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The notion of a correlation function

Lecture based on: W. Kittel, E.A. De Wolf, Soft Multihadron Dynamics, WS 2005

and C.A. Pruneau, Data Analysis Techniques for Physical Sciences, CUP 2017

o Consider a measurement of the numbers of particles N; produced in volumes €;
“centered” around points p;, (¢ = 1,2) in momentum space:

min max

pr S DPri < Pry
<y < g

oI < ¢y < e

o Given the stochastic nature of particle production, the
yields N; are expected to fluctuate around the means:

d>N;

N;) = / ——"— dprdod

o Fluctuations about the mean are usually characterized
by variance or covariance.

Pair Count

o Correlation function is defined as the scaled covariance 200

in the limit in which bin sizes ; and 3 vanish:
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Single- and two-particle densities

o For finite bin sizes, the ratios provide estimators of the single, p;(p;), and the
joint two-particle, p2(p1,P2), density functions:

R _ (Vi) L. &N@i)

p1(pi) = Q, Q:)O p1(Pi) = dprdodn

o (NN (p2)) Lo d° Nyaivs (P1, P2)
P2(p1,p2) = Q. Q1250 /02(171,172) = de,1d¢1dn1de,2d¢2dn2

@ Thus, the two-particle correlation function can be expressed in terms of density
functions as:

C(p1,p2) = p2(P1,P2) — p1(P1)p1(P2)

@ In its most general form, the two-particle correlation
function C(p1,p2) is a function of six coordinates.

ATLAS p+Pb 0.5<p?°<5 GeV
(sx=5.02 TeV, 28 nb”" N'%2220

o It can be positive, null or negative (as the covariance). 5

o However, a measurement of correlation function can
be reduced to a smalller number of coordinates of
interest by integrating (marginalization) over variable .

that are not of interest.
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Multiparticle Densities and Factorial Moments

o Let y = {ps,py, P>, 1, M, P, ...} denote all particle kinematic variables under
interest in a particular study. Then, the joint-probability distribution function for
n particles of the same species can be written as P, (Y1, Y2, Y3, - Yn)

o The differential desities py,(y1, ..., yn) are proportional to the joint probabilities:
pn(yh ceey yn) = <N(N - 1)(N —n+ 1)>Pn(y17 Y2,Y3, -5 yn)

o Integration of densities over the moemntum volume {2, thus yields the following
important relations:

[ oty = AN dgdn = (N)
QP1y Y o, dprdadn PT n

//Q p2(y1,y2)dyrdys = (N(N — 1))

//Q p2(Y1s s Yn)dyr...dy, = (N(N —1)...(N —n+1))

o The averages (N(N —1)...(N —n + 1)) are called factorial moments of order n.
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Cumulants

o Inclusive n-particle densities py,(y1, ..., Yn) are the result of a superposition, in
general, of several subprocesses (even from n distinct and uncorrelated
subprocesses!).

o Measured n-tuples of particles may then feature a broad variety of correlation
sources associated with a plurality of dynamic processes.

o It is a common goal of multiparticle production measurements to identify and
study these correlated emissions as distinct subprocesses.

o This can be accomplished by invoking correlation functions known as (factorial)
cumulans, expressed either in terms of integral correlators or as differential
functions of one or more particle coordinates.

o Digression (statistical independence in terms of particle densities):

Two variables are said to be statistically independent iff their joint probability
density factorizes.

The statistical independence for two particles means  pa(y1,y2) = p1(y1)p1(y2)
Similarly for n particles we have  p,, (Y1, .-, Yn) = p1(Y1)-.-p1(yn)
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Cumulants

o Cumulants of order m, C,,, are defined as m-particle densities representing
emission (production) of m correlated particles originating from a common
process.

o An n-particle density can then be expressed as a sum of several terms yielding
n particles, but each with its own “cluster” decomposition into products of
m~cumulants:
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Particle denstities and cumulants

o In general n-particle densities can be expressed in terms of cumulants using the
formula (shorthand notation y; — i):

pn(lyon) = Cp(1,...,n) + Z C1(1)Cr-1(2,...,n)

perm

+ ) Ci1)C1(2)Cr2(3, ... m)

perm

+ ) Co(1,2)Cha(3,.m) + ..+ [[ C10)
=1

perm

o m~cumulants represent fractions of the particle production cross-section
associated with processes yielding m correlated particles (which cannot be
further factorized).

@ m-cumulants are directly calculated based on theoretical models:

o Experimentally measured quantities are n-particle densities, not cumulants.
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Cumulants in terms of particle densities

o Cumulants can be obtained from measured densities using “reverse engineering’”:
C1(1) = pa(1)
Ca(1,2) = p2(1,2) = p2(1)p1(2)
C5(1,2,3) = ps(1,2,3) = 3 p1(1)p2(2.3) + 201 (1)p1(2)p1(3)
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Cumulants scaling with source multiplicity

o Cumulants Cy,(y1, ..., yn ) feature a simple scaling property for collision systems
consisting of a superposition of m independent (but otherwise identical) sources.

o Example: Heavy ion collisions (A+A) can be regarded (to first approximation)
as a superposition of ms nucleon-nucleon (pp) interactions, each of which
produces clusters consisting of n correlated particles.

Assume that production of such clusters in pp may be described by cumulant C?P.
At a given impact parameter b (centrality), A+A collisions should involve an
average of (mg) pp interactions.
m, fluctuates from event to event, but the n-cumulant for A+A collisions, at
fixed ms may be written as:

CSA(yh s Yn | ms) = mscgp(ylv vey yn)

Averaging over all A+A collisions (and assuming a superposition of independent
and unmodified pp collisions, and such that produced particles do not interact
with one another) yields:

O;':‘A(ylﬁ ) yn) = <m$>cgp(y17 ceey yn)
@ The total multiplicity of produced particles in A+A also features the same
scaling with m: P (y) = mspt”(y) = (n)an = ms ()
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Cumulants scaling with source multiplicity

o For the pairs of particles, one can form pairs from each of m; individual pp
collisions, but one can also mix particles from independent sources:

péA(y17y2) = msph" (Y1, y2) + ms(ms — 1)pF" (y1)p1" (y2)
@ The same result can be obtained using the cumulant decomposition of
CH (Y1) CT (y2) + Co™ (1, y2)
mZCY? (y1)CT" (y2) + msC3” (y1, y2)
= mZpy” (y1)pi” (y2) + ms [p5” (Y1, y2) — P17 (Y1) 1" (y2))]

= mg(ms — 1) (y1) 1" (y2) + msp5 (Y1, y2)

P (Y1, y2)

o At fixed value of my, integration over y; and y, yields:

(0 = 1)an = maln(n = 1)y + ms(my — 1)(n)3,

For large mg, the scaling is dominated by uncorrelted combinatorial pairs from
particles produced in different pp interactions and approximatelly scales by m?2.
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Cumulants scaling with source multiplicity

o Similarly, in the case of triplets, one can show that:
ps(1,2,3) = CPACMA(2)CPAB) + CPAL) A (2, 3)+
+OMA2)03A(1,3) + OPA(3)C2A(1,2) + C3A(1,2,3)
= m3CYP(1)CYP(2)CYP(3) +m? > CYP(1)CEP(2,3) + moCEP (1,2, 3)

perm
= (m —mg +2mq) " (1" (2)p1" (3)
H(m2 —me) Y pAP(1)pEP(2,3) + maph?(1,2,3)

perm

o At fixed mg, after integration over coordinates ¥1,y2 and y3 one gets:
(n(n—1)(n —2))an = (mg —m2 +2ms)(n)},
+ 3(m§ —ms)(n(n — 1)) pp(n)pp + ms(n(n — 1)(n — 2))pp

The average number of triplets in A+A collisions is dominated by combinatorics

; 3/0\3
and essentially scales as mg(n);,.

o By extension, we conclude that the average number of n-ntuplets in A+A
collisions scales as m” (n)"

pp’
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Normalized cumulants and normalized factorial moments

o Normalized inclusive densities and normalized cumulants are defined as:
Pr(Y1; - Yn) Cn(Y1, - Yn)
p1(y1)---p1(yn) p1(y1)---p1(Yn)
o It is also common to use reduced (normalized) factorial moments:
_ (N(N—-1)..(N -n+1))
fn = )

o For systems consisting of m identical subprocesses the normalized n-cumulant

scales inversely as m"™~! times the n-cumulant of the subsystem ( ) are

diluted by power m™~! relative to the subsystems’ R%l)):

™ (yy, ., 1
Rgzm) (ylv XY yn) = (m) (yl (miJn) = mn—1 Rgzl)(yla ) yn)
p1 o (y)-p1 (yn)
o A simple relationship exists between the normalized desities and cumulants:
r2(1,2) =1+ Ry(1,2)

r3(1,2,3) =1+ Y Ra(1,2) + R(1,2,3)

T (Y1, s Yn) = Ro(y1, s yn) =

(3)
r4(1,2,3,4) =1+ ZRQ(L 2) + ZR2(1, 2)Ry(3,4) + ZRg(l, 2,3) 4+ R4(1,2,3,4)
6 3 3
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Particle probability densities

o Particle probability densities have been defined as (slide 3):

o pn(yl""’yn)
Palysseovn) = N 21 N = 7 1))

o If the production of particles 1 to n is statistically independent, then the ratio:

q (yl y ) = Pn(ylaayn)
I Pr(y). Pr(yn)
@ From the above one can see that:

(Y15 s Yn) = W — 1)"'(15 —ntl) Gn (Y1 s Yn)
(N) _—

genuine correlations if #1

=1

multiplicity fluctuations if #1

@ ¢, # 1 is required to yield nonvanishig normalized cumulants, e.g.:

Ra(y1,92) = %%(th) -1

The strength of two-particle correlations is thus determined both by the function
q2(y1,y2) and the amplitude of multiplicity fluctuations, (N (N —1))/(N)? # 1.
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Factorial and cumulant moment-generating functions

o It is known, that for the moment generating function we have:

° d* dk
My (t) = € [X] = / e fydr = mp= e[| = L)
s dt o At =0
o Inclusive densities of order n may be written as:
m o
Py, tn) = > Pop (Y1, yn) = P = Z p— J_ml
m m Inel

where o, is the cross section for a the process yielding m particles, and pslm)()
are n-particle densities for processes that produce exactly m particles (m > n).

o Integration of inclusive n-particle density yields:

F, E/ﬂpn(yl,. o Yn)dyy ...dy, = ZP / (m) (Y1, ey Yn)dy -..dyn
=Y Pum(m—1)..(m —n+1)—( (m—1)...(m —n+1)) = (ml")

m
@ Assuming there is a value n = N beyond which all probabilities vanish and since
terms in P,,«n cannot contribute to Fy one can write: Py = Fy/N!
N—n

1 Frin
o Proceeding recusively, one finds: P, = — Z (—1)* bt , for n=0,1,...,N
n! = k!
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Factorial cumulants

@ The factorial moment generating function should have the form:

22" = 2" ~ d"G(z)
=1 —F,=1 — n( Y1y ooy Y )dY1 .. dyn, Fp =
(2) +; § +7; p /Qp (Y1, s Yn)dyr ..y T

o Factorial cumulants are defined as:  f,, = / dyl.../ Ayn Cr (Y1, ey Yn)
Q Q

z=0

o Factorial moments may be expressed in terms of factorial cumulants:
F=h
Fy=fo+ f}
Fy=fs+3f2fi + f}
Fy= fat4fsfi+3f3 +6fof? + f}
Fy=fs+5fufi + 10fsfo + 10fsf7 + 15f3 f1 + 10f2f7 + 7

foa T (5)

{li}n J=1

where summation is done over permutations satisfying > .-, il; = n.
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Factorial cumulants

o Factorial cumulant generating functions are defined as:

x _k n
z d"InG(z)
InG(z) = (n)z + Z ka = fa= T |,
k=2 z=
o Example: Generating function for a Poisson distribution P,, = @67“”
n!

’I’L

z):ZPn(l—l—z)” Z . (1+2)"=exp((n)z)
n=0

n=0

. d"G(z)
F, = = (n)™
m dZn o < >
= fi={(n) and f,, =0, form > 1 - expected, since Poisson statistics
implies production of uncorrelated particles

and cumulants of order m > 2 must vanish.
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Two-particle azimuthal correlations

) v,=0 % 7,>0 5
o Energy-momentum conservation ? 5
8. "d jets). 7,

(e.g. resonances’ decays,jets) ) ‘%” 5 \J
o Restricting the variables y; and y, to Ap<m "
represent the azimuthal production e
angles ¢1 and ¢3, we have: 5, 7 : x‘
Ca(¢1,¢2) = pa(d1, d2) — pr(d1)p1(d2) ) e =a.

(61,62) 2 T
P2(P1, L parton
Ro(o1,2) = — <~ —1 ' v
( ) p1(¢1)p1(d2)
where the densities p1(¢;) and pa(é1,¢2)  Example of Co(Ag) in p° — ntr—
are measured for specific ranges of with broad spectrum of p® energies.
p?'" <pr< p?ax and min < 1 < Ymax- g
d B

@ In the absence of polarization or other
discriminating direction, one expects 51
that p1(¢1) = p1(¢2) = p1, and Co i

should depend on A¢ = ¢ — ¢a: L S LS
° g1, — A, <23=(¢1+¢2)/2 0 2 — -
A (ra

Ca(A¢) = pa(Ag) — fﬁw p2(Ag) ’
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Correlations from anisotropic flow

o Two-particle correlations may be very much influenced by collective effects as in

collisions of heavy nuclei.
27

(e o)
o pi(¢ilv) =ﬁ{1+22vn cos (n(¢s —w»} = pi(di) = / & p1 ($il ) P(4) = p
n=1 0
27
o pa(fr,40) = /dwpz(¢1,wz|w) W) =p {1+2Zvncos ¢1¢2)>}

0

ax ¥
Spectators d Participants
b
v~c" i ‘ ; "‘
—_
Spectators =7
Ty
g (a) § (b) § (c) p}zmi“mgrv cosnto
1.005+ 1.005+ 1.005 2 =004
»N“ +'ﬂ' +he oy +
+ + SN £+ S s
1 PR A L 1
L o ++, b+ + s + 4
et + ++
0.995 R,(A9)=1+2} cos240 0.995- R.(Ag)=1+2v]cos3A¢ 0.995
v, =004 v, =004
[ 2 P ) 2 4 0 2 4

A (rad) A¢ (rad) A¢ (rad
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