Wstęp do oddziaływań hadronów

Mariusz Przybycień

Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza

Wykład 12

Parity operator

- The parity operator performs spatial inversion through the origin:

$$
\psi^{\prime}(\vec{x}, t)=\hat{P} \psi(\vec{x}, t)=\psi(-\vec{x}, t)
$$

- To preserve the normalisation of the wave-function \hat{P} must be unitary:

$$
\langle\psi \mid \psi\rangle=\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \hat{P}^{\dagger} \hat{P}|\psi\rangle
$$

- Since in addition $\hat{P} \hat{P}=I$ this implies that \hat{P} is hermitian (what means it corresponds to an observable quantity) with eigenvalues $P= \pm 1$:

$$
\hat{P} \hat{P} \psi(\vec{x}, t)=\hat{P} \psi(-\vec{x}, t)=\psi(\vec{x}, t)
$$

- It was shown previously that the parity operator for Dirac particles is $\hat{P}=\gamma^{0}$, and spin-half particles have opposite parity to the corresponding anti-particles (convention: particles +1 , anti-particles -1):

$$
\begin{aligned}
& P\left(e^{-}\right)=P\left(\mu^{-}\right)=P\left(\tau^{-}\right)=P(\nu)=P(q)=+1 \\
& P\left(e^{+}\right)=P\left(\mu^{+}\right)=P\left(\tau^{+}\right)=P(\bar{\nu})=P(\bar{q})=-1
\end{aligned}
$$

- From QFT it can be shown that vector bosons responsible for electromagnetic, strong and weak forces all have negative intrinsic parity:

$$
P(\gamma)=p(g)=P\left(W^{ \pm}\right)=P(Z)=-1
$$

Parity conservation in QED

- The matrix element for the process $e^{-} q \rightarrow e^{-} q$ is:

$$
M=\frac{Q_{q} e^{2}}{q^{2}} j_{e} \cdot j_{q}
$$

with $j_{e}^{\mu}=\bar{u}\left(p_{3}\right) \gamma^{\mu} u\left(p_{1}\right) \quad$ and $j_{e}^{\nu}=\bar{u}\left(p_{4}\right) \gamma^{\nu} u\left(p_{2}\right)$

- Transformation of Dirac spinors and adjoint spinors under parity operator:

$$
u \xrightarrow{\hat{P}} \hat{P} u=\gamma^{0} u \quad \Rightarrow \quad \bar{u}=u^{\dagger} \gamma^{0} \xrightarrow{\hat{P}}(\hat{P} u)^{\dagger} \gamma^{0}=u^{\dagger} \gamma^{0 \dagger} \gamma^{0}=u^{\dagger} \gamma^{0} \gamma^{0}=\bar{u} \gamma^{0}
$$

- Transformation of the four-vector current under parity operator:

$$
\begin{aligned}
0: & j^{0} \xrightarrow{\hat{P}} \bar{u} \gamma^{0} \gamma^{0} \gamma^{0} u=\bar{u} \gamma^{0} u=j^{0} \\
k=1,2,3: & j^{k} \xrightarrow{\stackrel{P}{\longrightarrow}} \bar{u} \gamma^{0} \gamma^{k} \gamma^{0} u=-\bar{u} \gamma^{k} \gamma^{0} \gamma^{0} u=-\bar{u} \gamma^{k} u=-j^{k}
\end{aligned}
$$

- Consequently the four-vector current scalar product remains unchainged under parity transformation, i.e. the QED matrix elements are parity invariant, what means that parity is conserved in QED.
- The QCD vertex is similar, what means that parity is conserved in QCD.

Parity violation in β-decay

Example: Let us consider two decays (J^{P} values are shown in brackets):

$$
\rho^{0}\left(1^{-}\right) \rightarrow \pi^{+}\left(0^{-}\right)+\pi^{-}\left(0^{-}\right) \quad \text { and } \quad \eta\left(0^{-}\right) \rightarrow \pi^{+}(06-)+\pi^{-}\left(0^{-}\right)
$$

Conservation of parity in the two strong decays can be expressed as:

$$
\begin{array}{lll}
P\left(\rho^{0}\right)=P\left(\pi^{+}\right) \cdot P\left(\pi^{-}\right) \cdot(-1)^{\ell=1} & \Rightarrow & -1=(-1)(-1)(-1) \\
P(\eta)=P\left(\pi^{+}\right) \cdot P\left(\pi^{-}\right) \cdot(-1)^{\ell=0} & \Rightarrow & -1 \neq(-1)(-1)(+1)
\end{array} \quad \text { allowed } 1 \text { not allowed }
$$

- Parity violation in a weak β-decay of polarized cobalt-60 nuclei (Wu, 1957):

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}^{\star}+e^{-}+\bar{\nu}_{e}
$$

- The ${ }^{60}$ Co nuclei, which posses permanent magnetic moment $\vec{\mu}$ were aligned in strong magnetic field \vec{B} and a β-decay electrons were detected at different polar angles with respect to this axis.
- Both, $\vec{\mu}$ and \vec{B}, are axial vectors.
- If parity were conserved we expect equal rates for electrons in directions along and opposite to the nuclear spin.
- Observe more e^{-}emitted in the hemisphere opposite to direction of \vec{B}.

- Conclusion: parity is violated in weak interactions (different form of vertex).

Scalars, pseudoscalars, vectors and axial vectors

- The parity properties of different rank quantities:

	Rank		Parity	Example	Bilinear form Boson spin	
Scalar	0	+	temperature, mass	$\bar{\psi} \phi$	0	
Pseudoscalar	0	-	helicity, $h \propto \vec{S} \cdot \vec{p}$	$\bar{\psi} \gamma^{5} \phi$	0	
Vector	1	-	momentum	$\bar{\psi} \gamma^{\mu} \phi$	1	
Axial vector	1	+	angular momentum	$\bar{\psi} \gamma^{\mu} \gamma^{5} \phi$	1	

- The requirement of the Lorentz invariance of the interaction matrix element severely restricts the possible form of bilinear combinations of two spinors $\bar{u}\left(p^{\prime}\right) \Gamma u(p)$, where Γ is a 4×4 matrix formed from products of Dirac γ-matrices.
- Apart of the four listed above bilinear covariants, one more (tensor which corresponds to spin-2 boson) is possible.
- The most general Lorentz invariant form for the interaction between a fermion and a boson is a linear combination of the bilinear covariants.

$V-A$ structure of the weak interaction

- The most general Lorentz invariant form for the interaction between a fermion and a spin- 1 (vector) boson is a linear combination of the vector and axial vector currents (g_{V} and g_{A} are vector and axial vector coupling constants):

$$
j^{\mu} \propto \bar{u}\left(p^{\prime}\right)\left(g_{V} \gamma^{\mu}+g_{A} \gamma^{\mu} \gamma^{5}\right) u(p)=g_{V} j_{V}^{\mu}+g_{A} j_{A}^{\mu}
$$

- Transformation of the four-vector current under parity operator:

$$
\begin{aligned}
0: & j_{A}^{0} \xrightarrow{\hat{P}} \bar{u} \gamma^{0} \gamma^{0} \gamma^{5} \gamma^{0} u=-\bar{u} \gamma^{0} \gamma^{5} u=-j_{A}^{0} \\
k=1,2,3: & j_{A}^{k} \xrightarrow{\xrightarrow{P}} \bar{u} \gamma^{0} \gamma^{k} \gamma^{5} \gamma^{0} u=(-)(-) \bar{u} \gamma^{k} \gamma^{0} \gamma^{0} \gamma^{5} u=\bar{u} \gamma^{k} \gamma^{5} u=j_{A}^{k}
\end{aligned}
$$

- Consequently the scalar product of axial vector four-vector currents remains unchanged under parity transformation.
- However, the scalar product of a vector and axial vector currents changes sign under parity transformation:

$$
j_{V 1} \cdot j_{A 2} \xrightarrow{\hat{P}} j_{1}^{0}\left(-j_{2}^{0}\right)-\left(-j_{1}^{k}\right) j_{2}^{k}=-j_{V 1} \cdot j_{A 2}
$$

- Hence the combination of vector and axial vector currents provides a mechanism to explain the observed parity violation in the weak interaction.

$V-A$ structure of the weak interaction

- Consider general charged-current weak interaction process $\psi_{1} \psi_{2} \rightarrow \phi_{1} \phi_{2}$:

$$
\begin{gathered}
j_{1}=\overline{\phi_{1}}\left(g_{V} \gamma^{\mu}+g_{A} \gamma^{\mu} \gamma^{5}\right) \psi_{1}=g_{V} j_{1}^{V}+g_{A} j_{1}^{A} \\
j_{2}=\overline{\phi_{2}}\left(g_{V} \gamma^{\mu}+g_{A} \gamma^{\mu} \gamma^{5}\right) \psi_{2}=g_{V} j_{2}^{V}+g_{A} j_{2}^{A} \\
M_{f i} \propto j_{1} \cdot j_{2}=g_{V}^{2} j_{1}^{V} \cdot j_{2}^{V}+g_{A}^{2} j_{1}^{A} \cdot j_{2}^{A}+ \\
\quad+g_{V} g_{A}\left(j_{1}^{V} \cdot j_{2}^{A}+j_{1}^{A} \cdot j_{2}^{V}\right)
\end{gathered}
$$

- Consider now the parity transformation of the scalar product of the currents:

$$
j_{1} \cdot j_{2} \xrightarrow{\hat{P}} g_{V}^{2} j_{1}^{V} \cdot j_{2}^{V}+g_{A}^{2} j_{1}^{A} \cdot j_{2}^{A}-g_{V} g_{A}\left(j_{1}^{V} \cdot j_{2}^{A}+j_{1}^{A} \cdot j_{2}^{V}\right)
$$

- Relative strength of the parity violating part is given by $\frac{g_{V} g_{A}}{g_{V}^{2}+g_{A}^{2}}$
- If either g_{V} or g_{A} is zero then parity is conserved.
- Maximum violation occurs when $\left|g_{A}\right|=\left|g_{V}\right|$ and corresponds to pure $V-A$ or $V+A$ interaction.
- From experiment it is known that the weak interactions due to $W^{ \pm}$bosons exchange, are of the $V-A$ type with vertex factor: $\frac{-i g_{W}}{\sqrt{2}} \frac{1}{2} \gamma^{\mu}\left(1-\gamma^{5}\right)$
- The four-vector current is given by: $j^{\mu}=\frac{g_{W}}{\sqrt{2}} \bar{u}\left(p^{\prime}\right) \frac{1}{2} \gamma^{\mu}\left(1-\gamma^{5}\right) u(p)$

Chiral structure of the weak interaction

- Any spinor can be decomposed into left- and right-handed chiral states:

$$
u=P_{R} u+P_{L} u=\frac{1}{2}\left(1+\gamma^{5}\right) u+\frac{1}{2}\left(1-\gamma^{5}\right) u=a_{R} u_{R}+a_{L} u_{L}
$$

- In QED only chiral spinors $R R$ and $L L$ give non-zero valus in vector current:

$$
\begin{gathered}
\bar{\psi} \gamma^{\mu} \phi=\bar{\psi}_{R} \gamma^{\mu} \phi_{R}+\bar{\psi}_{R} \gamma^{\mu} \phi_{L}+\bar{\psi}_{L} \gamma^{\mu} \phi_{R}+\bar{\psi}_{L} \gamma^{\mu} \phi_{L} \\
\text { e.g. } \quad \bar{\psi}_{R} \gamma^{\mu} \phi_{L}=\frac{1}{2} \psi^{\dagger}\left(1+\gamma^{5}\right) \gamma^{0} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \phi=\frac{1}{4} \bar{\psi} \gamma^{\mu}\left(1+\gamma^{5}\right)\left(1-\gamma^{5}\right) \phi=0
\end{gathered}
$$

- For the weak interaction, the $V-A$ vertex factor includes the lef-handed chiral projection operator, therefore:

$$
j_{R R}^{\mu}=\frac{g_{W}}{\sqrt{2}} \bar{u}_{R}\left(p^{\prime}\right) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u_{R}(p)=\frac{g_{W}}{\sqrt{2}} \bar{u}_{R}\left(p^{\prime}\right) \gamma^{\mu} P_{L} u_{R}(p)=0
$$

- For antiparticle spinors P_{L} projects out RH chiral states: $\frac{1}{2}\left(1-\gamma^{5}\right) v=v_{R}$
- Only the left-handed chiral components of particle spinors and right-handed chiral components of antiparticle spinors participate in charged current weak interactions.

Helicity structure of the weak interaction

- In the ultra-relativistic limit $(E \gg m)$ chiral and helicity states are the same.
- The $V-A$ term in the weak interaction vertex projects out

LH helicity particle states and RH helicity antiparticle states, e.g. the only possible electron-neutrino interactions are:

- The helicity structure of the weak interactions is the origin of parity violation.
- e.g. weak interaction of a high energy LH e^{-}and RH $\bar{\nu}_{e}$ is allowed. However in parity mirror, the vector quantities are reversed, $\vec{p} \rightarrow-\vec{p}$, but the axial vector spins of the particles remain unchanged, giving a RH particle and LH antiparticle. Hence the parity operation transforms an allowed weak process into one that is not alolowed.

Helicity in pion decay

