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The notion of a correlation function

Lecture based on: W. Kittel, E.A. De Wolf, Soft Multihadron Dynamics, WS 2005

and C.A. Pruneau, Data Analysis Techniques for Physical Sciences, CUP 2017

Consider a measurement of the numbers of particles Ni produced in volumes Ωi
“centered” around points ~pi, (i = 1, 2) in momentum space:

Setup

• Consider a measurement of the number of particles produced at 
two distinct momenta      and 

• Let Ni represent the number of particles produced in volumes     ,  
i=1, 2, in ranges “centered” on       and
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Correlation Functions - Introduction
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Given the stochastic nature of particle production, the
yields Ni are expected to fluctuate around the means:

〈Ni〉 =

∫
Ωi

d3Ni
dpTdφdη

dpTdφdη

Fluctuations about the mean are usually characterized
by variance or covariance.

Correlation function is defined as the scaled covariance
in the limit in which bin sizes Ω1 and Ω2 vanish:

C(~p1, ~p2) =
1

Ω1Ω2
[〈N(~p1)N(~p2)〉 − 〈N(~p1)〉 〈N(~p2)〉]
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Fig. 10.1 Illustration of the notion of covariance between the particle production yields measured at two points (η1 and η2) in
momentum space with a simple Gaussian correlation model. The left-hand plot shows the pair yield vs. the
pseudorapidities of the particles, average over a large number of events. The right-hand plot displays the number of
particles in the wide rapidity bins shown on the left with dashed lines. It reveals that the particle yields in bins η1 and
η2 are tightly correlated.

account for the finite acceptance of measurements, particle detection efficiency, and vari-
ous other instrumental effects are discussed in §12.4.

10.1 Extension of the Notion of Covariance

We introduce the notion of correlation function on the basis of the covariance of the
number of particles detected event-by-event at two distinct points �p1 and �p2 in momentum
space, as illustrated in Figure 10.1.

Let Ni represent the number of particles produced in the volumes 	i, i = 1, 2, defined
by the ranges pmin

T,i ≤ pT,i < pmax
T,i , ηmin

i ≤ ηi < η
max
i , and φmin

i ≤ φi < φ
max
i centered at �pi.

Given the stochastic nature of particle production, the yields Ni are expected to fluctuate
event-by-event. For a given type of particle (and a specific projectile, target, collision en-
ergy, and possibly several other collision system parameters), the yields will have average
values 〈Ni〉 that depend on the cross section of the process considered:

〈Ni〉 =
∫
	i

d3Ni

d pT dφdη
d pT dφ dη. (10.1)

Fluctuations about each of these means 〈Ni〉 are characterized by the variances

Var[Ni] = 〈N2
i 〉 − 〈Ni〉2. (10.2)

However, it is usually more informative to study the covariance of these two yields:

Cov[N1,N2] = 〈N1N2〉 − 〈N1〉〈N2〉 (10.3)
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momentum space with a simple Gaussian correlation model. The left-hand plot shows the pair yield vs. the
pseudorapidities of the particles, average over a large number of events. The right-hand plot displays the number of
particles in the wide rapidity bins shown on the left with dashed lines. It reveals that the particle yields in bins η1 and
η2 are tightly correlated.

account for the finite acceptance of measurements, particle detection efficiency, and vari-
ous other instrumental effects are discussed in §12.4.

10.1 Extension of the Notion of Covariance

We introduce the notion of correlation function on the basis of the covariance of the
number of particles detected event-by-event at two distinct points �p1 and �p2 in momentum
space, as illustrated in Figure 10.1.

Let Ni represent the number of particles produced in the volumes 	i, i = 1, 2, defined
by the ranges pmin

T,i ≤ pT,i < pmax
T,i , ηmin

i ≤ ηi < η
max
i , and φmin

i ≤ φi < φ
max
i centered at �pi.

Given the stochastic nature of particle production, the yields Ni are expected to fluctuate
event-by-event. For a given type of particle (and a specific projectile, target, collision en-
ergy, and possibly several other collision system parameters), the yields will have average
values 〈Ni〉 that depend on the cross section of the process considered:

〈Ni〉 =
∫
	i

d3Ni

d pT dφdη
d pT dφ dη. (10.1)

Fluctuations about each of these means 〈Ni〉 are characterized by the variances

Var[Ni] = 〈N2
i 〉 − 〈Ni〉2. (10.2)

However, it is usually more informative to study the covariance of these two yields:

Cov[N1,N2] = 〈N1N2〉 − 〈N1〉〈N2〉 (10.3)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108241922.012
Downloaded from https://www.cambridge.org/core. CERN Library, on 14 Aug 2020 at 17:19:02, subject to the Cambridge Core terms of use, available at
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Single- and two-particle densities

For finite bin sizes, the ratios provide estimators of the single, ρ1(~pi), and the
joint two-particle, ρ2(~p1, ~p2), density functions:

ρ̂1(~pi) =
〈N(~pi)〉

Ωi
−→

Ωi→0
ρ1(~pi) =

d3N(~pi)

dpTdφdη

ρ̂2(~p1, ~p2) =
〈N(~p1)N(~p2)〉

Ω1Ω2
−→

Ω1,2→0
ρ2(~p1, ~p2) =

d6Npairs(~p1, ~p2)

dpT,1dφ1dη1dpT,2dφ2dη2

Thus, the two-particle correlation function can be expressed in terms of density
functions as:

C(~p1, ~p2) = ρ2(~p1, ~p2)− ρ1(~p1)ρ1(~p2)

In its most general form, the two-particle correlation
function C(~p1, ~p2) is a function of six coordinates.

It can be positive, null or negative (as the covariance).

However, a measurement of correlation function can
be reduced to a smalller number of coordinates of
interest by integrating (marginalization) over variable
that are not of interest.
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Multiparticle Densities and Factorial Moments

Let y ≡ {px, py, pz, pT, η, φ, ...} denote all particle kinematic variables under
interest in a particular study. Then, the joint-probability distribution function for
n particles of the same species can be written as Pn(y1, y2, y3, ..., yn)

The differential desities ρn(y1, ..., yn) are proportional to the joint probabilities:

ρn(y1, ..., yn) = 〈N(N − 1)...(N − n+ 1)〉Pn(y1, y2, y3, ..., yn)

Integration of densities over the moemntum volume Ω, thus yields the following
important relations: ∫

Ω

ρ1(y)dy =

∫
Ω

d3Ni
dpTdφdη

dpTdφdη = 〈N〉∫∫
Ω

ρ2(y1, y2)dy1dy2 = 〈N(N − 1)〉

...∫
...

∫
Ω

ρ2(y1, ..., yn)dy1...dyn = 〈N(N − 1)...(N − n+ 1)〉

The averages 〈N(N − 1)...(N − n+ 1)〉 are called factorial moments of order n.
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Cumulants

Inclusive n-particle densities ρn(y1, ..., yn) are the result of a superposition, in
general, of several subprocesses (even from n distinct and uncorrelated
subprocesses!).

Measured n-tuples of particles may then feature a broad variety of correlation
sources associated with a plurality of dynamic processes.

It is a common goal of multiparticle production measurements to identify and
study these correlated emissions as distinct subprocesses.

This can be accomplished by invoking correlation functions known as (factorial)
cumulans, expressed either in terms of integral correlators or as differential
functions of one or more particle coordinates.

Digression (statistical independence in terms of particle densities):

Two variables are said to be statistically independent iff their joint probability
density factorizes.

The statistical independence for two particles means ρ2(y1, y2) = ρ1(y1)ρ1(y2)

Similarly for n particles we have ρn(y1, ..., yn) = ρ1(y1)...ρ1(yn)
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Cumulants

Cumulants of order m, Cm, are defined as m-particle densities representing
emission (production) of m correlated particles originating from a common
process.

An n-particle density can then be expressed as a sum of several terms yielding
n particles, but each with its own “cluster” decomposition into products of
m-cumulants:
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507 10.2 Correlation Function Cumulants

Fig. 10.2 Diagrammatic expression of n-particle densities in terms of cumulants. n-particle densities are represented as squares,
while cumulants are denoted by circles and ovals.

ρ4(1, 2, 3, 4) = C1(1)C1(2)C1(3)C1(4) (10.20)

+ C2(1, 2)C1(3)C1(4) + C2(1, 3)C1(2)C1(4)

+ C2(1, 4)C1(2)C1(3) + C2(2, 3)C1(1)C1(4)

+ C2(2, 4)C1(1)C1(3) + C2(3, 4)C1(1)C1(2)

+ C2(1, 2)C2(3, 4) + C2(1, 3)C2(2, 4)

+ C2(1, 4)C2(2, 3) + C3(1, 2, 3)C1(4)

+ C3(1, 2, 4)C1(3) + C3(1, 3, 4)C1(2)

+ C3(2, 3, 4)C1(1) + C4(1, 2, 3, 4),

where we used a shorthand notation indicating the index of the particles rather than kine-
matical variables yi. Higher-order densities may be obtained based on the following ex-
pression:

ρm (1, . . . ,m) = Cm (1, . . . ,m) +
∑
perm

C1(1)Cm−1(2, . . . ,m) (10.21)

+
∑
perm

C1(1)C1(2)Cm−2(3, . . . ,m)

+
∑
perm

C2(1, 2)Cm−2(3, . . . ,m) + · · · +
m∏

i=1

C1(i)

where “perm” indicates permutations of all particle indexes yielding distinct terms. The-
oretically, cumulants naturally arise as a byproduct of calculations of the cross section of
specific processes yielding specific particle multiplicities. They can be calculated, in partic-
ular, on the basis of cumulant generating functions, such as those introduced in §2.13 and
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Particle denstities and cumulants

In general n-particle densities can be expressed in terms of cumulants using the
formula (shorthand notation yi → i):

ρn(1, ..., n) = Cn(1, ..., n) +
∑
perm

C1(1)Cn−1(2, ..., n)

+
∑
perm

C1(1)C1(2)Cn−2(3, ..., n)

+
∑
perm

C2(1, 2)Cn−2(3, ..., n) + ...+

n∏
i=1

C1(i)

m-cumulants represent fractions of the particle production cross-section
associated with processes yielding m correlated particles (which cannot be
further factorized).

m-cumulants are directly calculated based on theoretical models:

Cumulants: Theory vs. Experiments

• m-cumulants represent fractions of the particle production cross-
section associated with processes yielding m 
(correlated) particles. 

• Theoretically: Calculated “directly” based on specific production 
models.

• Experimentally: Measured quantities are densities, not 
cumulants.

 35

Correlation Functions

…

Experimentally measured quantities are n-particle densities, not cumulants.
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Cumulants in terms of particle densities

Cumulants can be obtained from measured densities using “reverse engineering”:

C1(1) = ρ1(1)

C2(1, 2) = ρ2(1, 2)− ρ1(1)ρ1(2)

C3(1, 2, 3) = ρ3(1, 2, 3)−
∑

(3)
ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3)

m
-c
um

ul
an
ts

509 10.2 Correlation Function Cumulants

Fig. 10.3 Diagrammatic expression of cumulants in terms of particle densities. Cumulants are denoted by circles and ovals, and
densities by squares. Sub-labels indicate particle indices.

such clusters in p–p may be described by cumulants Cpp
n . At a given impact parameter, A–A

collisions should involve an average of 〈ms〉 p–p interactions. This number ms is obviously
anticipated to fluctuate collision by collision, but for a given value of ms, one expects that
the number of clusters of correlated particles of size n should be, on average, ms times
larger than in p–p collisions. The n-cumulant for A–A collisions, at fixed ms, may thus be
written

CAA
n (y1, . . . , yn|ms) = msC

pp
n (y1, . . . , yn) (10.25)

Given that ms fluctuates event by event, averaging over all A–A collisions consequently
yields

CAA
n (y1, . . . , yn) = 〈ms〉Cpp

n (y1, . . . , yn) (10.26)

for A–A collisions consisting of a superposition of independent and unmodified p–p colli-
sions, and such that produced particles do not interact with one another.

The total multiplicity of particles produced in A–A collisions consisting of ms indepen-
dent and unmodified p–p collisions also features the same simple scaling with ms. Indeed,
if the ms p–p collisions are independent and unmodified, the average multiplicity obtained
in A–A for a given (fixed) value of ms should simply be the product of ms by the average
particle multiplicity produced in p–p, which we can thus write

ρAA
1 (y) = msρ

pp
1 (y) (10.27)

and

〈n〉AA = ms〈n〉pp. (10.28)
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Cumulants scaling with source multiplicity

Cumulants Cn(y1, ..., yn) feature a simple scaling property for collision systems
consisting of a superposition of ms independent (but otherwise identical) sources.

Example: Heavy ion collisions (A+A) can be regarded (to first approximation)
as a superposition of ms nucleon-nucleon (pp) interactions, each of which
produces clusters consisting of n correlated particles.

Assume that production of such clusters in pp may be described by cumulant Cppn .

At a given impact parameter b (centrality), A+A collisions should involve an
average of 〈ms〉 pp interactions.

ms fluctuates from event to event, but the n-cumulant for A+A collisions, at
fixed ms may be written as:

CAA
n (y1, ..., yn |ms) = msC

pp
n (y1, ..., yn)

Averaging over all A+A collisions (and assuming a superposition of independent
and unmodified pp collisions, and such that produced particles do not interact
with one another) yields:

CAA
n (y1, ..., yn) = 〈ms〉Cppn (y1, ..., yn)

The total multiplicity of produced particles in A+A also features the same
scaling with ms: ρAA

1 (y) = msρ
pp
1 (y) ⇒ 〈n〉AA = ms〈n〉pp
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Cumulants scaling with source multiplicity

For the pairs of particles, one can form pairs from each of ms individual pp
collisions, but one can also mix particles from independent sources:

ρAA
2 (y1, y2) = msρ

pp
2 (y1, y2) +ms(ms − 1)ρpp1 (y1)ρpp1 (y2)

The same result can be obtained using the cumulant decomposition of

ρAA
2 (y1, y2) = CAA

1 (y1)CAA
1 (y2) + CAA

2 (y1, y2)

= m2
sC

pp
1 (y1)Cpp1 (y2) +msC

pp
2 (y1, y2)

= m2
sρ
pp
1 (y1)ρpp1 (y2) +ms [ρpp2 (y1, y2)− ρpp1 (y1)ρpp1 (y2)]

= ms(ms − 1)ρpp1 (y1)ρpp1 (y2) +msρ
pp
2 (y1, y2)

At fixed value of ms, integration over y1 and y2 yields:

〈n(n− 1)〉AA = ms〈n(n− 1)〉pp +ms(ms − 1)〈n〉2pp
For large ms, the scaling is dominated by uncorrelted combinatorial pairs from
particles produced in different pp interactions and approximatelly scales by m2

s.
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Cumulants scaling with source multiplicity

Similarly, in the case of triplets, one can show that:

ρAA
3 (1, 2, 3) = CAA

1 (1)CAA
1 (2)CAA

1 (3) + CAA
1 (1)CAA

2 (2, 3)+

+CAA
1 (2)CAA

2 (1, 3) + CAA
1 (3)CAA

2 (1, 2) + CAA
3 (1, 2, 3)

= m3
sC

pp
1 (1)Cpp1 (2)Cpp1 (3) +m2

s

∑
perm

Cpp1 (1)Cpp2 (2, 3) +msC
pp
3 (1, 2, 3)

= (m3
s −m2

s + 2ms)ρ
pp
1 (1)ρpp1 (2)ρpp1 (3)

+(m2
s −ms)

∑
perm

ρpp1 (1)ρpp2 (2, 3) +msρ
pp
3 (1, 2, 3)

At fixed ms, after integration over coordinates y1, y2 and y3 one gets:

〈n(n− 1)(n− 2)〉AA = (m3
s −m2

s + 2ms)〈n〉3pp
+ 3(m2

s −ms)〈n(n− 1)〉pp〈n〉pp +ms〈n(n− 1)(n− 2)〉pp
The average number of triplets in A+A collisions is dominated by combinatorics
and essentially scales as m3

s〈n〉3pp.

By extension, we conclude that the average number of n-ntuplets in A+A
collisions scales as mn

s 〈n〉npp.
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Normalized cumulants and normalized factorial moments

Normalized inclusive densities and normalized cumulants are defined as:

rn(y1, ..., yn) =
ρn(y1, ..., yn)

ρ1(y1)...ρ1(yn)
Rn(y1, ..., yn) =

Cn(y1, ..., yn)

ρ1(y1)...ρ1(yn)

It is also common to use reduced (normalized) factorial moments:

fn =
〈N(N − 1)...(N − n+ 1)〉

〈N〉n
For systems consisting of m identical subprocesses the normalized n-cumulant

scales inversely as mn−1 times the n-cumulant of the subsystem (R
(m)
n are

diluted by power mn−1 relative to the subsystems’ R
(1)
n ):

R(m)
n (y1, ..., yn) =

C
(m)
n (y1, ..., yn)

ρ
(m)
1 (y1)...ρ

(m)
1 (yn)

=
1

mn−1
R(1)
n (y1, ..., yn)

A simple relationship exists between the normalized desities and cumulants:

r2(1, 2) = 1 +R2(1, 2)

r3(1, 2, 3) = 1 +
∑
(3)

R2(1, 2) +R3(1, 2, 3)

r4(1, 2, 3, 4) = 1 +
∑
(6)

R2(1, 2) +
∑
(3)

R2(1, 2)R2(3, 4) +
∑
(3)

R3(1, 2, 3) +R4(1, 2, 3, 4)
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Particle probability densities

Particle probability densities have been defined as (slide 3):

Pn(y1, ..., yn) ≡ ρn(y1, ..., yn)

〈N(N − 1)...(N − n+ 1)〉
If the production of particles 1 to n is statistically independent, then the ratio:

qn(y1, ..., yn) ≡ Pn(y1, ..., yn)

P1(y1)...P1(yn)
= 1

From the above one can see that:

rn(y1, ..., yn) =
〈N(N − 1)...(N − n+ 1)〉

〈N〉n︸ ︷︷ ︸
multiplicity fluctuations if 6=1

qn(y1, ..., yn)︸ ︷︷ ︸
genuine correlations if 6=1

qn 6= 1 is required to yield nonvanishig normalized cumulants, e.g.:

R2(y1, y2) =
〈N(N − 1)〉
〈N〉2

q2(y1, y2)− 1

The strength of two-particle correlations is thus determined both by the function
q2(y1, y2) and the amplitude of multiplicity fluctuations, 〈N(N − 1)〉/〈N〉2 6= 1.
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Factorial and cumulant moment-generating functions

It is known, that for the moment generating function we have:

MX(t) = E
[
etX
]

=

∫ ∞
−∞

etxf(x)dx ⇒ mk =
dk

dtk
E
[
etX
]∣∣∣∣
t=0

=
dk

dtk
MX(t)

∣∣∣∣
t=0

Inclusive densities of order n may be written as:

ρn(y1, ..., yn) =
∑
m

Pmρ
(m)
n (y1, ..., yn) ⇐ Pm ≡

σm∑
m σm

=
σm
σinel

where σm is the cross section for a the process yielding m particles, and ρ
(m)
n (...)

are n-particle densities for processes that produce exactly m particles (m ≥ n).

Integration of inclusive n-particle density yields:

F̃n ≡
∫

Ω

ρn(y1, ..., yn)dy1...dyn =
∑
m

Pm

∫
Ω

ρ(m)
n (y1, ..., yn)dy1...dyn

=
∑
m

Pmm(m− 1)...(m− n+ 1) = 〈m(m− 1)...(m− n+ 1)〉 ≡ 〈m[n]〉

Assuming there is a value n = N beyond which all probabilities vanish and since
terms in Pn<N cannot contribute to F̃N one can write: PN = F̃N/N !

Proceeding recusively, one finds: Pn =
1

n!

N−n∑
k=0

(−1)k
F̃k+n

k!
, for n = 0, 1, ..., N
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Factorial cumulants

The factorial moment generating function should have the form:

G(z) = 1+

∞∑
n=1

zn

n!
F̃n = 1+

∞∑
n=1

zn

n!

∫
Ω

ρn(y1, ..., yn)dy1...dyn, F̃n =
dnG(z)

dzn

∣∣∣∣
z=0

Factorial cumulants are defined as: fn =

∫
Ω

dy1...

∫
Ω

dyn Cn(y1, ..., yn)

Factorial moments may be expressed in terms of factorial cumulants:

F̃1 = f1

F̃2 = f2 + f2
1

F̃3 = f3 + 3f2f1 + f3
1

F̃4 = f4 + 4f3f1 + 3f2
2 + 6f2f

2
1 + f4

1

F̃5 = f5 + 5f4f1 + 10f3f2 + 10f3f
2
1 + 15f2

2 f1 + 10f2f
3
1 + f5

1

...

F̃n = n!
∑
{li}n

n∏
j=1

(
fj
j!

)lj 1

lj !

where summation is done over permutations satisfying
∑n
i=1 ili = n.
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Factorial cumulants

Factorial cumulant generating functions are defined as:

lnG(z) = 〈n〉z +

∞∑
k=2

zk

k!
fk ⇒ fn =

dn lnG(z)

dzn

∣∣∣∣
z=0

Example: Generating function for a Poisson distribution Pn =
〈n〉n

n!
e−〈n〉:

⇒ G(z) =

∞∑
n=0

Pn(1 + z)n = e−〈n〉
∞∑
n=0

〈n〉n

n!
(1 + z)n = exp (〈n〉z)

⇒ F̃m =
dnG(z)

dzn

∣∣∣∣
z=0

= 〈n〉m

⇒ f1 = 〈n〉 and fm ≡ 0, for m > 1 - expected, since Poisson statistics

implies production of uncorrelated particles

and cumulants of order m ≥ 2 must vanish.
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Two-particle azimuthal correlations

Energy-momentum conservation
(e.g. resonances’ decays,jets).

Restricting the variables y1 and y2 to
represent the azimuthal production
angles φ1 and φ2, we have:

C2(φ1, φ2) = ρ2(φ1, φ2)− ρ1(φ1)ρ1(φ2)

R2(φ1, φ2) =
ρ2(φ1, φ2)

ρ1(φ1)ρ1(φ2)
− 1

where the densities ρ1(φi) and ρ2(φ1, φ2)
are measured for specific ranges of
pmin

T ≤ pT ≤ pmax
T and ηmin ≤ η ≤ ηmax.

In the absence of polarization or other
discriminating direction, one expects
that ρ1(φ1) = ρ1(φ2) ≡ ρ̄1, and C2

should depend on ∆φ = φ1 − φ2:

φ1, φ2 → ∆φ, φ̄ = (φ1 + φ2)/2

527 11.1 Two-Particle Correlation Functions

Fig. 11.1 The multiple facets of correlation functions. Differential and integral correlations have a common basis in terms of
cumulants, and enable the definition of several types of correlation observables, many of which are shown in this
figure and discussed in this chapter.

direction and will thus be observed with a very small relative angle. Two-particle decays of
other resonances produce qualitatively similar results. Three-particle decays at rest might
produce Mercedes topologies, termed this because of their similarity to the Mercedes-Benz
logo, as shown in Figure 11.2d, while parton fragmentation yields collimated particle pro-
duction in the forms of jets consisting of several particles emitted in relatively narrow cone,

Fig. 11.2 Momentum vectors ofπ -mesons produced byρ-meson decays (a) at rest, (b) at small velocity, and (c) at very large
velocity (near speed of light). (d) 3-prong resonance decay at rest. (e) Jet: emission of several hadrons in a narrow cone
surrounding the direction of a fragmenting parton.
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Example of C2(∆φ) in ρ0 → π+π−

with broad spectrum of ρ0 energies.
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Fig. 11.3 Correlation function C2 ofρ0-meson decaying (a, b) near rest, (c) at very large velocity in the laboratory reference
frame, and (d) over a “realistic” range of velocities spanning values from zero up to nearly the speed of light. In (a), the
number ofρ0 was fixed to one per event, while in (b–d), it is set to fluctuate randomly from five to tenρ0 per event.
Distributions have been “shifted” in�φ for purely esthetic reasons. Dashed lines are drawn at�φ = 0 and
�φ = 0 to guide the eye.

For angles φ1 and φ2 in the range [0, 2π ], one obtains a difference �φ = φ1 − φ2 in the
range [−2π, 2π ]. However, by virtue of the system’s symmetry, this range may be re-
duced to [0, π ] and other components of the [−2π, 2π ] range are redundant and usually
shifted onto [0, π ]. It should thus be understood that the preceding integrals over φ1 and
φ2 are evaluated onto 0 ≤ �φ ≤ π , and often symmetrized about π and plotted in the
range [0, 2π ], or shifted and plotted in [−π, 3π/2] for ease of visualization. From a the-
oretical standpoint, it is easy to show that the two methods yield identical results for �φ
correlations, since the single particle yield is invariant under azimuthal rotation, that is,
ρ1(φ1) = ρ1(φ2) ≡ ρ̄1. We will see in §12.4, where we discuss methods to account for
instrumental effects, that both M1 and M2 yield robust1 measurements of R2(�φ). Mea-
surements of C2, however, require efficiency corrections in either method. Additionally,
while M2 may be subject to aliasing because of the finite size of the bins used to obtain
estimates of the densities ρ1 and ρ2, we will also show in §12.4 that M1 is not strictly ro-
bust when measurements are extended to involve dependencies on other coordinates such
as the rapidity of the particles, or their differences.

Example 1: Resonance Decays

A great variety of dynamical processes such as jet production, resonance decays, and col-
lective flow can shape azimuthal correlation functions. Figure 11.3 presents examples
of correlation functions, C2(�φ), obtained with Monte Carlo simulations of collisions

1 Unaffected by instrumental effects, most particularly detection efficiencies.
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C2(∆φ) = ρ2(∆φ)− 1
2π

2π∫
0

ρ̄2
1dφ̄ = ρ2(∆φ)− ρ̄2

1
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Correlations from anisotropic flow

Two-particle correlations may be very much influenced by collective effects as in
collisions of heavy nuclei.

ρ1(φi|ψ) = ρ̄

{
1 + 2

∞∑
n=1

vn cos (n(φi − ψ))

}
⇒ ρ1(φi) =

2π∫
0

dψ ρ1(φi|ψ)P (ψ) = ρ̄

ρ2(φ1, φ2) =
1

2π

2π∫
0

dψ ρ2(φ1, ψ2|ψ)P (ψ) = ρ̄2
{

1 + 2

∞∑
n=1

v2n cos (n(φ1 − φ2))

}
Flow
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Correlation Functions

406 Basic Measurements

tFig. 8.9 Longitudinal (left) and transverse (right) profiles of two heavy-ion nuclei shortly before
a collision at relativistic (� ⇠ c) energy. The diameter d of the nuclei is Lorentz
contracted by a factor � in the beam direction. The light gray area between the nuclei
(longitudinal profile) is where most of the particle production takes place after the
nuclei have passed through each other.

tFig. 8.10 Exclusive measurements involve all particles produced whereas semi-exclusive and
inclusive measurements specify only a small fraction of the final state of collisions (or
decays).

8.2 Particle Decays and Cross-Sections

8.2.1 Particle Decays

The decay of an elementary particle of mass M and four-momentum p = (E, ~p) is a stochas-
tic phenomena determined by an exponential distribution (§ 3.5)

P(t) =
1
�⌧

exp
 
� t
�⌧

!
, (8.54)
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tFig. 11.4 Schematic illustration of the transverse profile of the participant matter produced in
high-energy heavy-ion collisions. The participant region features pressure gradients
which propel particle outward anisotropically in the transverse plane.

patterns. Both e↵ects are commonly known as anisotropic flow. While general techniques
to measure flow are discussed in § 11.4, we demonstrate, in the remainder of this section,
that collective particle motion may readily be identified with simple two-particle cumulants
C2(��) and/or normalized cumulants R2(��).

On general grounds, let us assume that nucleus-nucleus collisions produce, on an event-
by-event basis, systems that are inhomogeneous and anisotropic, as illustrated in Figure
11.4 (a). One can model the system (energy density) spatial anisotropy in terms of a simple
Fourier decomposition relative to the origin O:

⇢(�, r) = f (r)
0
BBBBB@1 +

1X

n=1

✏n cos(n�)
1
CCCCCA . (11.13)

The dynamics of the collisions leads to system expansion and particle emission that reflect
the magnitude of the spatial anisotropy coe�cients ✏n. One can then model the collective
motion of particles produced by the system as a Fourier expansion in momentum space,
relative to the collision impact parameter vector, ~b:

⇢(�i| ) = ⇢̄

8>><
>>:1 + 2

1X

n=1

vn cos(n(�i �  ))

9>>=
>>; , (11.14)

where ⇢̄ is the average particle density, � is the angle of emission of the particles, and  is
the orientation angle of the reaction plane in the laboratory frame of reference. Since the
impact parameter is not readily observed, one must average over all possible orientations
of the reaction plane to get the observed single particle density:

⇢1(�i) =
Z 2⇡

0
d ⇢1(�i| )P( ) = ⇢̄ (11.15)

The orientation of the reaction plane,  , is assumed to vary collision by collision uniformly

Flow
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a collision at relativistic (� ⇠ c) energy. The diameter d of the nuclei is Lorentz
contracted by a factor � in the beam direction. The light gray area between the nuclei
(longitudinal profile) is where most of the particle production takes place after the
nuclei have passed through each other.

tFig. 8.10 Exclusive measurements involve all particles produced whereas semi-exclusive and
inclusive measurements specify only a small fraction of the final state of collisions (or
decays).

8.2 Particle Decays and Cross-Sections

8.2.1 Particle Decays

The decay of an elementary particle of mass M and four-momentum p = (E, ~p) is a stochas-
tic phenomena determined by an exponential distribution (§ 3.5)

P(t) =
1
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exp
 
� t
�⌧

!
, (8.54)
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tFig. 11.4 Schematic illustration of the transverse profile of the participant matter produced in
high-energy heavy-ion collisions. The participant region features pressure gradients
which propel particle outward anisotropically in the transverse plane.

patterns. Both e↵ects are commonly known as anisotropic flow. While general techniques
to measure flow are discussed in § 11.4, we demonstrate, in the remainder of this section,
that collective particle motion may readily be identified with simple two-particle cumulants
C2(��) and/or normalized cumulants R2(��).

On general grounds, let us assume that nucleus-nucleus collisions produce, on an event-
by-event basis, systems that are inhomogeneous and anisotropic, as illustrated in Figure
11.4 (a). One can model the system (energy density) spatial anisotropy in terms of a simple
Fourier decomposition relative to the origin O:

⇢(�, r) = f (r)
0
BBBBB@1 +
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✏n cos(n�)
1
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The dynamics of the collisions leads to system expansion and particle emission that reflect
the magnitude of the spatial anisotropy coe�cients ✏n. One can then model the collective
motion of particles produced by the system as a Fourier expansion in momentum space,
relative to the collision impact parameter vector, ~b:

⇢(�i| ) = ⇢̄

8>><
>>:1 + 2

1X

n=1

vn cos(n(�i �  ))

9>>=
>>; , (11.14)

where ⇢̄ is the average particle density, � is the angle of emission of the particles, and  is
the orientation angle of the reaction plane in the laboratory frame of reference. Since the
impact parameter is not readily observed, one must average over all possible orientations
of the reaction plane to get the observed single particle density:

⇢1(�i) =
Z 2⇡

0
d ⇢1(�i| )P( ) = ⇢̄ (11.15)

The orientation of the reaction plane,  , is assumed to vary collision by collision uniformly

M. Przybycień (WFiIS AGH) Analiza danych Wyk lad 13 17 / 17


