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Isogeometric L2 projections

Proposed by prof. Victor Manuel Calo
L. Gao, V.M. Calo, Fast Isogeometric Solvers for Explicit Dynamics,
Computer Methods in Applied Mechanics and Engineering,
(2014).

Parallel version for distributed memory machines (MPI)
(collaboration with prof. Calo at KAUST)
M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, V. M. Calo, Parallel
fast isogeometric solvers for explicit dynamcs, Computing and
Informatics (2016)

Parallel version for shared memory parallel machines (GALOIS)
(collaboration with prof. Pingali from ICES)
Paper under construction
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Isogeometric L2 projections

In general: non-stationary problem of the form

∂tu − L(u) = f (x , t)

with some initial state u0 and boundary conditions

L – well-posed linear spatial partial differential operator

Discretization:
spatial discretization: isogeometric FEM

Basis functions: φ1, . . . , φn (tensor product B-splines)

time discretization with explicit method

implies isogeometric L2 projections in every time step
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Isogeometric L2 projections

Linear computational cost for 3D problems

Perfect scalability on distributed memory parallel machines

Execution time for
N = 5123 = 134, 217, 728
cubic B-splines
up to 1024 processors

Execution time for
N = 10243 = 1, 073, 741, 824
cubic B-splines
up to 1024 processors
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Isogeometric L2 projections

Expensive isogeometric integration that can be speeded-up
on GPGPU or multi-core machines

GPGPU integration
cubics, 2D problem
different mesh sizes

GALOIS multi-thread integration
cubics, 3D problem
different mesh sizes
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Isogeometric L2 projections

Time step size limited by Courrant-Fourrier-Levy (CFL) condition

Lack of convergence for
Dt = 10−4, 10−4

2 ,..., 10−4

5

Convergence for Dt = 10−5 and
smaller time steps
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Oil extraction problem

Fracking (hydraulic fracturing) – oil/gas extraction technique
consisting in high-pressure fluid injection into the deposit

highly efficient
can lead to contamination of ground waters

Two conflicting objectives:
maximize resource extraction
minimize ground water contamination

=⇒ Multiobjective optimization
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Model

Formulation: non-stationary flow in heterogeneous media

Spatial domain – Ω = [0, 1]3
∂u
∂t −∇ · (κ(x, u)∇u) = h(x, t) in Ω× [0,T ]

∇u · n̂ = 0 on ∂ Ω× [0,T ]
u(x , 0) = u0 in Ω

u – pressure
zero Neumann boundary conditions
initial state u0

κ – permeability
h – forcing (induced by extraction method)
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Permeability

κ(x, u) = Kq(x) b(u)
b(u) = eµu

Kq(x) – property of the terrain (example below)

Below the formation we assume the presence of groundwaters
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Pumps and sinks
Extraction process modeled by pumps and sinks

pump/sink has a location x ∈ Ω
pumps locally increase the pressure u
sinks locally decrease u (the higher, the faster)

h(x , t) =
∑
p∈P

φ (‖xp − x‖)−
∑
s∈S

u(x , t)φ (‖xs − x‖)

P, S – sets of pump and sinks
xp, xs – location of pump p/sink s
φ – cut-off function (r = 0.15)

φ(t) =
{( t

r − 1
)2 ( t

r + 1
)2 for t ≤ r

0 for t > r

0 r = 0.15 0.4
0

1
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Quantities of interest

Drained liquid

D =
∑
s∈S

∫ T

0
u(x , t) θ (‖x − xs‖) dt

Groundwater contamination

C =
∫

ΩG
u(x ,T ) dx

ΩG = {x = (x , y , z) : z < 0.2}
(groundwater region, 0.2 – arbitrary constant)
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Optimization problem – definition

Liquid Fossil Fuel Extraction Problem (LFFEP)

NP , NS – fixed number of pumps and sinks

LFFEP =



maxD (extracted fuel)
minC (contamination)
variables : xP1 , xP2 , . . . , xPNP

xS1 , xS2 , . . . , xSNS

(pumps/sinks location)
constraints : xP1 , xP2 , . . . , xPNP

∈ Ω
xS1 , xS2 , . . . , xSNS

∈ Ω
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IGA FEM
Variational formulation:

(∂tu, v)Ω + b(u, v) = (f , v)Ω

where b(u, v) = (Lu, v)Ω

Semidiscretization:

(∂tuh, vh)Ω + b(uh, vh) = (f , vh)Ω
vh ∈ Vh = span {φ1, . . . , φn}

uh(x , t) = u1(t)φ1(x) + . . .+ un(t)φn(x)

⇒ ODE system wrt. time

Mu′
h = B uh + F

Forward Euler method:

Mu(t+1)
h =Mu(t)

h + ∆t
(
Bu(t)

h + F
)
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EMAS

Distributed agent-based platform for optimization
using genetic algorithms
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EMAS – hybrid

Genetic code in agents models location of pumps and sinks
Evaluation returns amount of extracted oil and contamination
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Experiment

Parameters
3 pumps, 1 sink (3× (3 + 1) = 12 variables)
2 objectives – maximize D, minimize C
quality measure – hypervolume (HV)
5 runs for each algorithm
simulation:

32× 32× 32 mesh
timestep ∆t = 10−7 (stability)
10,000 iterations
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Hypervolume metric

HV (hypervolume) – popular solution quality metric

y2

y1

reference point

Pareto front
   (exact)

Dominated
   region

HV = volume of the dominated region
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Simulations

20 EMAS agents in population
25 steps of EMAS
Single evaluation by IGA-FEM includes 10,000 time steps
(around 10 minutes)
Total sequential time 25*20=500 evaluations * 10 minutes =
3,5 days
using 1 sequential IGA solver
(Intel(R) Xeon(R) CPU @ 2.40GHz)
Total parallel time 25*10 minutes = 4 hours
using 20 processors and sequential IGA solvers
Total parallel time 25*40 seconds = 16 minutes
using 20 processors with 16 working cores
(one parallel multi-thread IGA solver per 1 processor 16 cores)
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Results – solution quality

Best final HV Mean HV Std. Dev.
EMAS 0.745 0.664 0.081
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Pareto-optimal pump/sink locations

EMAS

sinks in the center
pumps – uniform distribution of three pumps above the sinks
(sum of different solutions presented in green)
no pumps near the groundwater area
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Exemplary IGA-FEM simulation (1/2)

Locations of 3 pumps and 1
sink

Formation map
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Exemplary IGA-FEM simulation (2/2)

Please click in the middle
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Conclusions and future research

Multiobjective EMAS optimization applied to fracking problem
to find a compromise between profit and damage
Isogeometric L2 projections as efficient primal problem solver
Future research

propose better PDE modeling the problem (better physics)
use more accurate formation map (to see the rocks)
adaptively increase the mesh size when HV is small
(better accuracy and resolution)
massive parallel IGA + EMAS computations
applications for other problems (ongoing project: tumor growth)
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