlying libraries
limits (CORBA), CMW-Proxy can break under heavy load. This is because of number of thread
limits per process, which was estimated to be not much more than 300 on a typical nowadays
Linux machine. With standard omniORB settings this limits the number of subscriptions to
around 2000 (not a bad result achieved thanks to resources pooling).

A situation when CMW-Proxy resources are exhausted can happen, when many connections
are made for a short period of time and after cancelation new ones are made on their place, while
some resources are not yet released (they are cached for performance reasons). As tests showed,
this can occasionally lead to program crash (probably memory corruption inside omniORB).
Fortunately it does not happen too often. Also, because RDA implements auto-reconnection
between clients and servers, it is not an important issue that a CMW-Proxy might lose its
state, because it would regain it automatically on restart.

As tests show (see Fig. 33) in a simple ”one client through CMW-Proxy to one server”
communication, CMW-Proxy slows down the act of communication between a client and a
server approximately two times. This is an expected result, and there is no place to optimize
CMW-Proxy further, though in specific situations super linear effects may occur. They can be
spotted most often when a server application running on a weak machine fills up network card
buffers sending the same data to many clients. When CMW-Proxy is used to unload such an
application, the data from it to the CMW-Proxy it sent only once, and thus the probability
of filling up the buffers decreases. Then CMW-Proxy, running on stronger, bigger-buffered
machine redistributes the data without buffer overflows on its site.
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5.7 Usage

CMW-Proxy has been around, accompanying other CMW products for several weeks. So far,
there were a few official instances running and serving real clients and unloading real FECs.
Figure 34 shows a part of cmwAdmin application, written to monitor running servers. There
are visible four proxies, of which three in green are running at the moment. For one of them,
state of the server is presented. Among the others the number of clients and calls they made
can be read, as well as number of subscriptions served by the CMW-Proxy at the very moment
of watching (taking the screenshot).

Figure 34: CMW-Proxy delay in relation to direct publication.

Proxies have proved to work properly and as recently reported by FEC specialists (people
responsible for their implementation and maintenance) they had significantly helped with re-
ducing load from FECs and had saved them from dangerous crashes encountered in the past.
Because of that, the number of FEC developers interested in using the proxy started to grow.
The fact that Proxy performs well, is accepted and used by more and more FEC specialists is
very promising and gives an optimistic outlook for the future.
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6 Conclusions

The thesis presents concepts and implementation of the middleware infrastructure for the CERN
accelerator controls redeveloped and improved for the needs of the Large Hadron Collider
operation.

A lot of effort was put to test and prove Control Middleware system functionality. Many
tests were written, and thanks to them many bugs were found and eliminated. Yet, even
though tests were prepared with uttermost care and scrutiny they did not cover all the possible
execution paths and missed a few things. Only after long hours of debugging the errors were
found, and when understood the missing tests were added. This only shows how a tough work
it is to test a big library and guarantee its functionality.

Apart from functionality, the library was tested for its reliability and stability. To estimate
efficiency of the library two other middleware systems (CORBA and Ice) were also tested. The
results helped to draw a line between what can be expected from the RDA library in terms of
performance, and what has to stay on the wish-list.

To support more complicated testing scenarios, especially during the operation of the ma-
chine, RecorderPlayer was written. Main purpose of the application is to allow post-mortem
analysis and debugging, yet it can be used also in many other cases.

Finally, Proxy application was developed, tested and integrated with the system. Its main
task is to take some work from the overloaded FEC servers and occasionally play a role of a
gateway into the CERN Technical Network. The proxy proved to do its work well, therefore
improving the Controls infrastructure and making its users happier.

The work performed by the author is presented in chapters 3, 4 and 5. It was performed
during his 14 months stay at CERN as CERN Technical Student. In particular it includes the
following: development and execution of the tests for the RDA library, further maintenance of
the library as well as extending its functionality. The full extent of this work reaches outside the
scope of the thesis and only relevant parts are presented here. In particular, the full development
cycle (design, development, implementation and maintenance) of the CMW-RecorderPlayer and
CMW-Proxy applications are described.
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