Analiza danych

Mariusz Przybycień

Wydział Fizyki i Informatyki Stosowanej
Akademia Górniczo-Hutnicza

Wykład 13

The notion of a correlation function

Lecture based on: W. Kittel, E.A. De Wolf, Soft Multihadron Dynamics, WS 2005 and C.A. Pruneau, Data Analysis Techniques for Physical Sciences, CUP 2017

- Consider a measurement of the numbers of particles N_{i} produced in volumes Ω_{i} "centered" around points $\vec{p}_{i},(i=1,2)$ in momentum space:

$$
\begin{aligned}
p_{\mathrm{T}, i}^{\min } & \leq p_{\mathrm{T}, i} \leq p_{\mathrm{T}, i}^{\max } \\
\eta_{i}^{\min } & \leq \eta_{i} \leq \eta_{i}^{\max } \\
\phi_{i}^{\min } & \leq \phi_{i} \leq \phi_{i}^{\max }
\end{aligned}
$$

- Given the stochastic nature of particle production, the yields N_{i} are expected to fluctuate around the means:

$$
\left\langle N_{i}\right\rangle=\int_{\Omega_{i}} \frac{d^{3} N_{i}}{d p_{\mathrm{T}} d \phi d \eta} d p_{\mathrm{T}} d \phi d \eta
$$

- Fluctuations about the mean are usually characterized by variance or covariance.
- Correlation function is defined as the scaled covariance in the limit in which bin sizes Ω_{1} and Ω_{2} vanish:

$$
C\left(\vec{p}_{1}, \vec{p}_{2}\right)=\frac{1}{\Omega_{1} \Omega_{2}}\left[\left\langle N\left(\vec{p}_{1}\right) N\left(\vec{p}_{2}\right)\right\rangle-\left\langle N\left(\vec{p}_{1}\right)\right\rangle\left\langle N\left(\vec{p}_{2}\right)\right\rangle\right]
$$

Single- and two-particle densities

- For finite bin sizes, the ratios provide estimators of the single, $\rho_{1}\left(\vec{p}_{i}\right)$, and the joint two-particle, $\rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right)$, density functions:

$$
\begin{aligned}
& \hat{\rho}_{1}\left(\vec{p}_{i}\right)=\frac{\left\langle N\left(\vec{p}_{i}\right)\right\rangle}{\Omega_{i}} \underset{\Omega_{i} \rightarrow 0}{\longrightarrow} \quad \rho_{1}\left(\vec{p}_{i}\right)=\frac{d^{3} N\left(\vec{p}_{i}\right)}{d p_{\mathrm{T}} d \phi d \eta} \\
& \hat{\rho}_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right)=\frac{\left\langle N\left(\vec{p}_{1}\right) N\left(\vec{p}_{2}\right)\right\rangle}{\Omega_{1} \Omega_{2}} \underset{\Omega_{1,2} \rightarrow 0}{\longrightarrow} \rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right)=\frac{d^{6} N_{\mathrm{pairs}}\left(\vec{p}_{1}, \vec{p}_{2}\right)}{d p_{\mathrm{T}, 1} d \phi_{1} d \eta_{1} d p_{\mathrm{T}, 2} d \phi_{2} d \eta_{2}}
\end{aligned}
$$

- Thus, the two-particle correlation function can be expressed in terms of density functions as:

$$
C\left(\vec{p}_{1}, \vec{p}_{2}\right)=\rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right)-\rho_{1}\left(\vec{p}_{1}\right) \rho_{1}\left(\vec{p}_{2}\right)
$$

- In its most general form, the two-particle correlation function $C\left(\vec{p}_{1}, \vec{p}_{2}\right)$ is a function of six coordinates.
- It can be positive, null or negative (as the covariance).
- However, a measurement of correlation function can be reduced to a smalller number of coordinates of interest by integrating (marginalization) over variable
 that are not of interest.

Multiparticle Densities and Factorial Moments

- Let $y \equiv\left\{p_{x}, p_{y}, p_{z}, p_{\mathrm{T}}, \eta, \phi, \ldots\right\}$ denote all particle kinematic variables under interest in a particular study. Then, the joint-probability distribution function for n particles of the same species can be written as $P_{n}\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)$
- The differential desities $\rho_{n}\left(y_{1}, \ldots, y_{n}\right)$ are proportional to the joint probabilities:

$$
\rho_{n}\left(y_{1}, \ldots, y_{n}\right)=\langle N(N-1) \ldots(N-n+1)\rangle P_{n}\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)
$$

- Integration of densities over the moemntum volume Ω, thus yields the following important relations:

$$
\begin{aligned}
\int_{\Omega} \rho_{1}(y) d y & =\int_{\Omega} \frac{d^{3} N_{i}}{d p_{\mathrm{T}} d \phi d \eta} d p_{\mathrm{T}} d \phi d \eta=\langle N\rangle \\
\iint_{\Omega} \rho_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} & =\langle N(N-1)\rangle \\
& \ldots \\
\int \ldots \int_{\Omega} \rho_{2}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n} & =\langle N(N-1) \ldots(N-n+1)\rangle
\end{aligned}
$$

- The averages $\langle N(N-1) \ldots(N-n+1)\rangle$ are called factorial moments of order n.

Cumulants

- Inclusive n-particle densities $\rho_{n}\left(y_{1}, \ldots, y_{n}\right)$ are the result of a superposition, in general, of several subprocesses (even from n distinct and uncorrelated subprocesses!).
- Measured n-tuples of particles may then feature a broad variety of correlation sources associated with a plurality of dynamic processes.
- It is a common goal of multiparticle production measurements to identify and study these correlated emissions as distinct subprocesses.
- This can be accomplished by invoking correlation functions known as (factorial) cumulans, expressed either in terms of integral correlators or as differential functions of one or more particle coordinates.
- Digression (statistical independence in terms of particle densities):

Two variables are said to be statistically independent iff their joint probability density factorizes.
The statistical independence for two particles means $\rho_{2}\left(y_{1}, y_{2}\right)=\rho_{1}\left(y_{1}\right) \rho_{1}\left(y_{2}\right)$
Similarly for n particles we have $\rho_{n}\left(y_{1}, \ldots, y_{n}\right)=\rho_{1}\left(y_{1}\right) \ldots \rho_{1}\left(y_{n}\right)$

Cumulants

- Cumulants of order m, C_{m}, are defined as m-particle densities representing emission (production) of m correlated particles originating from a common process.
- An n-particle density can then be expressed as a sum of several terms yielding n particles, but each with its own "cluster" decomposition into products of m-cumulants:

$$
\begin{aligned}
& \text { 3 }=\text { (0)(0) } 0+00 \text { (0)+00(b)+00(0)+000 }
\end{aligned}
$$

$$
\begin{aligned}
& +00 \text { (0) (0) + } 0 \text { (0) (0) } 00 \text { (0) (0) } \\
& +0000+0000+0000 \\
& +000 \text { (0) }+000 \text { (0) }+000 \text { (0) }+000 \text { (0) } \\
& +0000
\end{aligned}
$$

Particle denstities and cumulants

- In general n-particle densities can be expressed in terms of cumulants using the formula (shorthand notation $y_{i} \rightarrow i$):

$$
\begin{aligned}
\rho_{n}(1, \ldots, n)= & C_{n}(1, \ldots, n)+\sum_{\text {perm }} C_{1}(1) C_{n-1}(2, \ldots, n) \\
& +\sum_{\text {perm }} C_{1}(1) C_{1}(2) C_{n-2}(3, \ldots, n) \\
& +\sum_{\text {perm }} C_{2}(1,2) C_{n-2}(3, \ldots, n)+\ldots+\prod_{i=1}^{n} C_{1}(i)
\end{aligned}
$$

- m-cumulants represent fractions of the particle production cross-section associated with processes yielding m correlated particles (which cannot be further factorized).
- m-cumulants are directly calculated based on theoretical models:

- Experimentally measured quantities are n-particle densities, not cumulants.

Cumulants in terms of particle densities

- Cumulants can be obtained from measured densities using "reverse engineering":
słueןnuns-u

$$
\begin{aligned}
& C_{1}(1)=\rho_{1}(1) \\
& C_{2}(1,2)=\rho_{2}(1,2)-\rho_{1}(1) \rho_{1}(2) \\
& C_{3}(1,2,3)=\rho_{3}(1,2,3)-\sum_{(3)} \rho_{1}(1) \rho_{2}(2,3)+2 \rho_{1}(1) \rho_{1}(2) \rho_{1}(3) \\
& \text { (0) }=1 \\
& \text { (0) (2) }=2-12-11_{12}
\end{aligned}
$$

$$
\begin{aligned}
& 0000=41234-3_{123} 1_{4}-3_{124} 1_{3}-3_{134} 1_{2}-3_{234} 1_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{+ 2} 22311_{14}+\mathbf{2} 2241_{1} 13+\mathbf{2} 2341_{1} \\
& \mathbf{- 6} 1_{1} 1211_{2}
\end{aligned}
$$

Cumulants scaling with source multiplicity

- Cumulants $C_{n}\left(y_{1}, \ldots, y_{n}\right)$ feature a simple scaling property for collision systems consisting of a superposition of m_{s} independent (but otherwise identical) sources.
- Example: Heavy ion collisions (A+A) can be regarded (to first approximation) as a superposition of m_{s} nucleon-nucleon $(p p)$ interactions, each of which produces clusters consisting of n correlated particles.
Assume that production of such clusters in $p p$ may be described by cumulant $C_{n}^{p p}$. At a given impact parameter b (centrality), $\mathrm{A}+\mathrm{A}$ collisions should involve an average of $\left\langle m_{s}\right\rangle p p$ interactions.
m_{s} fluctuates from event to event, but the n-cumulant for $\mathrm{A}+\mathrm{A}$ collisions, at fixed m_{s} may be written as:

$$
C_{n}^{\mathrm{AA}}\left(y_{1}, \ldots, y_{n} \mid m_{s}\right)=m_{s} C_{n}^{p p}\left(y_{1}, \ldots, y_{n}\right)
$$

Averaging over all $\mathrm{A}+\mathrm{A}$ collisions (and assuming a superposition of independent and unmodified $p p$ collisions, and such that produced particles do not interact with one another) yields:

$$
C_{n}^{\mathrm{AA}}\left(y_{1}, \ldots, y_{n}\right)=\left\langle m_{s}\right\rangle C_{n}^{p p}\left(y_{1}, \ldots, y_{n}\right)
$$

- The total multiplicity of produced particles in $\mathrm{A}+\mathrm{A}$ also features the same scaling with m_{s} :

$$
\rho_{1}^{\mathrm{AA}}(y)=m_{s} \rho_{1}^{p p}(y) \quad \Rightarrow \quad\langle n\rangle_{\mathrm{AA}}=m_{s}\langle n\rangle_{p p}
$$

Cumulants scaling with source multiplicity

- For the pairs of particles, one can form pairs from each of m_{s} individual $p p$ collisions, but one can also mix particles from independent sources:

$$
\rho_{2}^{\mathrm{AA}}\left(y_{1}, y_{2}\right)=m_{s} \rho_{2}^{p p}\left(y_{1}, y_{2}\right)+m_{s}\left(m_{s}-1\right) \rho_{1}^{p p}\left(y_{1}\right) \rho_{1}^{p p}\left(y_{2}\right)
$$

- The same result can be obtained using the cumulant decomposition of

$$
\begin{aligned}
\rho_{2}^{\mathrm{AA}}\left(y_{1}, y_{2}\right) & =C_{1}^{\mathrm{AA}}\left(y_{1}\right) C_{1}^{\mathrm{AA}}\left(y_{2}\right)+C_{2}^{\mathrm{AA}}\left(y_{1}, y_{2}\right) \\
& =m_{s}^{2} C_{1}^{p p}\left(y_{1}\right) C_{1}^{p p}\left(y_{2}\right)+m_{s} C_{2}^{p p}\left(y_{1}, y_{2}\right) \\
& =m_{s}^{2} \rho_{1}^{p p}\left(y_{1}\right) \rho_{1}^{p p}\left(y_{2}\right)+m_{s}\left[\rho_{2}^{p p}\left(y_{1}, y_{2}\right)-\rho_{1}^{p p}\left(y_{1}\right) \rho_{1}^{p p}\left(y_{2}\right)\right] \\
& =m_{s}\left(m_{s}-1\right) \rho_{1}^{p p}\left(y_{1}\right) \rho_{1}^{p p}\left(y_{2}\right)+m_{s} \rho_{2}^{p p}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

- At fixed value of m_{s}, integration over y_{1} and y_{2} yields:

$$
\langle n(n-1)\rangle_{\mathrm{AA}}=m_{s}\langle n(n-1)\rangle_{p p}+m_{s}\left(m_{s}-1\right)\langle n\rangle_{p p}^{2}
$$

For large m_{s}, the scaling is dominated by uncorrelted combinatorial pairs from particles produced in different $p p$ interactions and approximatelly scales by m_{s}^{2}.

Cumulants scaling with source multiplicity

- Similarly, in the case of triplets, one can show that:

$$
\begin{aligned}
\rho_{3}^{\mathrm{AA}}(1,2,3)= & C_{1}^{\mathrm{AA}}(1) C_{1}^{\mathrm{AA}}(2) C_{1}^{\mathrm{AA}}(3)+C_{1}^{\mathrm{AA}}(1) C_{2}^{\mathrm{AA}}(2,3)+ \\
& +C_{1}^{\mathrm{AA}}(2) C_{2}^{\mathrm{AA}}(1,3)+C_{1}^{\mathrm{AA}}(3) C_{2}^{\mathrm{AA}}(1,2)+C_{3}^{\mathrm{AA}}(1,2,3) \\
= & m_{s}^{3} C_{1}^{p p}(1) C_{1}^{p p}(2) C_{1}^{p p}(3)+m_{s}^{2} \sum_{\text {perm }} C_{1}^{p p}(1) C_{2}^{p p}(2,3)+m_{s} C_{3}^{p p}(1,2,3) \\
= & \left(m_{s}^{3}-m_{s}^{2}+2 m_{s}\right) \rho_{1}^{p p}(1) \rho_{1}^{p p}(2) \rho_{1}^{p p}(3) \\
& +\left(m_{s}^{2}-m_{s}\right) \sum_{\text {perm }} \rho_{1}^{p p}(1) \rho_{2}^{p p}(2,3)+m_{s} \rho_{3}^{p p}(1,2,3)
\end{aligned}
$$

- At fixed m_{s}, after integration over coordinates y_{1}, y_{2} and y_{3} one gets:

$$
\begin{aligned}
\langle n(n-1)(n-2)\rangle_{\mathrm{AA}} & =\left(m_{s}^{3}-m_{s}^{2}+2 m_{s}\right)\langle n\rangle_{p p}^{3} \\
& +3\left(m_{s}^{2}-m_{s}\right)\langle n(n-1)\rangle_{p p}\langle n\rangle_{p p}+m_{s}\langle n(n-1)(n-2)\rangle_{p p}
\end{aligned}
$$

The average number of triplets in $\mathrm{A}+\mathrm{A}$ collisions is dominated by combinatorics and essentially scales as $m_{s}^{3}\langle n\rangle_{p p}^{3}$.

- By extension, we conclude that the average number of n-ntuplets in $\mathrm{A}+\mathrm{A}$ collisions scales as $m_{s}^{n}\langle n\rangle_{p p}^{n}$.

Normalized cumulants and normalized factorial moments

- Normalized inclusive densities and normalized cumulants are defined as:

$$
r_{n}\left(y_{1}, \ldots, y_{n}\right)=\frac{\rho_{n}\left(y_{1}, \ldots, y_{n}\right)}{\rho_{1}\left(y_{1}\right) \ldots \rho_{1}\left(y_{n}\right)} \quad R_{n}\left(y_{1}, \ldots, y_{n}\right)=\frac{C_{n}\left(y_{1}, \ldots, y_{n}\right)}{\rho_{1}\left(y_{1}\right) \ldots \rho_{1}\left(y_{n}\right)}
$$

- It is also common to use reduced (normalized) factorial moments:

$$
f_{n}=\frac{\langle N(N-1) \ldots(N-n+1)\rangle}{\langle N\rangle^{n}}
$$

- For systems consisting of m identical subprocesses the normalized n-cumulant scales inversely as m^{n-1} times the n-cumulant of the subsystem $\left(R_{n}^{(m)}\right.$ are diluted by power m^{n-1} relative to the subsystems' $R_{n}^{(1)}$):

$$
R_{n}^{(m)}\left(y_{1}, \ldots, y_{n}\right)=\frac{C_{n}^{(m)}\left(y_{1}, \ldots, y_{n}\right)}{\rho_{1}^{(m)}\left(y_{1}\right) \ldots \rho_{1}^{(m)}\left(y_{n}\right)}=\frac{1}{m^{n-1}} R_{n}^{(1)}\left(y_{1}, \ldots, y_{n}\right)
$$

- A simple relationship exists between the normalized desities and cumulants:

$$
\begin{aligned}
r_{2}(1,2) & =1+R_{2}(1,2) \\
r_{3}(1,2,3) & =1+\sum_{1} R_{2}(1,2)+R_{3}(1,2,3)
\end{aligned}
$$

(3)
$r_{4}(1,2,3,4)=1+\sum R_{2}(1,2)+\sum R_{2}(1,2) R_{2}(3,4)+\sum R_{3}(1,2,3)+R_{4}(1,2,3,4)$
(3)

Particle probability densities

- Particle probability densities have been defined as (slide 3):

$$
P_{n}\left(y_{1}, \ldots, y_{n}\right) \equiv \frac{\rho_{n}\left(y_{1}, \ldots, y_{n}\right)}{\langle N(N-1) \ldots(N-n+1)\rangle}
$$

- If the production of particles 1 to n is statistically independent, then the ratio:

$$
q_{n}\left(y_{1}, \ldots, y_{n}\right) \equiv \frac{P_{n}\left(y_{1}, \ldots, y_{n}\right)}{P_{1}\left(y_{1}\right) \ldots P_{1}\left(y_{n}\right)}=1
$$

- From the above one can see that:

$$
r_{n}\left(y_{1}, \ldots, y_{n}\right)=\underbrace{\frac{\langle N(N-1) \ldots(N-n+1)\rangle}{\langle N\rangle^{n}}}_{\text {multiplicity fluctuations if } \neq 1} \underbrace{q_{n}\left(y_{1}, \ldots, y_{n}\right)}_{\text {genuine correlations if } \neq 1}
$$

- $q_{n} \neq 1$ is required to yield nonvanishig normalized cumulants, e.g.:

$$
R_{2}\left(y_{1}, y_{2}\right)=\frac{\langle N(N-1)\rangle}{\langle N\rangle^{2}} q_{2}\left(y_{1}, y_{2}\right)-1
$$

The strength of two-particle correlations is thus determined both by the function $q_{2}\left(y_{1}, y_{2}\right)$ and the amplitude of multiplicity fluctuations, $\langle N(N-1)\rangle /\langle N\rangle^{2} \neq 1$.

Factorial and cumulant moment-generating functions

- It is known, that for the moment generating function we have:

$$
M_{\mathrm{X}}(t)=\mathcal{E}\left[e^{t \mathrm{X}}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x \Rightarrow m_{k}=\left.\frac{d^{k}}{d t^{k}} \mathcal{E}\left[e^{t \mathrm{X}}\right]\right|_{t=0}=\left.\frac{d^{k}}{d t^{k}} M_{\mathrm{X}}(t)\right|_{t=0}
$$

- Inclusive densities of order n may be written as:

$$
\rho_{n}\left(y_{1}, \ldots, y_{n}\right)=\sum_{m} P_{m} \rho_{n}^{(m)}\left(y_{1}, \ldots, y_{n}\right) \Leftarrow P_{m} \equiv \frac{\sigma_{m}}{\sum_{m} \sigma_{m}}=\frac{\sigma_{m}}{\sigma_{\text {inel }}}
$$

where σ_{m} is the cross section for a the process yielding m particles, and $\rho_{n}^{(m)}(\ldots)$ are n-particle densities for processes that produce exactly m particles ($m \geq n$).

- Integration of inclusive n-particle density yields:

$$
\begin{aligned}
\tilde{F}_{n} & \equiv \int_{\Omega} \rho_{n}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}=\sum_{m} P_{m} \int_{\Omega} \rho_{n}^{(m)}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n} \\
& =\sum_{m} P_{m} m(m-1) \ldots(m-n+1)=\langle m(m-1) \ldots(m-n+1)\rangle \equiv\left\langle m^{[n]}\right\rangle
\end{aligned}
$$

- Assuming there is a value $n=N$ beyond which all probabilities vanish and since terms in $P_{n<N}$ cannot contribute to \tilde{F}_{N} one can write: $\quad P_{N}=\tilde{F}_{N} / N$!
- Proceeding recusively, one finds: $P_{n}=\frac{1}{n!} \sum_{k=0}^{N-n}(-1)^{k} \frac{\tilde{F}_{k+n}}{k!}$, for $n=0,1, \ldots, N$

Factorial cumulants

- The factorial moment generating function should have the form:

$$
G(z)=1+\sum_{n=1}^{\infty} \frac{z^{n}}{n!} \tilde{F}_{n}=1+\sum_{n=1}^{\infty} \frac{z^{n}}{n!} \int_{\Omega} \rho_{n}\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}, \quad \tilde{F}_{n}=\left.\frac{d^{n} G(z)}{d z^{n}}\right|_{z=0}
$$

- Factorial cumulants are defined as: $f_{n}=\int_{\Omega} d y_{1} \ldots \int_{\Omega} d y_{n} C_{n}\left(y_{1}, \ldots, y_{n}\right)$
- Factorial moments may be expressed in terms of factorial cumulants:

$$
\begin{aligned}
& \tilde{F}_{1}=f_{1} \\
& \tilde{F}_{2}=f_{2}+f_{1}^{2} \\
& \tilde{F}_{3}=f_{3}+3 f_{2} f_{1}+f_{1}^{3} \\
& \tilde{F}_{4}=f_{4}+4 f_{3} f_{1}+3 f_{2}^{2}+6 f_{2} f_{1}^{2}+f_{1}^{4} \\
& \tilde{F}_{5}=f_{5}+5 f_{4} f_{1}+10 f_{3} f_{2}+10 f_{3} f_{1}^{2}+15 f_{2}^{2} f_{1}+10 f_{2} f_{1}^{3}+f_{1}^{5} \\
& \cdots \\
& \tilde{F}_{n}=n!\sum_{\{l\}_{n}} \prod_{j=1}^{n}\left(\frac{f_{j}}{j!}\right)^{l_{j}} \frac{1}{l_{j}!}
\end{aligned}
$$

where summation is done over permutations satisfying $\sum_{i=1}^{n} i l_{i}=n$.

Factorial cumulants

- Factorial cumulant generating functions are defined as:

$$
\ln G(z)=\langle n\rangle z+\sum_{k=2}^{\infty} \frac{z^{k}}{k!} f_{k} \quad \Rightarrow \quad f_{n}=\left.\frac{d^{n} \ln G(z)}{d z^{n}}\right|_{z=0}
$$

- Example: Generating function for a Poisson distribution $P_{n}=\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}$:

$$
\begin{aligned}
& \Rightarrow G(z)=\sum_{n=0}^{\infty} P_{n}(1+z)^{n}=e^{-\langle n\rangle} \sum_{n=0}^{\infty} \frac{\langle n\rangle^{n}}{n!}(1+z)^{n}=\exp (\langle n\rangle z) \\
& \Rightarrow \quad \tilde{F}_{m}=\left.\frac{d^{n} G(z)}{d z^{n}}\right|_{z=0}=\langle n\rangle^{m} \\
& \Rightarrow \quad f_{1}=\langle n\rangle \text { and } f_{m} \equiv 0, \text { for } m>1 \text { - expected, since Poisson statistics } \\
& \quad \begin{array}{r}
\quad \text { implies production of uncorrelated particles }
\end{array} \\
& \quad \text { and cumulants of order } m \geq 2 \text { must vanish. }
\end{aligned}
$$

Two-particle azimuthal correlations

- Energy-momentum conservation (e.g. resonances' decays,jets).
- Restricting the variables y_{1} and y_{2} to

Example of $C_{2}(\Delta \phi)$ in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$ with broad spectrum of ρ^{0} energies. $p_{\mathrm{T}}^{\min } \leq p_{\mathrm{T}} \leq p_{\mathrm{T}}^{\max }$ and $\eta_{\text {min }} \leq \eta \leq \eta_{\text {max }}$.

- In the absence of polarization or other discriminating direction, one expects that $\rho_{1}\left(\phi_{1}\right)=\rho_{1}\left(\phi_{2}\right) \equiv \bar{\rho}_{1}$, and C_{2} should depend on $\Delta \phi=\phi_{1}-\phi_{2}$:
- $\phi_{1}, \phi_{2} \rightarrow \Delta \phi, \bar{\phi}=\left(\phi_{1}+\phi_{2}\right) / 2$

$$
C_{2}(\Delta \phi)=\rho_{2}(\Delta \phi)-\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{\rho}_{1}^{2} d \bar{\phi}=\rho_{2}(\Delta \phi)-\bar{\rho}_{1}^{2}
$$

Correlations from anisotropic flow

- Two-particle correlations may be very much influenced by collective effects as in collisions of heavy nuclei.
- $\rho_{1}\left(\phi_{i} \mid \psi\right)=\bar{\rho}\left\{1+2 \sum_{n=1}^{\infty} v_{n} \cos \left(n\left(\phi_{i}-\psi\right)\right)\right\} \Rightarrow \rho_{1}\left(\phi_{i}\right)=\int_{0}^{2 \pi} d \psi \rho_{1}\left(\phi_{i} \mid \psi\right) P(\psi)=\bar{\rho}$
- $\rho_{2}\left(\phi_{1}, \phi_{2}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \psi \rho_{2}\left(\phi_{1}, \psi_{2} \mid \psi\right) P(\psi)=\bar{\rho}^{2}\left\{1+2 \sum_{n=1}^{\infty} v_{n}^{2} \cos \left(n\left(\phi_{1}-\phi_{2}\right)\right)\right\}$

