Parallel isogeometric simulations and inversion of hazardous environmental effects during oil/gas extraction

> Marcin Łoś (AGH) Maciej Woźniak (AGH) Maciej Paszyński (AGH) Leszek Siwik (AGH) Aleksander Byrski (AGH) Marek Kisiel-Dorohinicki (AGH)

M²OP IV, May 26-27, 2016, Bilbao, Spain

Department of Computer Science AGH University, Kraków, Poland

Agenda

• Isogeometric L2 projections algorithm

Proposed by prof. Victor Calo: L. Gao, V.M. Calo, *Fast Isogeometric Solvers for Explicit Dynamics*, Computer Methods in Applied Mechanics and Engineering, (2014).

• Non-linear flow in heterogenous media

Obtained from prof. Victor Calo: M. Alotaibi, V.M. Calo,

Y. Efendiev, J. Galvis, M. Ghommem, *Global-Local Nonlinear Model Reduction for Flows in Heterogeneous Porous Media*, Computer Methods in Applied Mechanics and Engineering, (2015).

- Liquid Fossil Fuel Extraction Problem (LFFEP)
- Evolutionary Multi-Agent Systems (EMAS)
- Numerical results
- Conclusions
- Further research

Proposed by prof. Victor Manuel Calo

L. Gao, V.M. Calo, *Fast Isogeometric Solvers for Explicit Dynamics*, **Computer Methods in Applied Mechanics and Engineering**, (2014).

Parallel version for distributed memory machines (MPI) (collaboration with prof. Calo at KAUST) M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, V. M. Calo, *Parallel fast isogeometric solvers for explicit dynamcs*, **Computing and Informatics** (2016)

Parallel version for shared memory parallel machines (GALOIS) (collaboration with prof. Pingali from ICES) Paper under construction In general: non-stationary problem of the form

$$\partial_t u - \mathcal{L}(u) = f(x, t)$$

with some initial state u_0 and boundary conditions

$$\mathcal{L}$$
 – well-posed linear spatial partial differential operator

Discretization:

• spatial discretization: isogeometric FEM

Basis functions: ϕ_1, \ldots, ϕ_n (tensor product B-splines)

- time discretization with explicit method
- implies isogeometric L2 projections in every time step

Linear computational cost for 3D problems

Perfect scalability on distributed memory parallel machines

Execution time for $N = 512^3 = 134,217,728$ cubic B-splines up to 1024 processors

Execution time for $N = 1024^3 = 1,073,741,824$ cubic B-splines up to 1024 processors

Isogeometric L2 projections

Expensive isogeometric integration that can be speeded-up on GPGPU or multi-core machines

GPGPU integration cubics, 2D problem different mesh sizes

GALOIS multi-thread integration cubics, 3D problem different mesh sizes

Time step size limited by Courrant-Fourrier-Levy (CFL) condition

Relative errors for the time step $Dt = 10^{-5}$

Lack of convergence for $Dt = 10^{-4}, \frac{10^{-4}}{2}, ..., \frac{10^{-4}}{5}$

Convergence for $Dt = 10^{-5}$ and smaller time steps

Fracking (hydraulic fracturing) – oil/gas extraction technique consisting in high-pressure fluid injection into the deposit

- highly efficient
- can lead to contamination of ground waters

Two conflicting objectives:

- maximize resource extraction
- minimize ground water contamination

\implies Multiobjective optimization

Model

Formulation: non-stationary flow in heterogeneous media

Spatial domain – $\Omega = [0, 1]^3$

$$\begin{cases} \frac{\partial u}{\partial t} - \nabla \cdot (\kappa(\mathbf{x}, u) \nabla u) = h(\mathbf{x}, t) & \text{in } \Omega \times [0, T] \\ \nabla u \cdot \hat{n} = 0 & \text{on } \partial \Omega \times [0, T] \\ u(x, 0) = u_0 & \text{in } \Omega \end{cases}$$

- u pressure
- zero Neumann boundary conditions
- initial state u₀
- κ permeability
- *h* **forcing** (induced by extraction method)

Permeability

$$\kappa(\mathbf{x}, u) = K_q(x) b(u)$$

 $b(u) = e^{\mu u}$

 $K_q(\mathbf{x})$ – property of the terrain (example below)

Below the formation we assume the presence of groundwaters

Pumps and sinks

Extraction process modeled by pumps and sinks

- pump/sink has a location $\textbf{x} \in \Omega$
- pumps locally increase the pressure u
- sinks locally decrease *u* (the higher, the faster)

$$h(x,t) = \sum_{p \in P} \phi(\|x_p - x\|) - \sum_{s \in S} u(x,t)\phi(\|x_s - x\|)$$

•
$$P, S$$
 – sets of pump and sinks

•
$$x_p$$
, x_s – location of pump $p/sink s$

• ϕ – cut-off function (r = 0.15)

$$\phi(t) = egin{cases} \left(rac{t}{r}-1
ight)^2 \left(rac{t}{r}+1
ight)^2 & ext{for } t \leq r \ 0 & ext{for } t > r \end{cases}$$

Drained liquid

$$D = \sum_{s \in S} \int_0^T u(x, t) \theta \left(\|x - x_s\| \right) \, \mathrm{d}t$$

Groundwater contamination

$$C = \int_{\Omega_G} u(x, T) \, dx$$
$$\Omega_G = \{ \mathbf{x} = (x, y, z) \colon z < 0.2 \}$$
(groundwater region, 0.2 – arbitrary constant)

Liquid Fossil Fuel Extraction Problem (LFFEP)

 N_P , N_S – fixed number of pumps and sinks

 $\textbf{LFFEP} = \begin{cases} \max D & (extracted fuel) \\ \min C & (contamination) \\ variables : & x_{P_1}, x_{P_2}, \dots, x_{P_{N_P}} \\ & x_{S_1}, x_{S_2}, \dots, x_{S_{N_S}} \\ & (pumps/sinks \ location) \\ constraints : & x_{P_1}, x_{P_2}, \dots, x_{P_{N_P}} \in \Omega \\ & x_{S_1}, x_{S_2}, \dots, x_{S_{N_S}} \in \Omega \end{cases}$

IGA FEM

Variational formulation:

$$(\partial_t u, v)_{\Omega} + b(u, v) = (f, v)_{\Omega}$$

where $b(u, v) = (\mathcal{L}u, v)_{\Omega}$

Semidiscretization:

$$(\partial_t u_h, v_h)_{\Omega} + b(u_h, v_h) = (f, v_h)_{\Omega}$$
$$v_h \in \mathcal{V}_h = \operatorname{span} \{\phi_1, \dots, \phi_n\}$$
$$u_h(x, t) = u_1(t)\phi_1(x) + \dots + u_n(t)\phi_n(x)$$

 \Rightarrow ODE system wrt. time

$$\mathcal{M}u_h'=\mathcal{B}\,u_h+\mathcal{F}$$

Forward Euler method:

$$\mathcal{M}u_{h}^{(t+1)} = \mathcal{M}u_{h}^{(t)} + \Delta t \left(\mathcal{B}u_{h}^{(t)} + \mathcal{F} \right)$$

Distributed agent-based platform for optimization using genetic algorithms

Genetic code in agents models location of pumps and sinks Evaluation returns amount of extracted oil and contamination

Parameters

- 3 pumps, 1 sink $(3 \times (3+1) = 12 \text{ variables})$
- 2 objectives maximize D, minimize C
- quality measure hypervolume (HV)
- 5 runs for each algorithm
- simulation:
 - $32 \times 32 \times 32$ mesh
 - timestep $\Delta t = 10^{-7}$ (stability)
 - 10,000 iterations

HV (hypervolume) – popular solution quality metric

 $\mathsf{HV}=\mathsf{volume}$ of the dominated region

Simulations

- 20 EMAS agents in population
- 25 steps of EMAS
- Single evaluation by IGA-FEM includes 10,000 time steps (around 10 minutes)
- Total sequential time 25*20=500 evaluations * 10 minutes =
 3,5 days
 using 1 sequential IGA solver
 (Intel(R) Xeon(R) CPU @ 2.40GHz)
- Total parallel time 25*10 minutes = 4 hours using 20 processors and sequential IGA solvers
- Total parallel time 25*40 seconds = 16 minutes using 20 processors with 16 working cores (one parallel multi-thread IGA solver per 1 processor 16 cores)

Results - solution quality

	Best final HV	Mean HV	Std. Dev.
EMAS	0.745	0.664	0.081

Pareto-optimal pump/sink locations

- sinks in the center
- pumps uniform distribution of three pumps above the sinks (sum of different solutions presented in green)
- no pumps near the groundwater area

Exemplary IGA-FEM simulation (1/2)

Locations of 3 pumps and 1 sink

Formation map

Exemplary IGA-FEM simulation (2/2)

Please click in the middle

Conclusions and future research

- Multiobjective EMAS optimization applied to fracking problem to find a compromise between profit and damage
- Isogeometric L2 projections as efficient primal problem solver
- Future research
 - propose better PDE modeling the problem (better physics)
 - use more accurate formation map (to see the rocks)
 - adaptively increase the mesh size when HV is small (better accuracy and resolution)
 - $\bullet\,$ massive parallel IGA + EMAS computations
 - applications for other problems (ongoing project: tumor growth)

Our research is funded by Polish National Science Centre grant no. DEC-2014/15/N/ST6/04662.

Thank you for attention Questions...?