
 5

Contents

Summary…………………………………………………………………………… 9
Streszczenie……………………………………………………………………….... 11
Index of symbols…………………………………………………………………… 13

1. Preface…………….....…………………………………………………………….. 29

1.1. Main thesis and structure of the book……………………………………........ 29
1.2. Introduction....…………………………........………………………………… 32

1.2.1. Introduction to the Finite Element Method……………………………... 32
1.2.2. Introduction to the mesh adaptation techniques………………………… 34

1.3. State of art of adaptive mesh-based algorithms.. 38
1.3.1. Sequential algorithms for the self-adaptive hp-FEM…………………… 38
1.3.2. Parallel algorithms for non-uniform adaptive FEM…………………….. 39

1.3.2.1. Non-uniform non-automatic h refinements……….…………... 40
1.3.2.1.1. Load balancing and mesh partitioning............................. 40
1.3.2.1.2. Mesh transformation algorithms...................................... 40
1.3.2.1.3. Optimal refinements algorithms....................................... 41
1.3.2.1.4. Communication algorithms.. 41
1.3.2.1.5. Implementation layer... 42

1.3.2.2. Non-uniform non-automatic hp refinements.............................. 42
1.3.2.2.1. Load balancing and mesh partitioning............................. 42
1.3.2.2.2. Mesh transformation algorithms...................................... 45
1.3.2.2.3. Optimal refinements algorithms....................................... 45
1.3.2.2.4. Communication algorithms.. 46

1.3.2.3. Different parallelization methods for adaptive FE algorithms... 46
1.3.3. Parallel solvers for adaptive FE algorithms…………………………….. 47
1.3.4. Graph grammar models………………………………………………… 48
1.3.5. Analysis of computational and communication complexities

of adaptive algorithms... 49
1.4. Summary of open problems….……………………………………………... 49
1.5. Summary of my research... 50

2. Graph grammar-driven PDE solvers…………………………………………….. 51

2.1. Graph grammar model with atomic tasks for the self-adaptive algorithm......... 61
2.1.1. Algorithm of initial mesh generation.................……….......................... 62
2.1.2. Algorithm of solution of coarse mesh problem..........…......................... 68
2.1.3. Algorithm of global hp refinement...…..............................…................. 80

 6

2.1.4. Algorithm of solution of fine mesh problem ..……................................ 92
2.1.5. Algorithm of selection and execution of the optimal mesh refinements. 111
2.1.6. The stopping condition…………………………………………………. 117

2.2. Definition of computational tasks (grains) for parallel processing model of
the self-adaptive algorithm…………………... 117
2.2.1. Generation of the initial mesh………... 121
2.2.2. Solution of coarse mesh problem..........….. 123
2.2.3. h refinement..…..............................… 128
2.2.4. p refinement.. 131
2.2.5. Solution of fine mesh problem ..…….. 132
2.2.6. Selection of the optimal refinements.. 133

2.3. Run-time management algorithms... 135
2.3.1. Load balancing and graph partitioning algorithms................................... 135
2.3.2. Mapping algorithm.. 141

2.4. Parallel processing model with super-tasks for the self-adaptive algorithm...... 143
2.5. Theoretical analysis of the computational and communication complexities.... 150

2.5.1. Mesh partitioning algorithms.. 150
2.5.2. Mesh adaptation algorithms.. 152
2.5.3. Solver algorithms... 153
2.5.4. Reutilization of partial LU factorizations.. 158
2.5.5. Simulational study of scalability... 160
2.5.6. Scalability of the parallel self-adaptive hp-FEM algorithm in two

dimensions, with the grain defined on the level of initial mesh elements
and with multiple front parallel solver... 160

2.5.7. Scalability of the parallel self-adaptive hp-FEM algorithm in three
dimensions, with the grain defined on the level of initial mesh elements
and with multiple front parallel solver... 169

2.5.8. Scalability of the parallel self-adaptive hp-FEM algorithm in three
dimensions, with the grain defined on the level of initial mesh elements
and with multi-level parallel solver.. 177

2.5.9. Scalability of the parallel self-adaptive hp-FEM algorithm in two and half
dimensions, with the grain defined on the level of initial mesh elements
and with multi-level multi-frontal direct substructuring parallel solver.... 183

2.5.10 Comparison of the scalability of the multi-level multi-frontal direct
sub-structuring parallel solve with the MUMPS parallel solver........... 190

3. Applications………………………………………………………………………... 198

3.1. Two-dimensional applications………… ……………………………………... 199
3.1.1. L-shape domain model problem………… …………………………….. 199

3.1.1.1. Strong formulation………….…………………….…………... 200
3.1.1.2. Weak formulation………………………...……….…………... 200
3.1.1.3. Results……………………………………….…….…………... 201

3.1.2. Battery problem……………………………….………………………… 202
3.1.2.1. Strong formulation………….…………………….…………... 203
3.1.2.2. Weak formulation………………………...……….…………... 204
3.1.2.3. Results……………………………………….…….…………... 204

3.2. Three-dimensional applications..……………………………………………… 207

 7

3.2.1. Fichera model problem…………..………….………………………….. 207
3.2.1.1. Strong formulation………….…………………….…………... 207
3.2.1.2. Weak formulation………………………...……….…………... 208
3.2.1.3. Results……………………………………….…….…………... 208

3.2.2. Resistance heating of the Al-Si billet in steel die………………………. 210
3.2.2.1. Strong formulation………….…………………….…………... 211
3.2.2.2. Weak formulation………………………...……….…………... 211
3.2.2.3. Results……………………………………….…….…………... 212

3.2.3. Step-and-Flash-Imprint-Lithography simulation……………………….. 213
3.2.3.1. Strong formulation………….…………………….…………... 216
3.2.3.2. Weak formulation………………………...……….…………... 217
3.2.3.3. Results……………………………………….…….…………... 217

3.2.4. 3D DC/AC borehole resistivity measurement simulations in deviated
wells with non-orthogonal system of coordinates…………………... 219
3.2.4.1. Strong formulation………….…………………….…………... 219
3.2.4.2. Weak formulation………………………...……….…………... 220
3.2.4.3. Results……………………………………….…….…………... 221

3.2.5. 3D DC/AC borehole resistivity measurement simulations with through-
casing instruments in deviated wells ……….…………………………... 223
3.2.5.1. Strong formulation………….…………………….…………... 225
3.2.5.2. Weak formulation………………………...……….…………... 226
3.2.5.3. Results……………………………………….…….…………... 226

4. Conclusions and future work……………………………………………………... 229

4.1. Summary of obtained results……………...…………………………………... 229
4.2. Significance of obtained results……………………………………………….. 231
4.3. Current and future work.……………………………………………………… 233
References……………………………………………………………………….. 237
Appendix A – hp finite element…………………………………………………... 246
Appendix B – Self-adaptive hp-FEM algorithm………………………………… 252

Appendix C – Technical details on implementation.. 260
Appendix D – Direct solvers algorithms.. 273

 8

 9

MACIEJ PASZYŃSKI
Graph grammar-driven parallel adaptive PDE solvers

Summary

The main thesis of the work is to develop a formal description of a wide class of
adaptive mesh-based algorithms, which will allow us to examine their concurrency, as well
as to design and to implement an efficient parallel version of the algorithms.

The way to achieve this goal is to develop a graph grammar-based formal description
of the adaptive mesh-based algorithms. The graph grammar model makes it possible to
examine the concurrency of the algorithms by analysing the interdependence between the
atomic tasks, tasks and super-tasks. The atomic tasks correspond to the graph grammar
productions, representing basic undividable parts of the algorithms. The level of atomic
tasks models the concurrency for the shared memory architectures. On the other hand, the
tasks correspond to the groups of atomic tasks with predefined inter-task communication
channels. They constitute the grain for the decomposition of the parallel algorithm for the
distributed memory architecture. Finally, the super-tasks correspond to a group of tasks
resulting from the execution of load balancing algorithm. The graph grammar-based model
will be developed for the self-adaptive hp Finite Element Method (hp-FEM), which is the
most complicated adaptive mesh-based algorithm, intended for high accuracy numerical
solutions of a weak form of elliptic and Maxwell Partial Differential Equations (PDE).
Most other mesh-based adaptive algorithms are embedded into the self-adaptive hp-FEM,
thus the developed formalism can be also applied to other algorithms of this class.

The particular adaptive algorithms considered in this work employ the two-grid
paradigm, with the coarse meshes and their corresponding fine meshes. The algorithms
generate a sequence of coarse meshes, delivering convergence of the numerical error of a
considered problem, with respect to the mesh size. They use the corresponding fine mesh to
estimate the quality of the coarse mesh in order to select the optimal refinements to be
performed. The creation of an efficient parallel version of the algorithm is critical for most
applications, since the computational cost related to the adaptive computations is large.

The particular result of this work is the parallel adaptive software system that
implements the self-adaptive hp-FEM algorithm. Many challenging engineering problems,
including material science, geo-science and remote sensing, nano-lithography (micro-cheap
production process) and wave propagation problems, require high accuracy of a numerical
solution. It is impossible to find such a solution using other numerical methods. These
problems will be finally solved by the developed software system, thanks to the exponential
convergence of the self-adaptive hp-FEM algorithm. On the other hand, the applicability of
the two-grid paradigm adaptive algorithms is not limited only to the PDE engineering
problems. Any problem that requires a construction of the finite dimensional approximation
space based on polynomials of different orders covering finite element mesh fits into the
class of adaptive mesh-based algorithms.

 10

 11

MACIEJ PASZYŃSKI
Równoległe solvery adaptacyjne równań różniczkowych

cząstkowych sterowane gramatyką grafową

Streszczenie

Głównym celem pracy jest stworzenie formalnego opisu dla klasy algorytmów
adaptacyjnych, pozwalającego na zbadanie współbieżności tkwiącej w algorytmach, a także
na zaprojektowanie i implementacje efektywnych wersji równoległych algorytmów.

Szczególnym celem pracy jest opracowanie formalizmu bazującego na gramatykach
grafowych, opisującego algorytmy adaptacyjne wykorzystujące siatki obliczeniowe. Model
gramatyk grafowych pozwala na analizę współbieżności tkwiącej w algorytmach, poprzez
zbadanie zależności pomiędzy zadaniami podstawowymi, zadaniami i super-zadaniami.
Zadania podstawowe to produkcje gramatyki grafowej reprezentujące niepodzielne części
algorytmu adaptacyjnego, przeznaczone dla architektur o pamięci współdzielonej. Zadania
zdefiniowane są poprzez zgrupowanie zadań podstawowych oraz określenie kanałów
komunikacyjnych. Reprezentują one ziarno do podziału zadania obliczeniowego dla
architektur z pamięcią rozproszoną. Super-zadania reprezentują grupy zadań uzyskane w
wyniku wykonania algorytmu balansowania obciążeń.

Wspomniany formalizm oparty na gramatykach grafowych wykorzystany zostanie do
opisu algorytmu automatycznej hp adaptacji, stanowiącego najbardziej zaawansowany
algorytm adaptacyjny pracujący na siatkach obliczeniowych, stosowany do dokładnego
rozwiązywania sformułowań wariacyjnych eliptycznych równań różniczkowych
cząstkowych. Większość znanych algorytmów adaptacyjnych wykorzystujących siatki
obliczeniowe stanowi uproszczone wersje wspomnianego algorytmu.

Algorytmy adaptacyjne rozważane w niniejszej pracy bazują na paradygmacie dwóch
siatek obliczeniowych: siatki rzadkiej oraz siatki gęstej. Algorytmy generują ciąg siatek
obliczeniowych dostarczających eksponencjalną zbieżność względnego błędu
numerycznego względem rozmiaru siatki. Stworzenie efektywnej wersji algorytmów
adaptacyjnych jest niezmiernie ważne dla większości aplikacji inżynieryjnych. Dzieje się
tak z uwagi na duży koszt obliczeniowy wspomnianych algorytmów adaptacyjnych.
Praktycznym wynikiem prezentowanej pracy jest równoległy kod obliczeniowy,
implementujący algorytm automatycznej hp adaptacji. Wiele trudnych problemów
inżynieryjnych, mających zastosowanie w dziedzinach takich jak inżynieria materiałowa,
geologia, nano-litografia oraz zagadnienia propagacji fal elektromagnetycznych, zostało
rozwiązanych z wymaganą dokładnością dzięki eksponencjalnej zbieżności algorytmów
automatycznej hp adaptacji. Wymagana wysoka dokładność nie jest możliwa do uzyskania
za pomocą klasycznych metod numerycznych. Opracowany formalizm może być z
powodzeniem stosowany do opisu szerokiej klasy algorytmów bazujących na
paradygmacie dwóch siatek obliczeniowych.

 12

 13

Index of symbols

Ω – Domain where the PDE solution is looked for
Γ – Boundary of Ω

DΓ – Part of Γ where Dirichlet boundary conditions are
defined

�Γ – Part of Γ where Neumann boundary conditions are
defined

CΓ – Part of Γ where Cauchy boundary conditions are
defined

u – Unknown scalar or vector field
R – Space of real numbers

Du – Scalar or vector field assigned to the Dirichlet boundary
g – Scalar or vector field assigned to the Neumann boundary
()vub , – Bilinear form of the variational formulation

()vl – Right-hand-side linear form of the variational
formulation

V – The space of test functions (in chapters 1 and 3)
v – Test function Vv∈ (in chapters 1 and 3)

()Ω2L – The space of functions integrable with the second power
(Lebesque space)

()Ω1H – The subspace of ()Ω2L , with functions integrable with

the second power and with the derivative (with the
second power) (Sobolev space)

v – The norm in the Lebesque space

Ω,1
v – The norm in the Sobolev space

hpV – Coarse mesh approximation space VVhp ⊂

{ }
hp�i

i
hpe ...,,1=

– Basis of the coarse mesh approximation space

hpu – The approximate solution on the coarse mesh

 14

i
hpu – Components of the coarse mesh approximate solution,

called degrees of freedom

hp� – Dimension of the coarse mesh approximation space

1,2 +phV – Fine mesh approximation space

1,2
...,,11,2 +

=+ 







ph�i
i

phe

–

Basis of the fine mesh approximation space

1,2 +phu – The approximate solution on the fine mesh

i

phu
1,2 +

 – Components of the fine mesh approximate solution,
called degrees of freedom

1,2 +ph� – Dimension of the fine mesh approximation space

K – A single finite element

K
v

,1
 – The norm in the ()KH1 space – the space restricted to a

single element K

relerror – Relative error – the ()Ω1H norm of the difference

between the coarse and fine mesh solutions
w – The solution corresponding to a considered refinement

of the coarse mesh approximation space hpV restriced to

a single element K

()wrate – Error decrease rate corresponding to w

nrdof∆ – The increase in the number of degrees of freedom on the
coarse mesh element K, resulting from execution of the
considered mesh refinement strategy

()vh pp , – Horizontal and vertical polynomial orders of
approximations used for an element interior

()tKerror – Relative error between the coarse and fine mesh
solutions at time step t over an element K

()tU p
K – Coarse mesh solution for the uniform p coarse mesh at

time step t for an element K

()tU p
K

1+
 – Fine mesh solution for the uniform p+1 fine mesh at

time step t for an element K
V – Set of graph vertices (in chapter 2)

VA – Set of vertex labels

Vξ – Vertices labeling function

[]�i – Continuous integer numbering of vertex bounds

()VB – Set of pairs – vertex bound number and the vertex itself

()()vVξβ – Projection onto vertex bound number

E – Set of graph edges

EA – Set of edge labels

 15

Eξ – Edge labeling function

Vatt – Vertex attributing function

Eatt – Edge attributing function

TA – Set of vertex attributes

RA – Set of edge attributes

W – Set of graph vertices with numbered bounds
P – Finite set of graph grammar productions
S – Axiom of the graph grammar
T, T1 – Non-terminals of the graph grammar used during the

initial mesh generation
Iel, Iel1, Iel2 – Non-terminals of the graph grammar representing a

single initial mesh element
iel – Non-terminal of the graph grammar representing a

single initial mesh element with the topology already
generated

v, v2 – Non-terminals of the graph grammar representing finite
element vertex

F – Non-terminal of the graph grammar representing finite
element edge

I – Non-terminal of the graph grammar representing finite
element interior

B – Non-terminal of the graph grammar representing
boundary of the domain

fake

–

Non-terminal of the graph grammar used for the second
fake initial mesh element, to which belongs an edge
located on the boundary

5, S, W, E – Attributes of graph edges denoting north, south, west
and east edges of an element

5W, 5E, SW, SE – Attributes of graph edges denoting north-west, north-
east, south-west and south-east vertices of an element

P1 – P6 – Graph grammar productions generating the topology of
an inital mesh

PII – Graph grammar production generating the structure of
an inital mesh

PIC – Graph grammar production identifying common edges
of two adjacent initial mesh elements

iA – Part of element local matrix related to interactions of
element interior shape functions

iB , iC – Part of element local matrices related to interactions of
element interior shape functions with common edge
shape function

s
iA – Part of element local matrices related to interactions of

common edge shape functions

 16

ix – Degrees of freedom related to element interior

ib – Right-hand-side term related to element interior

s
ix – Degrees of freedom related to element interface (e.g.

common edge between a pair of adjacent elements)
s
ib – Right-hand-side term related to element interface (e.g.

common edge between a pair of adjacent elements)
*s

iA
– Contributions to the interface problem related to the

element interface (e.g. common edge between a pair of
adjacent elements)

Â – Matrix of the Schur complement

b̂ – Right-hand-side term of the Schur complement

x̂ – Degrees of freedom related to the Schur complement

iP – Permutation matrices, transforming element local
ordering of degrees of freedom located on the interface
into the global ordering on the interface

ininterface – Number of degrees of freedom for ith element (sub-
domain)

interfacen – Number of degrees of freedom for the global interface

(P aggregate

boundary edge)
– Graph grammar production for the aggregation of

degrees of freedom related to element edge located on
the domain boundary

(P aggregate corner

vertex)
– Graph grammar production for the aggregation of

degrees of freedom related to element vertex located at
the corner of domain

(P aggregate edge) – Graph grammar production for the aggregation of
degrees of freedom related to elements common edge

(P aggregate shared

vertex)
– Graph grammar production for the aggregation of

degrees of freedom related to elements common vertex
(P eliminate interior) – Graph grammar production for the elimination of

internal degrees of freedom from i-th frontal matrix
(P eliminate

boundary edge)
– Graph grammar production for the elimination of

degrees of freedom related to boundary edges
(P eliminate corner

vertex)
– Graph grammar production for the elimination of

degrees of freedom related to corner vertices
(P eliminate edge) – Graph grammar production for the elimination of

degrees of freedom related to elements common edge
(P eliminate common

vertex)
– Graph grammar production for the elimination of

degrees of freedom related to elements common vertex
iα – Symbol denoting aggregation of degrees of freedom to

i
th frontal matrix

ji,α – Symbol denoting aggregation of degrees of freedom to
both ith and jth frontal matrices

iβ – Symbol denoting elimination of degrees of freedom
from ith frontal matrix

 17

ji,β – Symbol denoting elimination of degrees of freedom
from both ith and jth frontal matrices and merging the
resulting Schur complement contributions

(P break interior) – Graph grammar production for breaking an element
interior

(P break edge) – Graph grammar production for breaking an element
edge

E Non-terminal of the graph grammar denoting edge that
can be broken

e, e2, e3 – Non-terminals of the graph grammar denoting broken
edge

F, Fi, F1, F2, Fe – Non-terminals of the graph grammar denoting edge that
cannot be broken

i – Non-terminal of the graph grammar denoting broken
interior

J, J1, J2, J3, J4 – Non-terminals of the graph grammar denoting interiors
that cannot be broken

(PFE1) – (PFE4) – Graph grammar productions allowing for breaking an
element edge

(PJI) – Graph grammar production allowing for breaking an
element interior

(Pwest), (Peast),

(Pnorth), (Psouth)

– Graph grammar productions for the reconstruction of the
connectivities between edges and interiors in western,
eastern, northern and southern directions

(P p-refine interior) – Graph grammar production performing local p

refinement at graph vertex denoting an element interior
(P min-rule east

edge),

(P min-rule west

edge),

(P min-rule north

edge),

(P min-rule south

edge)

–

–

–

–

Graph grammar productions enforcing the minimum
rule on the eastern edges
Graph grammar productions enforcing the minimum
rule on the western edges
Graph grammar productions enforcing the minimum
rule on the northern edges
Graph grammar productions enforcing the minimum
rule on the southern edges

(P process son

elements)

– Graph grammar production for the aggregation on son
elements of a broken element

(P process shared

vertex)
– Graph grammar production for the aggregation on

shared vertex located on the domain boundary
(P aggregate

interface)

– Graph grammar production for the aggregation on the
interface

(P propagate

interface

aggregation)

– Graph grammar production propagating aggregation on
the interface into father element of broken elements,
adjacent to the interface

(P eliminate

boundary edge)

– Graph grammar production for the elimination of
degrees of freedom related to boundary edges

 18

(P eliminate corner

vertex)

– Graph grammar production for the elimination of
degrees of freedom related to corner vertices

(P merge interiors

horizontal pairs)

– Graph grammar production for merging the Schur
complement contributions from adjacent pairs of
elements into the common edge submatrix

(P process shared

vertex)

– Graph grammar production for merging the Schur
complement contributions from adjacent pairs of
elements into the common vertices submatrix

(P merge into

vertical pairs)

– Graph grammar production for the elimination fully
assembled edges and vertices, and merging the resulting
Schur complements

(P merge sons

problem)

– Graph grammar production merging the Schur
complements resulting from son elements

(P process interface) – Graph grammar production for the construction of the
common interface problem

(P compute relative

error)

– Graph grammar production for the computation of
relative error on an element interior

(P evaluate

refinement)

– Graph grammar production for the evaluation of a given
refinement strategy

(P select optimal

refinement)

– Graph grammar production for the selection of the
optimal refinement

(P virtual href) – Graph grammar production for the execution of optimal
refinements

(P propagate virtual

href)

– Graph grammar production enforcing the 1-irregularity
rule

wV – The approximation space solution corresponding to a
considered refinement of the coarse mesh approximation
space hpV

Kerror – Relative error between the coarse and fine mesh
solutions for an element K

max_error – Maximum relative error for all finite elements
BI – Non-terminal of the graph grammar representing

interface between two sub-domains
Join – Non-terminal of the graph grammar for merging the two

sub-domains into a single sub-domain
(DD1) – Graph grammar production for the partition of two

adjacent elements
(DD2) – Graph grammar production for the partition of an edge

with one son edge broken and the other one unbroken
(DD3) – Graph grammar production for the partition of an edge

with two unbroken son edges
(DD4) – Graph grammar production for the partition of an edge

with two broken son edges
(DD5) – Graph grammar production for the initialization of the

merging process for two adjacent sub-domains

 19

(DD6) – Graph grammar production for merging two broken
edges

(DD7) – Graph grammar production for merging two unbroken
edges

(DD8) – Graph grammar production for merging two broken son
edges

(PIInt) – Graph grammar production for distinguishing
the boundary from the interface

(P compute load) – Graph grammar production for the computation of load
estimation an element

(P propagate

compute load)

– Graph grammar production for the propagation of load
estimation

(P compute load init

element)

– Graph grammar production for the computation of the
load estimation for an initial mesh element

() NT elem
i

1 comp – Time spend by i-th super-task on the computation of the
computational cost

()elem1 comm �T i – Time spend by i-th super-task on the communication
during the execution of the algorithhm estimating the
computational cost

()refinit
elem

i
2 comp N, NT – Time spend by i-th super-task on the computation in the

parallel algorithm of the separation of all graphs
representing a single initial mesh element

() Nelem
i

3 commT – Time spend by i-th super-task on the communication in
the parallel algorithm of the mesh repartitioning

() Nelem
i

3 compT – Time spend by i-th super-task on the computation in the
mesh repartitioning parallel algorithm

()int
elem

i
4 comm NT – Time spend by i-th super-task on the communication in

the parallel algorithm of exchange of the ghost elements
() N int

elem
i

4 compT – Time spend by i-th super-task on the computations in
the parallel algorithm of exchange of the ghost elements

()int
elem

i
5 comm NT – Time spend by i-th super-task on the communication in

the parallel algorithm of h refinements

()elem5 comp NiT – Time spend by i-th super-task on the computation in the
parallel algorithm of h refinements

()int
elem

i
6 comm NT – Time spend by i-th super-task on the communication in

the parallel algorithm of p refinements

()elem
i

6 comp NT – Time spend by i-th super-task on the computation in the
parallel algorithm of p refinements

elemN – Number of active elements located on initial mesh
elements of a super-task

init
elemN – Number of initial mesh elements of a super-task

ref� – Depth of the refinement tree

int
elemN – Number of active elements of a super task located on the

initial mesh elements adjacent to the interface

 20

init int,
elemN – Number of initial mesh elements adjacent to the

interface
P – Number of processors
Efficiency – Efficiency of parallel algorithm

Speedup – Speedup of parallel algorithm

1T – Execution time for a single processor

PT – Execution time for P processors
p – Uniform order of approximation

nrdof

–

Total number of degrees of freedom for a single element

interior nrdof – Number of degrees of freedom related to element
interior node

interface nrdof – Number of degrees of freedom related to element edges
edge nrdof – Number of degrees of freedom on a single element edge

()total
elem�pT ,solver comp – Time spend on the computation in the sequential solver

algorithm

()P�nT total
elemc ,,max

solver omp – Maximum for all processors P of the time spend on the
computation in the parallel solver algorithm

()p�T total
elem ,max

solver comm – Maximum for all processors P time spend on the
communication in the parallel solver algorithm

tcomp – Execution time of a single instruction
tcomm – Time of transfer of a single double precision value

i
cT solver omp – Time spend by i-th processor on the computations in the

parallel solver algorithm
iT timecomm – Time spend by i-th processor on the communication in

the parallel solver algorithm
iT solver idle – Time when the i-th processor is idle during the

execution of the parallel solver algorithm

()p�T total
elem ,1

1solver -re comp – Time spend on the computation in the sequential solver
algorithm with reutilization of partial LU factorizations

()rp�T total
elem ,,1

rsolver -re – Total computational time of the sequential solver
algorithm with reutilization of partial LU factorizations

with r refined leafs (resulting from 4
r singularities)

()pP�T total
elem

P ,,rsolver -re – Total execution time of the parallel solver algorithm
with reutilization of LU factorizations after r elements
have been refined

total
elemN – Number of finite elements

computational
cost(iel)

– Estimated number of operations executed by the
integration and elimination algorithms for a single initial
mesh element, broken into multiple son elements (if
necessary)

� – Size of matrix (number of degrees of freedom)

 21

M – Size of the Schur complement matrix (number of
degrees of freedom belonging to the Schur complement)

)(k
ijK – Components of an anisotropic heat transfer tensor over

material (k)
)(kf – Heat source over material (k)

)(kg – Scalar field from the Cauchy boundary condition for a
material (k)

)(kβ – Constant from the Cauchy boundary condition for a
material (k)

R – Resistance
Q – Generated heat

K – Thermal conductivity
H – Boundary convection

envu – Ambient (environmental) temperature

ijσ – Stress tensor

ijε – Green tensor

ijδ – Kronecker delta

µ , λ – Lame coefficients

E – Young modulus (in chapter 3)
ν – Poisson ratio
α – Thermal expansion coefficient

0T – Reference temperature

T∆ – Increase in the temperature

V – Volume
V∆ – Increase in the volume

ijklE – Tensor of elasticities

σ – Conductivity of the media
()Jdiv – Divergence of the prescribed impressed current

Jac – Jacobian matrix of the change of coordinates from
quasi-cylindrical non-orthogonal system of coordinates
to the Cartesian system of coordinates

()321 ,, xxx – Cartesian system of coordinates

()321 ,, ζζζ – Quasi-cylindrical non-orthogonal system of coordinates

lu – l
th component of the Fourier series expansion of the

unknown scalar field

mσ – m
th component of the Fourier series expansion of the

conductivity scalar field
()lJdiv – l

th component of the Fourier series expansion of the
divergence of the prescribed impressed current

lF – l
th

 Fourier modal coefficient

 22

σ̂ – Conductivity after change of variables into the Cartesian
system of coordinates

()Jdiv ˆ – Divergence of the prescribed impressed current after
change of variables into the Cartesian system of
coordinates

j – Imaginary unit
()z,,ϕρ – Cylindrical system of coordinates

AΩ , BΩ , CΩ , DΩ ,

EΩ

– Parts of 3D domain Ω with different conductivities

K̂ – Either 1D or 2D or 3D reference finite element

iâ – Node of reference finite element

()KX ˆ – Space of reference element shape functions

jχ̂ – 1D reference element shape function

()KP p ˆ – Polynomials of order p over []1,0ˆ =K

pΠ – Projection-based interpolant operator

()KV ˆ* – Space of degrees of freedom (dual space to a functional

space ()KV ˆ)

{ } 1
1
+
=
p
iiψ – Basis of ()KV ˆ*

K – Either 1D or 2D or 3D arbitrary finite element

ia – Nodes of an arbitrary finite element

()KX – Space of an arbitrary element shape functions

jχ – Arbitrary element shape function

Kx – Map from the reference K̂ to an arbitrary element K

iφ̂ , i=1,…,4 – 2D reference element vertex shape functions

ji,φ̂

i=5,…,8, j=1,…,pi-4

– 2D reference element edge shape functions

ji,,9φ̂

i=1,…,ph,, j=1,…,pv

– 2D reference element interior shape functions

hpT – Set of hp finite elements defining the coarse mesh

1,2 +phT – Set of hp finite elements defining the fine mesh

kφ – Local shape function

()Kki , – Global number of degrees of freedom related to local
shape function k from element K

 23

 24

 25

For my wife Anna and daughter Joanna

 26

 27

Acknowledgements

First of all, I would like to express my gratitude to my wife and my daughter for all the
support they gave me during these years, for their patience and understanding.

I wish to thank Prof. Leszek Demkowicz who was the first one to introduce me into
the hp adaptive world and to Prof. Robert Schaefer for guiding me through the model of
concurrent adaptive computations, for his help and support.

I am grateful to Prof. Carlos Torres-Verdin for supporting my research,
to Prof. Jacek Kitowski for his creative ideas and to the entire hp team, including David
Pardo, Jason Kurtz, Waldemar Rachowicz and Adam Zdunek.

I appreciate the support I received from the Foundation for Polish Science and from
the Polish Ministry of Scientific Research and Information Technology.

 28

 29

1. Preface

1.1. Main thesis and the structure of the book

The main thesis of this work may be expressed as follows:

“It is possible to develop a formal description of a wide class of adaptive mesh-based
algorithms, which will allow us to examine their concurrency and to design parallel
versions of the algorithms, as well as to develop their efficient parallel
implementation.”

The primary objective of this work is to develop a graph grammar-based formal

description of the adaptive mesh-based algorithms. The graph grammar-based model will
be developed for the self-adaptive hp Finite Element Method (hp-FEM), which is
considered to be one of the most complicated adaptive mesh-based algorithms. Many other
mesh-based adaptive algorithms are embedded into the self-adaptive hp-FEM, thus the
developed formalism can be also successfully applied to other algorithms of this class.

The graph grammar model allows us to examine the concurrency of the self-adaptive
hp-FEM algorithms. It is done by introducing the concepts of atomic tasks, tasks and super-
tasks, and by analysing their interdependence. The atomic tasks correspond to the graph
grammar productions, representing basic undividable parts of the algorithms. The analysis
of the interdependence between the atomic tasks results in the control diagrams, setting the
partial order of execution of the atomic tasks. The level of atomic tasks models the
concurrency only for the shared memory architectures. This is because we assume that all
atomic tasks work on a shared copy of the CP-graph representation of the computational
mesh.

The shared memory architectures are not the most popular ones, thus the analysis is
continued for the level of tasks, intended for the distributed memory architecture. A task
corresponds to groups of atomic tasks working on the level of initial mesh element. The
communication channels between tasks are defined and the parallel algorithms are
redesigned for the level of tasks. The tasks represent the grain for the domain
decomposition and load balancing algorithms. Finally, we introduce the level of super-
tasks. A super-task corresponds to group of tasks resulting from the execution of the load
balancing algorithm. The parallel algorithms are redefined again on the level of super-tasks.

 30

The particular cognitive value of the formalism consists in a possibility of examining
the algorithm’s concurrency. Thus, the formal description enables the design of parallel
versions of the algorithms as well as their efficient parallel implementation.

The adaptive algorithms considered in this work are based on the two-grid paradigm,
with the coarse meshes and their corresponding fine meshes. The algorithms generate a
sequence of coarse meshes to deliver convergence of the numerical error of a considered
engineering problem, with respect to the mesh size. The algorithms make use of the
corresponding fine mesh to estimate the quality of the coarse mesh in order to select the
optimal refinements to be executed on the coarse mesh. The two-grid paradigm adaptive
algorithms presented in this work are applied to the class of elliptic and Maxwell Partial
Differential Equations (PDE) boundary-value problems. However, the applicability of the
two-grid paradigm adaptive algorithms is not limited only to the PDE engineering
problems. Any problem that requires a construction of the finite dimensional approximation
space based on the polynomials of different orders span on finite element mesh can be
included into the considered class of adaptive mesh-based algorithms.

The creation of an efficient parallel version of the algorithm is critical for most of the
applications, since the computational cost related to the adaptive computations is high.

The practical result of this work is the parallel adaptive software system that
implements the self-adaptive hp-FEM algorithm. Several challenging engineering problems
require high accuracy of the numerical solution, which can be achieved only with huge
computational grids when using other numerical methods. In other words, other numerical
methods require enormous computational time and resources (a number of processors and a
huge amount of computer memory). The parallel self-adaptive hp-FEM algorithm enables
an accurate solution to these challenging problems in a relatively short computational time,
using commonly available parallel clusters. Some examples of these challenging
engineering problems include material science, geo-science and remote sensing, nano-
lithography (micro-cheap production process) and wave propagation problems. Some of
these problems, e.g. the problem of the 3D DC/AC borehole resistivity measurement
simulation in borehole environment with steel casing, up to now has not been solved at all,
because of the required accuracy of the order of 10-7 (seven significant digits after the dot)
impossible to obtain by means of other numerical methods. All these problems can be
finally solved by the software system described in this dissertation, thanks to the
exponential convergence of the self-adaptive hp-FEM algorithm.

The structure of the presentation is as follows:
The presentation starts in Section 1.2 with the introduction of some basic definitions of

the Finite Element Method. We use the example of the L-shape domain problem, a model
engineering problem that requires the adaptive computations in order to obtain an accurate
numerical solution. After defining the FEM terminology, the current state of art in the field
of modeling sequential and parallel self-adaptive hp-FEM algorithms is presented in
Section 1.3. The final part of this chapter includes a list of open problems related to this
field, as well as an explanation of how this work will deal with most of those open
problems.

In Chapter 2, the graph grammar model of the self-adaptive hp-FEM algorithm is
introduced. In Section 2.1, the graph grammar model is employed to introduce all the
details of the self-adaptive algorithm, such as the generation of initial mesh, the solution of
numerical problem, the selection of optimal mesh refinements, and the execution of h and p

 31

refinements. Furthermore, the CP-graphs (Composite Programmable graphs) are used to
model the computational mesh, and the graph transformations (graph grammar productions)
are used to express all parts of the self-adaptive hp-FEM algorithm. The graph grammar
productions are in consequence understood as the atomic tasks, executed on the graph
representation of the mesh and stored in the shared memory. That allows us to analyse the
concurrency of the self-adaptive hp-FEM algorithm, by exploiting and exhibiting the partial
causality order (Lamport relationships) among atomic tasks. Moreover, the production
control diagrams, defined for each phase of the computations, act as randomized dynamic
models of concurrent system similar to the Petri Net.

Section 2.2 is dedicated to the partition of the graph representation of the mesh into
several sub-graphs related to the initial mesh elements. The atomic tasks introduced in
Section 2.1 are then agglomerated into tasks. It is assumed that each task has its own local
memory, where it stores its sub-graph representing a single initial mesh element. The self-
adaptive hp-FEM algorithm is redefined on the level of tasks by updating the control
diagrams executed now by particular tasks. A control diagram at this point defines the
atomic tasks that can be executed by a task on its local sub-graph, with some minimum
additional inter-task communication added.

The tasks defined in Section 2.2 constitute the grain for the load balancing and mesh
repartitioning algorithms. The Section 2.3 contains the run-time management algorithms
responsible for load balancing, mesh partitioning and mapping tasks into particular
architectures of parallel machines. The input for the algorithms is the estimation of
a computational load for each task, whereas the output is a new repartition of tasks.
The repartition is performed at the end of each iteration of the self-adaptive hp-FEM
algorithm. In Section 2.4, the tasks are again agglomerated into super-tasks. It is assumed
that each task has its own local memory with a sub-graph representing a single sub-domain,
with several initial mesh elements. The super-tasks are created by agglomerating several
tasks resulting from the load balancing and mesh repartitioning algorithms. The self-
adaptive hp-FEM algorithm is again redefined on the level of super-tasks. It is done by
means of defining several control diagrams, which will assign the order of tasks executed
by each super-task, and will indicate the required inter-super-task communication. The
algorithm expressed on the level of super-tasks is suitable for the distributed or hybrid
memory architectures.

Section 2.5 provides an analysis of the computational and communication
complexities. The analysis is performed on the level of super-tasks. It concerns all parts of
the self-adaptive hp-FEM algorithms. The complexities are first estimated for the mesh
partitioning algorithm, including the exchange of ghost elements, and then for the mesh
adaptation algorithm, including the h and p adaptations. The complexities are also
estimated for the parallel recursive solver algorithm. Finally, we focus on the estimation of
the computational and communication complexities for the algorithm of the solver with
reutilization of partial LU factorizations.

In Section 2.6 a sequence of numerical experiments is carried out. The numerical
experiments concern the parallel self-adaptive hp-FEM algorithm implemented for two-
dimensional rectangular meshes and for three-dimensional quadrilateral meshes.
The first sequence of experiments refers to the scalability of the parallel algorithm
implemented for two-dimensional meshes, with the grain defined on the level of initial
mesh elements. The second sequence of experiments refers to the parallel algorithm

 32

implemented for three-dimensional meshes, again with the grain defined on the level of
initial mesh elements. In the last part of this section we describe some numerical
experiments performed to test the scalability of the proposed parallel direct solvers.

Chapter 3, entitled “Applications”, describes numerous both academic and challenging
engineering problems and provides solutions to them using the implemented parallel self-
adaptive algorithms.

The presentation is concluded in Chapter 4. The conclusions are followed by
Appendices, which include a precise definition of hp finite element, the mathematical
details of the self-adaptive hp-FEM algorithm, the definition of the CP-graph grammar, as
well as some implementation details.

1.2. Introduction

1.2.1. Introduction to the Finite Element Method

This section presents the necessary background of the Finite Element Method (FEM).
The L-shape domain model problem is employed to illustrate the basic ideas and definitions
related to the FEM. The FEM was first defined by Zienkiewicz 1967. Let us focus on the L-
shape domain model problem (Babuška, Guo, 1986a, Babuška, Guo, 1986b). The problem
consists in solving the Laplace equation
 0=∆u in Ω (1.1)

for the L-shape domain Ω , presented in Figure 1.1. The solution RuRu →∋Ω⊃2: may

be interpreted as a temperature distribution inside the L-shape domain.

The zero Dirichlet boundary condition

 0=u on DΓ (1.2)

is assumed on the internal part of the boundary DΓ . The Neumann boundary condition

 g
n

u
=

∂

∂
 on �Γ (1.3)

Fig.1.1. L-shape domain

 33

is assumed on the external part of the boundary �Γ . The temperature gradient in the

direction normal to the boundary is defined in the radial system of coordinates with the
origin point O presented in Figure 1.1

 () 






 Π
+=

2
sin, 3

2

3

2

θθ rrg (1.4)

The so-called strong form of the partial differential equation (PDE) (1.1-1.3) is transformed
into weak (variational) form of PDE

 () () Vvvlvub ∈∀=, (1.5)

 () ∫
Ω

∇∇= dxvuvub , (1.6)

 () ∫
Γ

=
�

dSvgvl (1.7)

by considering ()Ω2L scalar products of (1.1) with test functions from functional space V

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (1.8)

and integrating by parts as well as including boundary condition (1.3).

Fig.1.2. Partition of the L-shape domain into 3 finite elements

The Finite Element Method consists in constructing a subspace VVhp ⊂ with finite

dimensional basis { }
hp�i

i
hpe ,...,1= . The subspace hpV is constructed by partitioning the

domain Ω into finite number of elements and defining basis functions at finite element
vertices, over edges and interiors.
The exemplary partition of the L-shape domain into 3 rectangular finite elements is

presented in Figure 1.2. The elements of the basis i
hpe are called shape functions. We

define the first order shape functions (pyramids) at the element vertices, the second order
shape-functions (edge-bubbles) over the element edges, and the second order shape
functions over the elements interiors. That is presented in Figure 1.3.

 34

Fig.1.3. Examples of vertex, edge and interior shape-functions

The exact solution u of the weak formulation (1.5-1.8) is approximated in the subspace

hpV as a linear combination of the shape functions

 ∑
=

=≈
hp�

i

i
hp

i
hphp euuu

1
 (1.9)

where 21=hp� in this example. The coefficients i
hpu are called degrees of freedom. The

linear combination hpu is called the approximate solution. The degrees of freedom are

acquired by solving the following system of equations (FEM discretization of the weak for

of PDE)

 () () hp
j
hp

�

i

j
hp

i
hp

i
hp �jeleebu

hp

,...,1,
1

==∑
=

 (1.10)

 () ∫
Ω

∇∇= dxeeeeb j
hp

i
hp

i
hp

i
hp , (1.11)

 () ∫
Γ

=
�

dSegel j
hp

j
hp (1.12)

This system of equations results from the substitution of (1.9) for (1.5-1.7) and from the

application of { }
21,...,1=j

j
hpe test functions.

1.2.2. Introduction to the mesh adaptation techniques

The purpose of this section is to present different mesh adaptation techniques. In order
to do it we apply the L-shape domain model problem presented in Section 1.2.1. The aim of
the mesh adaptation methods is to increase the accuracy of the approximate FE solution

hpu by increasing the number of the shape functions hp� in (1.9). Figure 1.4 illustrates

the following mesh adaptation techniques:
a) uniform h adaptation: all finite elements are uniformly broken into smaller

elements,
b) uniform p adaptation: the polynomial order of approximation is increased

uniformly on the entire mesh, e.g. by adding bubble shape functions of the higher
orders over element edges and interiors,

 35

c) non-uniform h adaptation: some finite elements are broken into smaller elements,
only in those parts of the mesh which have a high numerical error,

d) non-uniform hp adaptation: some finite elements are broken into smaller elements,
and the polynomial orders of approximation are increased only in those parts of the
mesh which have a high numerical error.

For non-uniform h or hp adaptation it is necessary to localize finite elements with high
numerical error. In case of the non-uniform hp adaptation it is also necessary to select the
optimal refinements for such finite elements. The non-uniform h or hp adaptation can be
executed in the following ways:

a) the selection of the finite elements to be refined and a type of refinement depends
on the user,

b) the selection of the finite elements to be refined and a type of refinement depends
on an algorithm which is based on the knowledge of the structure of the solution,

c) the selection of the finite elements to be refined and a type of refinement depends
on the self-adaptive algorithm which is designed without any particular knowledge
of the structure of the solution, and works in a fully automatic mode, without any
user’s interaction.

The a) and b) algorithm are called the non-automatic adaptation while the c) algorithm
is called the automatic adaptation. In particular, the non-uniform hp adaptation with the
automatic adaptation is called the self-adaptive hp Finite Element Method (self-adaptive hp-
FEM).

The comparison of the uniform h, uniform p, non-uniform h and non-uniform hp

automatic adaptation algorithms (Demkowicz 2006) is presented in Figure 1.5. The
horizontal axis denotes the number of degrees of freedom on particular meshes from the
sequence of meshes generated by the considered mesh adaptation algorithm. The vertical
axis denotes the relative error for particular meshes from the generated sequence. The
relative error has been computed in the following way: for a given hp mesh, the
approximate solution hpu is obtained by solving the equations (1.10-1.12) (the FEM

disretization of the weak form of PDE). The hp mesh is then globally hp refined, which
means that each finite element is broken into four new finite elements and the polynomial
order of approximation is uniformly raised by one on all finite elements. The new mesh,
which is obtained by executing the global hp refinement, becomes the reference mesh
employed to estimate the relative error for the original mesh. The new approximate solution

1,2 +phu is a result of solving the equations (1.10-1.12) on the new reference mesh.

 36

Fig.1.4. First three meshes from a sequence of meshes generated by uniform

h adaptation, uniform p adaptation, non-uniform h adaptation and non-uniform hp adaptation.
Different colours denote different polynomial orders of approximation on edges and interiors

Fig.1.5. Comparison of different mesh adaptation strategies obtained from numerical experiments.

Convergence history for a sequence of meshes generated by uniform h adaptation, uniform p
adaptation, non-uniform h adaptation and non-uniform hp adaptation. The horizontal axis denotes

number of degrees of freedom. The cube root square is used on the horizontal axis. The vertical axis
denotes the relative error. Notice that the horizontal axis starts from 0.01 relative error

(not from zero). The logarithmic scale is utilized on the vertical axis.

 37

The relative error is computed as a difference between the original and the reference
mesh solutions

Ω

+
−=

,1
1,2

relerror
phhp uu (1.13)

The difference is computed in the ()Ω1H Sobolev space norm

 ()∫
Ω

Ω
+∇= 2

1
22

,1
dxvvv (1.14)

The comparison of different mesh adaptation strategies for the L-shape domain problem
discussed in this section is presented in Figure 1.5. The figure presents the convergence
history for a sequence of meshes generated by uniform h adaptation, uniform p adaptation,
non-uniform h adaptation and non-uniform hp adaptation. In Figure 1.5 the vertical axis
uses the logarithmic scale of the relative error while the cube root of number of degrees of
freedom is applied on the horizontal axis. The conclusion which we may draw from this
comparison is that the uniform h adaptation is the most expensive strategy. It is followed by
the uniform p adaptation strategies. The first considered strategy has been executed on the
initial L-shape mesh with 3 finite elements whereas the second considered strategy has been
executed on the initial L-shape mesh with 12 finite elements. The uniform p adaptation
convergence curves are limited by the maximum polynomial order of approximation p=9.

Two fastest mesh adaptation strategies are the non-uniform h adaptation and the non-
uniform hp adaptation. The non-uniform h adaptation executes the h refinements in the
direction of the central singularity. The non-uniform hp adaptation not only executes the h

refinements, but also modifies the polynomial order of approximations. The maximum
accuracy achieved by the non-uniform h adaptation is 0,07 % of the relative error (1.13),
for 1700 degrees of freedom. The same accuracy for the non-uniform hp adaptation is
achieved on a computationally less expensive mesh with 900 degrees of freedom. The hp

adaptation is less expensive, since the computational cost of this solution is of the order of
the cube of the number of degrees of freedom.

The non-uniform hp adaptation converges asymptotically, after some short pre-
assymptotic range, where the non-uniform h adaptation is faster. This is illustrated in
Figure 1.5 by the red sloped asymptote. The non-uniform hp adaptivity provides the fastest
possible exponential convergence of the relative error relerror , with respect to the number

of degrees of freedom nrdof,

 () ()0
3

1

rel errorlognrdoferrorlog += C (1.15)

 





= 3

1

0rel nrdofexperrorerror C (1.16)

where 0error stands for the point of the cross-section of the asymptote with the vertical axis,

and C stands for the slope of the curve. This exponential convergence of the non-uniform
hp adaptivity expressed by the formulae (1.15-1.16) has been experimentally confirmed. It
has been predicted in several theoretical works (Babuška, Guo, 1986a, Babuška, Guo,
1986b, Schwab 1998).

Note that all the adaptation techniques, except the non-uniform hp adaptation, have
lost the exponential convergence. It implies that the high accuracy provided by the non-

 38

uniform hp adaptation can be acquired by other mesh adaptation techniques only if they
reach a huge number of degrees of freedom.

The numerous examples confirm also the exponential convergence of the non-uniform
hp adaptation algorithm. In one of them, presented in Chapter 3.1.2, the convergence rate of
the non-uniform hp adaptation is compared with the convergence of the non-uniform h

adaptation. The required high 1% relative error accuracy of the solution is achieved by the
non-uniform hp adaptation for 2392 degrees of freedom. On the other hand, in this
example, such a high accuracy solution requires several millions of degrees of freedom or
non-uniform h adaptation, so it can be achieved only by using the non-uniform hp

adaptation algorithm.

1.3. State of art of adaptive mesh-based algorithms

This chapter provides a short presentation on the current state of art in the
development of sequential and parallel self-adaptive hp-FEM algorithms.

1.3.1. Sequential algorithms for the self-adaptive hp-FEM

In the non-uniform hp adaptation, the decisions about which finite elements should be
refined and about a type of refinement must be made by the self-adaptive hp-FEM
algorithm. The sequential version of the self-adaptive hp-FEM algorithm has been designed
and implemented by the group of Leszek Demkowicz (Demkowicz, Rachowicz, Devloo
2002, Rachowicz, Pardo, Demkowicz 2006, Demkowicz 2006, Demkowicz, Kurtz, Pardo,
Paszyński, Rachowicz, Zdunek 2007). The serial version of the self-adaptive hp-FEM
algorithm has been created for both two and three dimensions. The self-adaptive hp-FEM
can be summarized in the following way. Let us focus on the two-dimensional case. The
algorithm is based on the two-grid paradigm: a coarse mesh and a fine mesh obtained from
the coarse mesh by executing the global hp refinement. This means that each finite element
is broken into four new son elements and the polynomial order of approximation is
uniformly raised by one for each finite element. The approximate solution hpu , called the

coarse grid solution is obtained by solving the equations (1.10-1.12) on the coarse mesh,
and the fine mesh solution

1,2 +phu is obtained by solving the equations (1.10-1.12) on the

fine mesh. The fine mesh solution
1,2 +phu is later used to mark the optimal refinements for

the coarse grid in order to produce the next optimal grid.

The fine grid solution
1,2 +phu is projected onto a nested sequence of meshes that is

locally embedded into the fine grid by using the projection-based interpolation technique
(Demkowicz 2004). For each coarse grid element the sequence is dynamically constructed
by testing possible types of local refinements. The refinement which provides the
maximum error decrease rate

 ()
nrdof

rate ,1
1,2,1

,1,2

∆

−−−

=
++

K
ph

K
phph wuuu

w (1.17)

 39

is selected for each considered coarse mesh element. In this formula w denotes the
projection of the fine mesh solution onto the considered coarse mesh refinement, where the
projection is computed in H 1 norm on the considered coarse mesh element K. The nrdof∆

denotes an increase in the number of degrees of freedom or the coarse mesh element,
resulting from the execution of the considered mesh refinement strategy. This procedure is
illustrated in Figure 1.6.

The selected refinements are executed on the coarse mesh elements and a resulting
new mesh becomes the coarse mesh for the next iteration. The iterations are executed until
the relative error estimation for the entire mesh is larger than the required accuracy of the
solution.

For the mathematical details of the sequential algorithm of the self-adaptive hp-FEM,
see Appendix B.

Fig.1.6. Example of different refinements for a single finite element from the coarse mesh

1.3.2. Parallel algorithms for non-uniform adaptive FEM

This section is a summary of the state of art on the non-uniform adaptive FEM
algorithms. Most adaptive FEM algorithms are based on the domain decomposition
paradigm where the computational mesh is partitioned into sub-domains. Thus, the
presentation focuses on the following five layers:

1) load balancing and mesh partitioning algorithms: finding quasi-optimal partition
of the computational domain into sub-domains,

2) mesh transformation algorithms: dealing with several mesh regularity rules on the
computational mesh partitioned into sub-domains,

3) optimal refinement algorithms: selecting optimal refinements on the mesh,

 40

4) communication strategies: dealing with an exchange of data between sub-domains
resulting from the applied load balancing and mesh partitioning algorithms,

5) implementation layer: focusing on the implementation details of an algorithm.

1.3.2.1. 5on-uniform non-automatic h refinements

Among major undertakings to develop the algorithms supporting h refinements for the
computational mesh distributed into sub-domains, one has to list in the first place the
SIERRA Environment (Edwards 1997, Edwards 2002, Edwards, Stewart, Zepper 2002,
Stewart, Edwards 2002). This section describes the algorithms in terms of the above
mentioned layers.

1.3.2.1.1 Load balancing and mesh partitioning algorithms

In case of the h adaptive algorithms the structure of the mesh changes dynamically
during the mesh refinements. The mesh must be frequently redistributed to maintain a
uniform load balancing. For the h adaptive algorithms the computational load related to
each finite element is the same, since the polynomial order of approximation is uniform for
the entire mesh. Thus, the algorithms from the SIERRA environment define the
computational load equal to 1 for each finite element. The load balancing is achieved by
interfacing with algorithms defined in the ZOLTAN library. The mesh can be partitioned
on the level of initial mesh elements or on the level of active elements. The active elements
are represented as leaves of the tree of nodes growing from initial mesh elements. Thus, the
decomposition on the level of active mesh elements requires cutting the trees into pieces,
which is technically complicated. However, the algorithms introduced by Edwards partition
the mesh on the level of initial mesh elements in order to simplify the communication
algorithms (if the mesh is partitioned on the level of active elements, an additional
expensive communication will be required). The experiments performed by Edwards prove
that the partition on the level of initial mesh elements is sufficient for most considered
engineering applications.

1.3.2.1.2 Mesh transformation algorithms

The h adaptive parallel algorithms have to deal with the enforcement of the 1-
irregularity rule. According to the 1-irregularity rule a finite element can be broken only
once without breaking the adjacent large elements, which is illustrated in Figure 1.7. The
rule prevents unbroken element edges from being adjacent to more than two finite elements
on one side. When an unbroken edge is adjacent to one large finite element on one side and
two smaller finite elements on the other side, the approximation over these two smaller
elements is constrained by the approximation over the larger element. This is illustrated in
Figure 1.8. To avoid a technical nightmare with constrained approximation over multiple
constrained edges, the 1-irregularity rule is commonly used in the h adaptive algorithms. To
maintain the 1-irregularity rule, several additional refinements on large adjacent elements
may be required. When the computational mesh is distributed into multiple sub-domains,
the parallel algorithms supporting h refinements require communication between
neighboring sub-domains. The request for additional h refinement must be sent to the
adjacent large finite element located on neighboring sub-domains.

 41

The mesh transformation algorithms from the SIERRA provide a hierarchical h-
refinement of meshes. The 1-irregularity rule is enforced for the mesh. That may cause
some elements which have not been selected for refinement to be refined anyway. This
enforcement may also require a communication step in order to force the elements from an
adjacent processor to be refined, too. This is done by applying the communication
specification notation, defined in Section 1.3.2.1.4.

Fig.1.7. The 1-irregularity rule enforces breaking a large neighbor element before breaking a small

element on the other side of edge

Fig.1.8. First order constrained approximation on the 1-irregular and 2-irregular meshes

1.3.2.1.3 Optimal refinement algorithms

The algorithms choose the elements for a refinement on the basis of some problem
specific error estimators. The algorithms defined by SIERRA do not take into consideration
the two mesh paradigm.

1.3.2.1.4 Communication strategies

The communication algorithms exchange data between pairs of specific mesh objects,
such as node, edge, face or element. These communication operations are usually sparse,
thus a given object only needs to communicate with a fraction of the total number of
processors used by an application.

The communication algorithms from the SIERRA framework use
the communication specification. It is defined by indicating pairs of communicating objects
and the communication operations (e.g. sum, copy, construct). The communication
specification is a topological relation between two potentially distributed mesh objects, and
is defined by using the notations proposed by Edwards, 2002.

In general, a communication specification is non-symmetrical and non-local. Several
communication specifications are further combined to form a multiple-communication
specification by means of the algebraic operators.

 42

1.3.2.1.5 Implementation layer

The algorithms implemented in the framework have been used to parallelize several
finite element applications developed at Sandia National Laboratories (USA) (Edwards,
Stewart 2001).

The object-oriented computational framework, called SIERRA, is designed to support
the h adaptation on the unstructured meshes with multiple element types, such as
hexahedra, tetrahedra etc. It provides an Application Programming Interface (API) for the
definition of multi-physics models, dynamic load balancing, mesh transformation to
support h adaptation and an interface to linear solvers. These are the following
computational framework services:

a) mesh management,
b) degrees of freedom management,
c) material data management,
d) parallel communication operations,
e) infrastructure for h adaptivity, including the enforcement of the 1-irregularity rule,
f) dynamic load balancing.

All parallel communications in SIERRA are implemented using the MPI.

1.3.2.2. 5on-uniform non-automatic hp refinements

The second group of the parallel algorithms is intended to support the non-uniform and
non-automatic hp refinements. The only parallel hp adaptive algorithms implemented so far
have been developed by Flaherty, Devine 1996, Remacle, Xiangrong, Shephard, Flaherty
2000 and Banaś 2003 in terms of Discontinuous Galerkin (DG) methods. The only parallel
hp adaptive algorithms for Continuous Galerkin method that we are aware of, has been
developed by Patra 1999, Laszlofy, Long, Patra, 2000, Bauer, Patra 2004. None of these

algorithms supports the automatic hp adaptation.

1.3.2.2.1 Load balancing and mesh partitioning algorithms

The load balancing and mesh partitioning algorithms for the non-uniform hp

refinements are much more complicated, since the computational complexity on a single
finite element depends strongly on the polynomial orders of approximation of a finite
element. The number of shape functions for an element with ()vh pp , orders of

approximation in the horizontal and vertical directions is estimated as ()()11 ++ vh pp ,

thus the computational complexity of the integration and elimination of the degrees of

freedom for this element is estimated as ()33
vh ppO . Note that for the elements with

different polynomial orders of approximation, like those presented in Figure 1.9, this may
lead to strong load imbalances. In this case, the mesh must be redistributed even after some
local p refinements.

In the work by Remacle, Xiangrong, Shephard, Flaherty 2000 the load balancing is
achieved by means of the tiling algorithm (Wheat, 1992). In this diffusive algorithm, the
processors compare their estimated load with neighbors and exchange pieces of data with
less loaded neighbors.

 43

The load balancing problem can be also solved by the graph partitioning algorithm
from the METIS library (Karypis, Kumar, 1999). The algorithm has been used by Banaś
2003 who interfaced the mesh partitioning algorithm with the METIS library.

Patra, 1999, Laszlofy, Long, Patra, 2003, and Bauer, Patra, 2004 have proposed an
efficient load balancing and mesh partitioning algorithms based on the Hilbert Space Filling
Curve (HSFC), presented in Figure 1.10.

The SFC maps the n-dimensional data in one-dimensional space, and fills the
multidimensional space in the limit (Sagan 1984)

 () RhR n
n ∈→∋ xx (1.18)

The finite elements are identified by the coordinates of their central points, mapped
into the SFC. The SFC provides a linear ordering for the n-dimensional finite elements.
Laszlofy, Long, Patra, 2003 noticed that the SFC can be updated when the mesh is refined,
which is illustrated in Figure 1.11.

The domain decomposition can be achieved by estimating the computational
complexity for the finite elements along the SFC, and by partitioning the mesh on the basis
of quasi-uniform partition of the SFC. The data structure necessary to store dynamically
refined mesh consists in tree structures for storing nodal connectivities of the finite
elements. The root of each tree denotes initial mesh element nodes, and the trees are
expanded when the mesh is refined. These tree data-structure originated in the work of the
group of Leszek Demkowicz and has been later developed in Demkowicz, 2006 and
Demkowicz, Kurtz, Pardo, Paszyński, Rachowicz, Zdunek, 2007. The finite elements are
localized by their interiors. To ensure a fast access to the finite elements and their nodes,
the hash table is introduced. In this table the elements are identified by the keys defined on
the basis of their locations on the SFC.

Fig.1.9. Four finite elements, the top left with both orders of approximation equal to 9, the bottom
right with both orders of approximation equal to 1, and the two remaining elements matching orders

of neighboring elements. This configuration results in a strong difference in computational
complexity (five orders of magnitude).

 44

Fig.1.10. Four iterations of the Hilbert Space Filling Curve

This technique has the following advantages and disadvantages:
a) fast access to the elements, thanks to the hash tables with a key identifier based on

the location on the SFC. This is possible only under the assumption that the mesh
refinements are quite uniformly distributed on the entire mesh, which prevents
multiple elements with the same hash table key,

b) easy load balancing, since the quasi-uniform load balancing can be acquired by
cutting the SFC into equally loaded pieces,

c) easy mesh repartitioning after the mesh has been refined, since the data can be
transferred through SFC, connecting all sub-domains,

d) the load balancing on the level of active finite elements is technically difficult to
achieve. In order to avoid technical difficulties, the mesh can be distributed on the
level of initial mesh elements, with a possible duplication of the entire initial mesh
elements on sub-domains which share the newly refined elements,

e) the disadvantage of the proposed mesh partitioning technique is the fact that the
SFC partition does not minimize the interface between the adjacent sub-domains,
which may result in an expensive interface problem.

The order of elimination of the degrees of freedom for the direct solver can be
obtained on the basis of the linear SFC, since the curve follows a local refinement pattern.
However, the linear SFC ordering may be far from the optimal for a hierarchical multi-
dimensional mesh structure. The quasi-optimal ordering can be achieved by means of a
more sophisticated graph-based model of data structure.

Fig.1.11. HSFC following the mesh refinements

 45

1.3.2.2.2 Mesh transformation algorithms

The parallel hp adaptation algorithms have to overcome the same technical difficulties
as the non-uniform h refinement algorithms, including the enforcement of the 1-irregularity
rule. Moreover, we have to introduce an additional mesh regularity rule, the minimum rule.

The minimum rule implies that the polynomial order of approximation on an element
edge must be equal to the minimum of corresponding orders of approximation from the
element interiors. The minimum rule is illustrated in Figure 1.12.

Fig.1.12.The minimum rule sets the polynomial order of approximation for edge as the minimum of
corresponding orders from adjacent element interiors

The h refinement algorithm presented in Flaherty, Devine 1996 employs a hierarchical
tree of meshes with AVL trees, allowing for a fast localization of mesh objects. Both,
the refinement and the unrefinement strategies are applied.

1.3.2.2.3 Optimal refinement algorithms

Devine, Flaherty 1996 have developed an adaptive hp-refinement parallel algorithm
for Discontinuous Galerkin simulations of hyperbolic systems of conservative laws on
regular domains. The error estimator used in the algorithm is based on the relative error
between the coarse and fine mesh solutions computed in the L1-norm,

 () () ()∫ −= +

K

p
K

p
KK dxtxUtxUt ,,error 1 (1.19)

where ()txU p
K , denotes the coarse mesh solution, ()txU p

K ,1+ denotes the fine mesh

solution, with the fine mesh obtained by global p refinement (by increasing the polynomial
orders of approximation by one for all finite elements). The refinement is executed on the
finite elements with () TOLerror ≤tK .

The local decision about a type of refinement (h or p refinement) is based on the
following observation: the p refinement is more efficient in these areas of the mesh for
which the solution is smooth, while the h refinement is more efficient in the areas near
singularities, where the gradients are large.

The algorithm introduced in this dissertation differs from the one that has been
proposed by Devine, Flaherty, 1996 in the following aspects: the decision about a type of
refinement is based on the error decrease rate, with respect to the fine mesh resulting from
the global hp refinement procedure, and the error decrease rate is measured in the H1 norm,

 46

whereas the algorithms described by Devine, Flaherty use the fine mesh resulting only from
the p refinement procedure, and the error decrease rate is measured only in the L1-norm.

This makes the strategy proposed in this dissertation universal. However, the price to
pay is the following: we need to employ a computationally more expensive Continuous
Galerkin approximation, which requires a computationally more expensive solver and
implies some difficulties with the application of an iterative solver, due to worse
conditioning of the system. Moreover, Flaherty, Devine, 1996 have not taken into
consideration all possible refinement strategies and have not computed the error decrease
rate, which is the most universal procedure suitable for all kind of engineering problems.
On the other hand, they worked on the hyperbolic problems, which make their simulations
very complex.

1.3.2.2.4 Communication strategies

In the work of Flaherty, Devine, 1996 the ghost elements are used to minimize the
communication required by the parallel mesh refinements algorithms.

Banaś, 2003 has presented how the introduction of an overlap to the domain
decomposition can simplify the parallel algorithms related to hp adaptive computations.
The overlap consists of an additional layer of elements adjacent to the sub-domain, copied
from neighboring sub-domains. The overlap is useful when the computation of some
neighboring results is cheaper than their acquisition from the adjacent sub-domains. The
parallel mesh refinement algorithms, including the enforcement of the 1-irregularity rule
and the minimum rule, become easy to implement when the overlap is present. In this case,
we can apply (up to some limit) the sequential refinement algorithms.

The disadvantage of the overlap method is a necessity of a frequent actualization of
the overlap data, which results to be quite expensive.

1.3.2.3. Different parallelization methods for adaptive FE algorithms

Płażek, 1999, Płażek, 2000 and Płażek, Banaś, Kitowski, 2001 have compared two
parallelization models for the adaptive FEM algorithm. The first one employs the explicit
model with message-passing paradigm, whereas the other one employs the implicit model
with data-parallel programming. In the implicit model, the parallelization is obtained by
using compiler directives and pragmas when a loop over mesh data objects is encountered.
The explicit model uses the master – slave strategy, where the master controls the solution
procedure and several slave processes work in parallel. The master process is responsible
for the partition of the mesh into several sub-domains, while each slave process executes
the solver-related computations, such as vector-vector and matrix-vector (BLAS level 3)
operations, on a single sub-domain. However, the mesh refinements are executed by the
master process before the mesh is partitioned. Thus, the h refinement algorithms are
actually serial, and only the iterative solver (GMRES) is executed in parallel.

The algorithm has been executed on a well known benchmark problem – the ramp
problem (Woodward, Colella, 1984). The conclusion of their numerical experiments is that
in case of the explicit model the efficiency does not depend strongly on the parallel
machine architecture, which results from the applied master-slave strategy. However, in
case of the implicit model, the resulting scalability is much worse. The last part of their

 47

work emphasizes a need for further research on the explicit model, which is actually a
subject of this dissertation.

In their second paper, Płażek, Banaś, Kitowski, Boryczko 1997, the Authors
emphasize also the advantages of the two-level parallelism in adaptive FEM applications.
The first level is understood as the domain decomposition and the second level as the
functional decomposition. The two-level parallelism is especially important for cc-NUMA
architectures where the hypernodes with high local bandwidth are interconnected by lower
bandwidth properties, using the cache coherency features.

1.3.3. Parallel solvers for adaptive FE algorithms

The core part of FE adaptive algorithm is an efficient parallel solver. It is very difficult
to develop such an iterative solver for adaptive FEM that could converge on different kinds
of meshes and problems. There are several convergence problems for the meshes with
elongated elements and mixed polynomial orders of approximation. Even if an iterative
solver converges for a given variational formulation on a current hp mesh, it very often
causes the convergence problems for other meshes and other variational formulations. On
the other hand, the direct solver can always solve correctly formulated variational
problems, and it never causes any convergence problems. Nevertheless, the direct solvers
are much more expensive in terms of their computational complexity and memory usage.

An efficient parallel iterative multi-grid solver for DG method has been proposed by
Banaś, Płażek 1997. The solver employs an overlap for the domain decomposition to
compute local preconditioners with patches of elements which may be possibly located on
the adjacent sub-domains. An efficient mesh partitioning algorithm for the multi-grid
solvers has been also proposed by Bastian 1998, Bastian, Birken, Johanssen, Lang, Nuess,
Rentz-Reicher, Wieners 1997. However, these solvers are not suitable for the general self-
adaptive hp adaptivity, since they do not converge on multi-grids with various polynomial
orders of approximation p. The automatic hp adaptivity generates a sequence of coarse
meshes and their corresponding fine meshes, with higher orders of approximation, so the
most suitable iterative solver should replace the expensive fine mesh solution by its
projection onto several coarse mesh solutions. The sequential implementation of such two-
grid solver is presented by Pardo, 2004. However, this solver requires various pre-
conditioning methods for different problems.

The current state of art for sequential and parallel direct solvers for the domain
decomposition – based FEM computations, can be summarized in the following way:

a) frontal solver. The solver browses the finite elements in the order determined by
the user. It aggregates the degrees of freedom to the so-called frontal matrix. On
the basis of the element connectivity information, it recognizes the fully assembled
degrees of freedom and eliminates them from the frontal matrix (Irons 1970, Duff,
Reid, 1983, Duff, Reid, 1984). This is done to keep the size of the frontal matrix as
small as possible. The key for an efficient work of the frontal solver is the optimal
ordering of finite elements,

b) multi-frontal solver. The solver constructs the tree of connectivity for the degrees
of freedom by analysing the geometry of computational domain (Duff, Reid,
1983). It is usually done by means of the graph representation of the computational
domain and graph partitioning algorithm. The frontal elimination pattern is applied

 48

for each tree branch. The finite elements are joined into pairs and the degrees of
freedom are assembled into a frontal matrix assigned to a branch. The process is
repeated until we reach the root of the assembly tree. Finally, the common dense
problem is solved and partial backward substitutions are recursively executed on
the assembly tree,

c) sub-structuring method solver. This is a parallel solver working on a computational
domain partitioned into multiple sub-domains (Giraud, Marocco, Rioual, 2005). It
works in such a way that first, the sub-domains’ internal degrees of freedom are
eliminated with respect to the interface degrees of freedom. Second, the interface
problem is solved. Finally, the internal problems are solved by executing backward
substitution on each sub-domain, and by applying the interface problem solution
computed in the second step,

d) multiple fronts solver. This is the simplest implementation of the sub-structuring
method solver (Scott 2003, Giraud, Marocco, Rioual 2005). It executes a partial
frontal decomposition on each sub-domain. Next, it sums up the contributions
from particular sub-domains into one common interface problem. Finally, it solves
the common interface problem by applying a sequential frontal solver,

e) direct sub-structuring method solver. In this version of the sub-structuring method
solver, the interface problem is solved by means of the parallel solver (Smith,
Bjőrstad, Gropp, 1996, Giraud, Marocco, Rioual 2005),

f) sparse direct method solver. This is a parallel implementation of the multi-frontal
solver. An example of the sparse direct method solver has been presented in Geng,
Oden, van de Geijn, 2006. Another example of the sparse direct method solver is
the MUlti frontal Massively Parallel sparse direct Solver (MUMPS) (Amestoy,
Duff, L'Excellent 2000, Amestoy, Duff, Koster, L'Excellent 2001, Amestoy,
Guermouche, L'Excellent, Pralet 2006, MUMPS).

1.3.4. Graph grammar models

The topological structure of the finite element mesh, with a hierarchy of vertices,
edges, faces and regions has been proposed by Beall, Shephard, 1997 to illustrate mesh
generation and data storage.

The first attempt to model mesh transformations by applying the graph grammar
concept has been proposed by Schaefer, Flasiński, 1996, for the regular triangular two-
dimensional meshes with the h adaptation. This has been done using the quasi context
sensitive graph grammar. However, the application of the quasi-context sensitive graph
grammar for hp adaptive mesh transformation seems to be limited. The reason is that the
mesh transformations, such as the enforcement of 1-irregularity rule or the minimum rule,
are context dependable and cannot be modeled by the the quasi-context sensitive graph
grammar .

The Composite Programmable graph grammar (CP-graph grammar) has been
introduced by (Grabska 1993a, Grabska 1993b, Grabska, Hliniak 1993) as a tool for a
formal description of various design processes. The CP-graph grammar describes a design
process by means of the graph transformations executed on the CP-graph representation of
the designed objects. In this dissertation the CP-graph grammar is used to model the mesh
transformations which result from the self-adaptive hp-FEM computations.

 49

1.3.5. Analysis of computational and communication complexities

of adaptive algorithms

The computational complexities of iterative solvers employed by the adaptive hp-FEM
algorithms have been analysed by Banaś 2006. In particular, this analysis takes into
consideration the computational complexities of GMRES solver, with the emphasis on the
algorithm computing the residuum of linear system of equations, the algorithm computing
the projections between meshes used by the multi-grid solver, the block Gauss-Seidl
algorithm and the algorithm for partial LU factorizations.

The communication and computational complexities of the parallel adaptive
algorithms as well as its scalability have been discussed by Flasiński, Schaefer,
Toporkiewicz 1996. The paper defines the scalability of the parallel adaptive algorithms as
a possibility of dividing both the computational job and data that have to be processed into
an arbitrary set of tasks, which can be run in parallel.

The computational complexities of the frontal solver have been discussed by Irons
2003. The computational complexity of the multiple front solver has been described by
Walsh, Demkowicz 199. Geng, Oden, van de Geijn 2006 have presented the computational
and communication complexities for the multi-frontal solver. These analyses do not take
into account the influence of the h and p adaptation on the scalability of the solver, which is
discussed in detail in this dissertation.

The computational and communication complexities for load balancing algorithms,
such as HSFC and nested dissection algorithms, have been already described by Bauer,
Patra 2004 and Khaira, Miller, Sheffler, 1992.

1.4. Summary of open problems

This section provides a list of the open problems in the field of research related to the
parallelization of the self-adaptive hp-FEM algorithms.

a) there is no universal methodology for the parallelization of all components of the
self-adaptive hp-FEM algorithms,

b) there is no mathematical model to formalize sequential and parallel mesh
transformations,

c) there is no formal model of concurrency for the adaptive hp-FEM algorithm,
d) it is necessary to define and implement an efficient parallel direct solver for the

adaptive hp-FEM,
e) it is necessary to define and implement the parallel self-adaptive hp-FEM

algorithms for two- and three-dimensional elliptic problems,
f) it is necessary to define and implement an efficient parallel iterative solver re-

applying coarse mesh solution for the fine mesh solution.

 50

1.5. Summary of my research

The following scientific research of the Author provides solutions to the open
problems:

a) the introduction of the graph grammar based model which enables a formal
definition, verification and control of the sequential and parallel self-adaptive hp-
FEM algorithms,

b) the description of sequential and parallel mesh transformations by means of the
graph grammar productions,

c) the formal definition of the algorithm of the sequential self-adaptive hp-FEM
based on the graph grammar and control diagrams,

d) the definition of the model of concurrency describing all parts of the self-adaptive
hp-FEM algorithm,

e) the definition of several parallel processing models intended for the distributed and
hybrid memory architectures,

f) the theoretical analysis of the created parallel processing models,
g) the execution of several numerical experiments for the proposed parallel

processing models,
h) the implementation of an efficient parallel direct solver for the automatic hp

adaptive FEM.
The parallel iterative solver for the self-adaptive hp-FEM has not been created yet, but
the work is actually in progress (see Chapter 4).

 51

2. Graph grammar-driven PDE solvers

This chapter introduces the concept of Composite Programmable Graph Grammar
(CP-graph grammar) controling the execution of the self-adaptive hp-FEM algorithm. The
CP-graph grammar is suitable for modeling all aspects of the self-adaptive algorithm. In
this model the computational mesh is represented by the attributed CP-graph. The
presentation is restricted to two-dimensional rectangular finite elements, however it can be
generalized to
two-dimensional triangular elements, as well as to three-dimensional meshes.
Besides, in order to simplify the presentation and to reduce the number of graph grammar
productions and the complexity of control diagrams, the presented graph grammar has been
restricted to a row of initial mesh elements. Thus, the presented graph grammar assumes
that the initial mesh is limited to the one-dimensional sequence of two-dimensional
rectangular finite elements. The graph grammar can be generalized to more complex initial
meshes and to other types of elements as well as to three-dimensional computations, which
will be the subject of the future work.

The original definition of the CP graph grammar (Grabska 1993a, Grabska 1993,
Grabska, Hliniak 1993) used the directed graphs. However, for the purposes of modeling
the hp meshes, undirected graphs seem to be more appropriate. Thus, the original
definitions presented by Grabska 1993a, Grabska 1993, Grabska, Hliniak 1993 have been
transformed in such a way that we can apply them to non-directed graphs.

Definition 2.1.
Composite programmable graph (CP-graph) over []�V iAW ×= and EA is defined as

 ()()EVEV attattEV ,,,,, ξξ (2.1)

where
− V stands for a set of graph vertices,
− []�VV iAV ×→:ξ is a function labeling vertices, with VA being the set of vertex

labels
− [] { }}...,,2,1{...,},3,2,1{},2,1{},1{ ii � = is a continuous integer numbering of

vertex bounds.
− () ()() { }U

Vv
V vvVB

∈
×= ξβ is a set of pairs – vertex bound number and the vertex

itself,
− ()()vVξβ is the projection onto vertex bound number

 52

− () ()VBVBE ×⊆ stands for a set of graph edges such that

• there are no loop edges () ()() uvEuijv ≠∈∀ ,,,,

• there are no free bound edges () ()VBjv ∈∀ , there is no more than one bound

() ()VBui ∈, such that () ()() Euijv ∈,,,

• the symmetric condition () ()VBjv ∈∀ , there is no more than one bound

() ()VBui ∈, such that () ()() Evjiu ∈,,,

− EA denotes the set of edge labels

− EE AE →:ξ denotes the edge labeling function, with EA being the set of edge

labels

− TV AVatt →: is the vertex attributing function, with TA being the set of vertex

attributes
− RE AEatt →: is the edge label attributing function, with RA being the set of edge

attributes
− []�V iAW ×= denotes the set of graph vertices with numbered bounds

Definition 2.2.
Composite programmable graph grammar (CP-graph grammar) over []�V iAW ×= and EA

is a pair
 ()SP, (2.2)

where
− P is a finite set of productions of the form ()rl, where l and r are CP-graphs

with the same number of free bounds
− S called the axiom symbol, such that there is at least one production of the form

()rS ,

The CP-graph grammar models the initial mesh generation, the procedure of the h

refinement (breaking selected finite elements into son elements) and the p refinement
(adjusting polynomial orders of approximation on selected element edges and interiors).
The mesh regularity rules are automatically enforced on the level of grammar syntax. The
order of execution of graph transformations (graph grammar productions) is defined by the
control diagrams. The graph grammar models also the algorithm of the multi-frontal direct
solver, used in the self-adaptive algorithm. In the following definitions we introduce the CP
graphs used for modeling particular parts of the self-adaptive hp-FEM algorithm.

Definition 2.3

The CP-graph modeling an initial mesh with polynomial orders of approximation lower
than 10, is defined using the following sets of graph vertices labels VA , graph edges labels

EA and graph vertices attributes TA

 { }fakeB,v2,v,I,F,iel,,Iel,Iel2,Iel1,y1,y,x,== 1
VV AA (2.3)

 () () () (){ } { }9....,,2,1)9,9(...,,2,2,1,2,2,1,1,11 ∪== TT AA (2.4)

 53

 { }SESW,5E,5W,E,W,S,5,== 1
EE AA (2.5)

and the empty set of graph edge attributes ∅== 1
RR AA .

Definition 2.4
The CP-graph modeling the solver execution on an initial mesh, represented by CP-graph
defined by Definition 2.3, is defined by the following sets of graph vertices labels VA ,

graph edges labels EA and graph vertices attributes TA

 { }
{ } �ji

�jiV

VV

A

AA

,...,1,
ji,iji,i

,...,1,
ji,ji,iii1

2

,,,

,,,,

=

= ∪∪

==

v2IFv2

Fv2IFv

ββββ

ααααα (2.6)

 12
TTT AAA == (2.7)

 12
EEE AAA == (2.8)

where � denotes the maximum number of local matrices (maximum number of elements)

and the set of graph edge attributes ∅== 2
RR AA is empty.

Definition 2.5

The CP-graph modeling the h refinement process on a mesh, represented by CP-graph
described in Definition 2.3, is defined by the following sets of graph vertices labels VA ,

graph edges labels EA and graph vertices attributes TA

 { }J4J3,J2,F2,F1,E3,E2,E,Fe,e,Fi,J,i,∪== 13
VVV AAA (2.9)

 13
TTT AAA == (2.10)

 { }ndst 2,1∪== 13
EEE AAA (2.11)

and the empty set of graph edge attributes ∅== 3
RR AA .

Definition 2.6

The CP-graph modeling the p refinement process on an h refined mesh is equal to the CP-
graph defined in Definition 2.5.

 34
VVV AAA == (2.12)

 34
TTT AAA == (2.13)

 34
EEE AAA == (2.14)

 44
RRR AAA == (2.15)

Definition 2.7

The CP-graph modeling the execution of the solver on an hp refined mesh, represented by
CP-graph described in Definition 2.6, is defined by the following sets of graph vertices
labels VA , graph edges labels EA and graph vertices attributes TA

 54

 { }
{ } �lkji

�lkjiV

VV

A

AA

,...,1,,,
lk,j,i,ji,lk,j,i,ji,i

,...,1,,,
lk,j,i,ji,lk,j,i,ji,i4

5

,,,,

,,,,

=

= ∪∪

==

eevFiF1

eevFiF1

βββββ

ααααα (2.16)

 45
TTT AAA == (2.17)

 45
EEE AAA == (2.18)

where � denotes the maximum number of local matrices (maximum number of elements)

and the set of graph edge attributes ∅== 5
RR AA is empty.

Definition 2.8

The CP-graph modeling the partitioning and merging of hp refined mesh, represented by
CP-graph described in Definition 2.6, is defined by the following sets of graph vertices
labels VA , graph edges labels EA and graph vertices attributes TA

 { }JoineJ,Int,eI,BI,∪== 46
VVV AAA (2.19)

 46
TTT AAA == (2.20)

 46
EEE AAA == (2.21)

and the set of graph edge attributes ∅== 6
RR AA is empty.

The following definitions list graph grammar productions responsible for modeling
particular parts of the self-adaptive hp-FEM algorithm. The productions are illustrated in
several Figures, presented later in this chapter.

Definition 2.9

The CP-graph grammar modeling the generation of an initial mesh represented by the CP-
graph, introduced in Definition 2.3, is defined by the following set of graph grammar
productions
 {== 1PP P1, P2, P3, P4, P5, P6, PII, PIC } (2.22)

Definition 2.10

The CP-graph grammar modeling the execution of the solver on an initial mesh represented
by the CP-graph, introduced in Definition 2.3, is defined by the following set of graph
grammar productions

{== 2PP P aggregate interior, P aggregate boundary edge,

P aggregate corner vertex, P aggregate edge, P aggregate shared vertex,

P aggregate interior, P eliminate boundary edge, P eliminate corner vertex,

 P eliminate edge, P eliminate common vertex } (2.23)

 55

Definition 2.11

The CP-graph grammar modeling the execution of h refinements on a mesh represented by
the CP-graph, introduced in Definition 2.6, is defined by the following set of graph
grammar productions

{== 3PP P break interior, P break edge, PFE1, PFE2, PFE3, PFE4,

 Pwest, Pnorth, Psouth, Peast } (2.24)

Definition 2.12
The CP-graph grammar modeling the execution of p refinements on a mesh represented by
the CP-graph, introduced in Definition 2.6, is defined by the following set of graph
grammar productions

{== 4PP P p-refine interior, P min-rule east edge, P min-rule west edge,

 P min-rule south edge, P min-rule north edge } (2.25)

Definition 2.13

The CP-graph grammar modeling the execution of the solver on an hp refined mesh
represented by the CP-graph, introduced in Definition 2.6, is defined by the following set of
graph grammar productions

{∪== 25 PPP P aggregate corner vertex, P process son elements,

P process shared vertex, P aggregate interface,

P propagate interface aggregation, P merge interiors into horizontal pairs,

P merge interiors into vertical pairs,

 P mergo sons problem, P process interface } (2.26)

Definition 2.14

The CP-graph grammar modeling the partitioning and merging of an hp refined mesh
represented by the CP-graph, introduced in Definition 2.6, is defined by the following set of
graph grammar productions
 {== 6PP DD1, DD2, DD3, DD4, DD5, DD6 } (2.27)

The first section of this chapter, entitled “Graph grammar model with atomic tasks for

the self-adaptive algorithm”, presents the applicability of the CP-graph grammar for the
modeling of the self-adaptive hp-FEM algorithm. The presentation refers to an exemplary
variational formulation (1.10-1.12) for the heat transfer problem. However, all the
presented considerations remain valid if we replace the heat transfer problem (1.10-1.12) by
the general variational formulation of the 2D elliptic boundary-value problem introduced in
Definition B.2 in Appendix B.

The CP-graph grammar model examines the concurrency of the self-adaptive
algorithm, by using the atomic tasks, tasks and super-tasks, introduced in the following
definitions.

Definition 2.15
An atomic task is a single graph grammar production. This is a basic undividable
computational task which must be executed sequentially.

 56

Name Exemplary

graphical representation
Description

Initial state

Represents the starting
point of execution

Final state

Represents the end of
execution

State

Represents the execution
of a single atomic task
(graph grammar
production) on some part
of the graph
representation of the mesh

Transition Sets the partial order of
execution of atomic tasks
(graph grammar
productions)

Synchronization

Represents the
synchronization point,
after which several atomic
tasks (graph grammar
productions) are executed
on different parts of the
graph representation of
the mesh

Concurrent state

Represents the concurrent
execution of a single
atomic task (graph
grammar production) on
several parts of the graph
representation of the mesh

Table 2.1. UML symbols used on control diagrams on the level of atomic tasks

 57

Name Exemplary
graphical representation

Description

Initial state

Represents the starting
point of execution

Final state

Represents the end of
execution

State

Represents the execution
of a single atomic task
(graph grammar
production) within a task
on some part of its local
graph representation of
the mesh

Transition Sets the order of execution
of atomic tasks (graph
grammar productions)

Synchronization

Represents the inter-task
synchronization point,
after which several tasks
execute some atomic tasks
(graph grammar
productions) on different
parts of their local graphs

Send

Represents the send
operation performed by a
task

Receive

Represents the receive
operation performed by a
task

Communication channel

An arrow represents the
communication channels,
from the sender task to the
receiver task

Choice with
predicates of applicability

Exemplary predicates of
applicability – the tasks
with odd rank and the
tasks with even rank select
different execution paths

Machine

Exemplary reference to
another control diagram,
called “Exchange ghost
elements”

Table 2.2. UML symbols used on control diagrams on the level of tasks

 58

Name Exemplary
graphical representation

Description

Initial state

Represents the starting
point of execution

Final state

Represents the end of the
execution

State

Represents the execution
of a single atomic task
(graph grammar
production) within a
super-task on some part of
its local graph
representation of the mesh

Transition Sets the order of execution
of atomic tasks (graph
grammar productions)

Synchronization

Represents the inter-
super-task
synchronization point,
after which several super-
tasks execute some atomic
tasks (graph grammar
productions) on different
parts of their local graphs

Send

Represents the send
operation performed by a
super-task

Receive

Represents the receive
operation performed by a
super-task

Communication channel

An arrow represents the
communication channels,
from the sender super-task
to the receiver super-task

Choice with
predicates of applicability

Exemplary predicates of
applicability – the super-
tasks with odd number
and the super-tasks with
even number select
different execution paths

Machine

Exemplary reference to
another control diagram,
called “Exchange ghost
elements”

Table 2.3. UML symbols used on control diagrams on the level of super-tasks

 59

Definition 2.16

A control diagram for the level of atomic tasks is a graphic representation of the partial
order of execution of atomic tasks. The control diagram is obtained by analysing the logical
independence between atomic tasks. This analysis is based on the identification of the
minimal causality relations, and is followed by the denotation of the atomic tasks that can
be executed at the same time. The control diagram consists of states representing an
execution of a single atomic task, and of transitions which determine the partial order of
execution of atomic tasks. The control diagram is represented by UML state diagrams, with
the symbols explained in Table 2.1. The abstract concurrent self-adaptive hp-FEM
algorithm defined by means of the control diagrams can be executed for the shared memory
architecture, with the graph representation of the mesh shared between multiple concurrent
atomic tasks. The control diagrams are executed by all atomic tasks on one global graph
representation of the mesh.

Definition 2.17

A task is defined as an execution of multiple atomic tasks on its local sub-graph
representation of a part of the mesh. A sub-graph is identified with an initial mesh element.
Each task has its own rank – a unique global identifier.

Definition 2.18

A control diagram for the level of tasks is a graphic representation of the partial order of
execution of atomic tasks, agglomerated into a task, working on a local graph representing
a single initial mesh element. The control diagram for the level of tasks represents a
sequential execution of atomic tasks within a task on its local sub-graph, representing initial
mesh element. Thus, each task executes the control diagram on its local sub-graph, with
some additional inter-task communication added. The control diagram is represented by
UML state diagrams, with the symbols explained in Table 2.2. Some transitions on the
control diagrams are enriched now with predicates of applicability. If a transition does not
have a predicate of applicability, it can be used by all tasks. However, if a transition has a
predicate of applicability assigned, it can be used only by tasks fullfilling this predicate.
Now, each task has its own rank – a unique global identifier. Usually, the predicates of
applicability contain some expressions with task ranks. In other words, the adaptive
algorithms are defined now by means of multiple tasks working on the graph representation
of a mesh distributed into several sub-graphs. The algorithms require now some
communication between tasks working on sub-graphs assigned to adjacent parts of a mesh.
Thus, the communication channels are defined between adjacent tasks. In order to express
the communication on the control diagrams, some states represent send / receive operations,
with predicates of applicability clearly defining the sender’s and receiver’s tasks.

At this point the model is still analysed on the abstract level and we neither introduce
particular parallel machine architecture nor do we consider a particular number of
processors. The algorithms are defined in the most general manner, to enable an efficient
execution in case when there are many more tasks than processors. In order to do so, the
redundancy of the algorithms executed for particular tasks is reduced as much as possible.

It should be emphasized that the tasks defined in Definition 2.18 constitute the grain
for the load balancing and scheduling algorithms. The algorithms are introduced in Section

 60

2.3. At this point, it is assumed that the architecture of the parallel machine is already
known. The input for the algorithms (the grain) is a list of tasks with estimated
computational load for each task, related to the most expensive parts of the self-adaptive
hp-FEM algorithm. As the output we obtain a map that assigns the tasks to processors.

Definition 2.19
A super-task is defined as an execution of multiple atomic tasks on its local graph
representation of a part of the mesh, representing a single sub-domain. The partition of the
mesh into sub-domains results from the execution of load balancing and mesh partitioning
algorithms. Each super-task is associated with a single sub-domain assigned to a single
processor, and has its own global number.

Definition 2.20

A control diagram for the level of super-tasks is a graphic representation of the partial
order of execution of atomic tasks, agglomerated into a super-task, working on a local
graph representing a single sub-domain. The control diagram for the level of super-tasks
represents a sequential execution of atomic tasks within a super-task on its local sub-graph,
representing a single sub-domain. Thus, each task executes the control diagram on its local
sub-graph, with some additional inter-super-task communication added. The control
diagram is represented by UML state diagrams, with symbols explained in Table 2.3. Some
transitions on the control diagrams are enriched now with predicates of applicability. If a
transition does not have a predicate of applicability, it can be used by all super-tasks.
However, if a transition has a predicate of applicability assigned, it can be used only by
super-tasks fullfilling this predicate. Now, each task has its own number – a unique global
identifier. At this point, we assume that the distributed memory architecture is used, and
each super-task is assigned to a single processor. Thus, the super-task number becomes
automatically the processor number. Usually, the predicates of applicability contain some
expressions with super-task numbers. In other words, the adaptive algorithms are defined
now by means of multiple super-tasks working on the graph representation of a mesh
distributed into several sub-graphs. The algorithms require now some communication
between super-tasks working on sub-graphs assigned to adjacent sub-domains. Thus, the
communication channels are defined between the adjacent super-tasks. In order to express
the communication on the control diagrams, some states represent send / receive operations,
with predicates of applicability clearly defining the sender’s and receiver’s super-tasks.

The presented analysis is based on the PCAM (Partitioning, Communication,

Agglomeration and Mapping) model introduced by Foster, but it differs from his definition
in several aspects. There are three levels in the hierarchy of tasks: the atomic tasks, the
tasks and the super-tasks. The communication channels are defined between tasks, in order
to obtain abstract parallel algorithms on the level of grains for the load balancing and mesh
(graph) partitioning algorithms. The parallel algorithms are redefined on the level of
super-tasks, resulting from the execution of the load balancing and partitioning algorithms.
The communication channels are redefined on the level of super-tasks, since the amount of
transferred data differs from the amount defined on the level of tasks, and the parallel
algorithms are slightly modified to express the new decomposition of the graphs.

 61

2.1. Graph grammar model with atomic tasks for the self-

adaptive algorithm

The original self-adaptive hp-FEM algorithm introduced by Demkowicz 2006 is
described in Appendix B. It can be summarized in the following eight steps:

1) generate an initial mesh. The initial mesh becomes the so-called ”coarse mesh”
for the first iteration,

2) solve the coarse mesh problem by using the direct solver for hp-FEM,
3) generate the fine mesh from the coarse mesh. Each finite element from the coarse

mesh is broken into four elements and the polynomial order of approximation is
uniformly raised by one,

4) solve the fine mesh problem by using the direct solver for hp- FEM,
5) select the optimal refinement strategy for each finite element from the coarse

mesh. That should be based on the relative error estimations computed using the
coarse and fine mesh solutions,

6) execute all required h refinements,
7) execute all required p refinements,
8) if the maximum relative error of the solution is greater than the required accuracy,

then go to Step 2. The new optimal mesh becomes the coarse mesh for the next
iteration.

The following meta-definitions are introduced for better understanding of the
algorithm:

a) FE mesh. Partition of a domain into several finite elements, e.g. partition of L-
shape domain from Figure 1.1 into FE mesh with 3 finite elements, as presented in
Figure 1.2,

b) initial mesh. FE mesh, input to the algorithm,
c) FE mesh problem. Solve the system of linear equations resulting from FE

discretization of a weak variational form, e.g. solve the system of equations (1.10-
1.12) resulting from the FE discretization of the weak formulation (1.5-1.8),

d) solution of the FE mesh problem. The degrees of freedom i

hpu obtained by

solving FE mesh problem (1.10-1.12),
e) mesh refinements – h, p or hp refinements executed on selected finite elements:

h refinement consists in breaking some finite element into smaller elements;
p refinement consists in changing polynomial order of approximation for some
finite element edges or interiors; hp refinement is a mixture of h and p refinements,

f) optimal mesh. The mesh providing the higher possible error decrease rate (1.17),
obtained by executing a sequence of h, p, or hp refinements on the initial mesh.

For more precise mathematical definitions, see Appendix B.
The particular steps of the algorithm will be formulated on the basis of the CP-graph

grammar in the next part of this chapter. This graph grammar model is intended for the
two-dimensional rectangular finite elements. For the detailed mathematical definition of the
finite element, see Appendix A. In order to simplify and to reduce the number of graph
grammar productions, we assume that the initial mesh is a linear sequence of rectangular
finite elements.

 62

2.1.1. Algorithm of initial mesh generation

The self-adaptive hp-FEM algorithm starts with an arbitrary initial mesh. The initial
mesh can be either generated by executing a sequence of graph transformations provided by
the user, or reconstructed from the initial data obtained from some external mesh generator
(e.g. NASTRAN).

Fig.2.1. Graph transformations generating structure of initial mesh

Let us focus first on the subset of graph transformations modeling the generation of an
arbitrary initial mesh. The presentation is limited to the horizontal row of initial mesh
elements, for the sake of simplicity. However, the presented graph transformations can be
generalized as one case of an arbitrary two-dimensional initial mesh. The process of the
initial mesh generation is expressed by the graph transformations, presented in Figure 2.1.

The Figure introduces several graph grammar productions. Each graph grammar
production consists of two CP-graphs, one on the left and the other one on the right-hand
side. The first graph grammar production denoted by (P1) has the single vertex CP-graph,
denoted by S symbol, on its left-hand side. This is the initial CP-graph called the graph
grammar axiom. The graph grammar productions are executed on a current CP-graph
representation of the computational mesh (called the current CP-graph in the following
explanations).
The initial CP-graph representation of the mesh is supposed to be equal to the single S

vertex axiom graph. The execution of a graph grammar production consists of the following
steps:

a) the graph on the left-hand side of the production must be localized on the current
CP-graph representation of the mesh,

b) the graph is removed from the current CP-graph,
c) the new graph, on the right-hand side of the production becomes a replacement for

the removed graph,
d) the process of removing the left-hand-side graph is very often accompanied by

releasing some bounds which connect the vertices of the removed graph with some
vertices of the current CP-graph,

e) a number of bounds on the left-hand-side graphs and on the right-hand-side graphs
of the production must be equal. The new right-hand-side graph of the production
is connected to the corresponding vertices of the current graph,

f) formally, the bounds on the left-hand-side graphs and on the right-hand-side
graphs should be always numbered in order to establish a rule for the connection

 63

of the right-hand-side graph bounds with the remaining vertices of the current
graph. However, for the sake of simplicity, if the connection rule can be concluded
from the context of the production, the numbering is omitted.

The presented subset of the graph transformations allows us to generate a horizontal

sequence of initial mesh elements. An exemplary application of the sequence of graph
transformations defining an initial mesh with two finite elements is illustrated in Figure 2.2.

Fig.2.2. The sequence of graph transformation (P1)-(P2)-(P4) generating an initial mesh with two

finite elements
The generation of a row of elements starts from the axiom graph. First, the (P1)

production is executed. The production replaces the single S vertex graph by the single T

vertex graph. Second, the (P2) production is executed. The production replaces the single T

vertex graph by a new graph, with two vertices, denoted by Iel and T1 symbols, connected
by one edge. The last executed production (P4) removes the sub-graph with the single T1

vertex and adds a new graph with the single Iel1 vertex. The new graph is connected to the
second Iel vertex in place of the removed graph.

The subset of graph transformations presented in Figure 2.1 generates only a topology
of the initial mesh. Once the topology of the initial mesh is generated, we can generate also
the structure of each element.

It is assumed that each initial mesh element is a two-dimensional rectangular hp finite
element. The structure of the hp finite element is as follows: it consists of four vertices, four
edges and the interior. The first order shape functions are defined at the element vertices,
the hierarchical higher order shape functions are defined at the element edges, and the
higher order bubble shape functions are defined at the element interior. For the formal
definition of the hp finite element, see Appendix A. The structure of an exemplary hp finite
element, with the second order of approximation used in the vertical direction and the third
order of approximation used in the horizontal direction, is illustrated in Figure 2.3. The
polynomial orders of approximation are denoted in the CP-graph by attributing the graph
vertices. The location of the finite element vertices and edges is identified by 5, S, W, E,
5W, 5E, SW and SE labels assigned to the graph edges.

The process of generation of the structure of initial mesh elements is described by two
graph transformations, presented in Figures 2.4 and 2.5. The first graph transformation
generates the structure of a single initial mesh element, and the second graph
transformation identifies the edges of adjacent initial mesh elements. Note that these graph
transformations must be defined also for Iel label replaced by Iel1 and Iel2, since the initial
mesh elements are denoted by these three labels. A type of label to be applied depends on
the number of neighboring initial mesh elements.

The sequence of graph transformations, which generate the structure of the two initial
mesh elements from Figure 2.2 is presented in Figure 2.6. This corresponds to two
executions of (PII) graph transformation and one execution of (PCI) graph transformation
and is denoted by the sequence (PCI)

2
-(PII). In particular, the whole sequence of the graph

grammar productions, executed from the graph grammar axiom, is the following:
(P1)-(P2)-(P5)-(PCI)

2
-(PII). The execution of (P1)-(P2)-(P5) productions has been

summarized in Figure 2.2. The first execution of the (PCI) production removes the first

 64

sub-graph with the single Iel1 vertex from the current graph (presented on the last panel in
Figure 2.2). The removed graph is replaced by a new graph, on the right-hand side of the
production, with the vertices representing the structure of the first element connected as son
vertices to the iel vertex. The second execution of the (PCI) production removes the second
sub-graph with the single Iel1 vertex from the current graph. The removed graph is
replaced by a new graph, on the right-hand side of the production, with the vertices
representing the structure of the second element connected as son vertices to the second iel

vertex. The resulting graph is presented on the top panel in Figure 2.6. Finally, the (PIC)

production is executed. The production localizes a slightly complicated sub-graph on its
left-hand side on the current graph and removes the graph, leaving two bounds unconnected
(the bounds connecting the F vertices with the I vertices). Then, a new graph, on the right-
hand side of the production is added to the current graph, and connected with two
previously cut bounds. The resulting graph is presented on the bottom panel in Figure 2.6.

Fig.2.3. Structure of exemplary hp finite element, together with the corresponding CP-graph

representation. The third order of approximation is used in the horizontal direction and the second
order of approximation is used in the vertical direction

At this point, we can examine the concurrency of the algorithm for an initial mesh
generation. This can be done by denoting those atomic tasks (defined as graph grammar
productions) that can be executed in the concurrent way.

Note that the state of the parallel algorithm is determined by its position on the control
diagram and by the current graph representation of the computational mesh. Each state of
the control diagram denotes some atomic tasks, defined as the execution of graph grammar
production on the graph representation of the mesh. Each production is executed on a sub-
graph of the graph representation of the mesh. The sub-graph is determined by the left-hand
side of the production. If a sub-graph on the left-hand side of the production is localized in
several positions on the current graph representation of the mesh, it is possible to execute
the production in the concurrent way.

 65

The initial mesh generation consists of two parts. The first part is related to the
generation of the topology of the initial mesh. This has been denoted by graph grammar
productions (P1-P5) presented in Figure 2.1. The second part is related to the generation of
the structure of initial mesh elements as well as to the identification of common edges of
adjacent initial mesh elements, which has been denoted by the productions (PII) and (PIC)

in Figures 2.4 and 2.5.
The presented graph grammar has been limited to the simplified case of the linear

sequence of initial mesh elements, so the generation of the topology of the mesh is a purely
sequential operation. This is because each graph grammar production (atomic task)
employs the sub-graph generated by the previous production (the left-hand side of each
production employs graph vertices denoted by T or T1 symbols generated by the previous
production).

However, the generation of the mesh structure can be executed in the concurrent way.
The structure of each initial mesh element can be generated in a way that is independent of
its adjacent elements. The process of identification of edges can be executed in the
concurrent way, if the mesh elements have a structure of a linear sequence. This is
summarized in Figure 2.7. These states of the control diagram on which the graph grammar
productions can be executed in the concurrent way, are denoted by the <<concurrent>>
stereotype. The additional synchronization points before the concurrent execution of PII

and PIC have been added.
The alternative way to generate an initial mesh is to provide the input data coming

from an external mesh generator. Such input data usually have the following format:

List of vertices (geometrical coordinates)
List of edges (defined by two vertices)
List of elements (defined by four edges)
List of polynomial orders of approximation
 for elements interiors

Fig.2.4. Graph grammar production generating structure of initial mesh element

 66

Fig.2.5. Graph grammar production identifying common edges for two adjacent initial mesh elements

In this case, the graph representation of the initial mesh results from the execution of
the following algorithm:

Generate graph vertices representing element vertices
 (denoted by v)
Attribute vertices (assign coordinates to vertices)
Generate graph vertices representing element edges
 (denoted by F)
Connect graph vertices representing element edges with graph
 vertices representing element vertices
Generate graph vertices representing element interiors
 (denoted by I)
Connect graph vertices representing element interiors with
 graph vertices representing element edges
Generate graph vertices representing initial elements
 (denoted by iel)
Connect graph vertices representing initial element with
 graph vertices representing element vertices, edges and
 interiors
Generate graph vertices representing the boundary
 (denoted by B and fake)
Attribute graph vertices representing element interiors
 by polynomial orders of approximation

Algorithm 1. Algorithm for the generation of initial mesh

 67

F

IF F

v

v vF

F

I

v

F F

v

v vF

B

B

B

B

iel

fake

fake

fake

fake

v

NNW

W

SW S SE

E

NE

B

B

B

B

iel

fake

fake

fake

fake

NENW

W E

SW

N

S SE

F

IF F

v

v vF

F

I F

v

vF

B

B

B

iel

fake

fake

fake

v

2

2

B

B

B

iel

fake

fake

fake

W

SW

NNW NNE NW

WE

S SE SW S SE

E

NE

Fig.2.6. The sequence of graph transformations (PII)2-(PIC) generating the structure of the two initial

mesh elements from Figure 2.2

The initial mesh generated in one of the above ways is called the coarse mesh.

 68

Fig.2.7. Control diagram for the generation of initial mesh on the level of atomic tasks

2.1.2. Algorithm of solution of coarse mesh problem

In the next step of the self-adaptive hp-FEM algorithm, the FEM discretization of the
weak form of PDE (1.10-1.12) is solved for the coarse mesh. It is necessary to define an
efficient direct solver working on the graph representation of the computational mesh. In
the first part of this section we introduce the direct solver algorithm for the hp finite
element mesh. In the second part of this section, the direct solver algorithm is expressed in
terms of graph transformations and control diagram, which defines the order of execution
of the graph transformations related to the solver operations.

The coarse mesh approximation is obtained with the basis of the coarse mesh
approximation space hpV . The basis is constructed by means of the graph representation of

the coarse mesh. Each graph vertex denoted by label v corresponds to a finite element
vertex, and contributes a single first order shape function to the basis. Each graph vertex
denoted by F label corresponds to a finite element edge, and contributes 1−p higher order

edge shape functions to the basis. Here p denotes the polynomial order of approximation of
the edge. Each graph vertex denoted by I label corresponds to a finite element interior, and
contributes ()()11 −− vh pp higher order interior shape functions to the basis. Here ()vh pp ,

denote the polynomial orders of approximation in the horizontal and vertical directions,
used for the element interior. For the formal definition of a hierarchical shape functions
used for the hp finite element, see Appendix A.

To facilitate the discussion on the proposed solver, let us consider a simple two finite
element problem presented on panel (a) in Figure 2.8. The hp-FEM discretization of the
weak form of considered PDE leads to the following system of equations

 () () hp
j
hp

�

i

j
hp

i
hp

i
hp �jeleebu

hp

,...,1,
1

==∑
=

 (2.28)

where ()j
hp

i
hp eeb , and ()j

hpel are problem-dependent integrals of shape functions i
hpe

and j
hpe on the domain Ω presented on panel a) in Figure 2.8. hp� =15 is the total number

of shape functions, and i
hpu are the unknown degrees of freedom – coordinates of the

approximated solution in the shape function basis { } hp�

i

i
hpe

1=
. For the sake of simplicity, we

 69

assume that the polynomial orders of approximation in both directions are equal to two,
for all edges and for the element interiors.

The first order shape functions related to the top vertices are presented on panel (b) in
Figure 2.8. The support of the first and fifth shape function, denoted by light grey colour,
covers a half of the interior of a single element. The support of the third shape function,
denoted by dark grey colour, covers both elements. The other first order shape functions are
defined in a similar way.

The second order shape functions related to the edges are presented on panel (c) in
Figure 2.8. The support of the second shape function, denoted by light grey colour, covers
only the first element, while the support of the fourth shape function, denoted by dark grey
colour, covers only the second element. However, the support of the eighth shape function
covers both elements.

The shape functions of the element interior are illustrated on panel (d) in Figure 2.8.
Their support covers only a single element interior. The hp-FEM employs also the higher
order shape functions for the element edges and interiors (Demkowicz 2006). However,
their support covers the same fragments of the mesh as in case of the second order shape
functions.

Fig.2.8. (a) Two finite element mesh. (b) Three examples of the first order shape function assigned to
element vertices. (c) Three examples of the second order shape functions assigned to element edges.

(c) Two examples of the second order shape functions assigned to element interiors

The solution of the system of equations (2.28) consists of two steps:
1) to generate a system of equations by computing stiffness matrix and load vector

contributions,
2) to solve the generated system of equations by executing the forward elimination

and the backward substitution.
For the finite elements with the polynomial orders of approximation equal to

()()11 −− vh pp in the element interior, and the polynomial orders of approximation equal to

hp and vp in the element horizontal and vertical edges, respectively, there are

()()11nrdof ++= vh pp unknowns, so there are 2nrdof matrix integral contributions. Each

 70

contribution requires ()()11 ++ vh pp Gaussian quadrature integration points. It implies the

following integration algorithm:

Fig.2.9. Global stiffness matrix resulting from the integration on two finite element mesh

from Figure 2.8

Fig.2.10. Two element local matrices resulting from the integration algorithm executed on the first

and the second element independently. Elimination of fully assembled degrees of freedom related to
element interior and boundary edges. Merging interface (common edge) problem contributions,

followed by full elimination of the interface degrees of freedom.

 71

for i=1, ph+1
 for j=1, pv+1
 for m=1,nrdof
 for n=1,nrdof
 aggregate a(m,n) into element stiffness matrix
 end
 aggregate b(m) into element load vector
 end
 end
end

Algorithm 2. Sequential integration for a single finite element

Note that the computational cost of this algorithm is ()()61+pO in case of 2D meshes

and ()()91+pO in case of the 3D meshes (Paszyński 2007b). Thus, for the high polynomial

orders of approximation ()9== vh pp on a single finite element,

the computational cost increases to 106 in 2D or 109 in 3D.
The stiffness matrix for the two element mesh from Figure 2.8 is illustrated in Figure

2.9. The row and column indices refer to the shape functions. Each time the support of i-th
row shape function and j-th column shape function has a common part, (i, j) matrix entry
is non-zero. These non-zero entries are denoted by dark grey colour. The straightforward
elimination of the whole matrix involves 153 operations.

But let us consider an alternative approach presented in Figure 2.10.
We create two separate matrices, the first and the second element matrices, with such

an ordering that the degrees of freedom assigned to common edge are located at the end.
Now, all matrix contributions are fully assembled, except the common edge contributions.
The partial forward elimination can be executed on each matrix, and stopped before
processing these degrees of freedom assigned to common edge which are not fully
assembled.

This procedure can be expressed in the following way:













=



















→









=















*

1

*
1

1

1
*

1

*
11

1

1

1

1

11

11

ssssss
b

b

x

x

A0

BU

b

b

x

x

AC

BA
 (2.29)













=



















→









=















*

2

*
2

2

2
*

2

*
22

2

2

2

2

22

22

ssssss
b

b

x

x

A0

BU

b

b

x

x

AC

BA
 (2.30)

Here, iA stands for this part of element local matrices which is related to the

interactions of the element interior and boundary edges shape functions, iB and iC stand

for these parts of element local matrices which are related to the interactions between the

element interior shape functions and the common edge shape function, and s
iA stands for

this part of element local matrices which is related to the interactions between the common
edge shape functions. Moreover, ix and ib stand for the degrees of freedom and the right-

hand-side terms related to the element interior and boundary edges, while s
ix and s

ib stand

for the degrees of freedom and the right-hand-side terms related to the common edge.

 72

The partial forward eliminations executed on both systems result in
*s

iA two

contributions to the interface problem of the common edge. The entire procedure is called
the Schur complement of the internal degrees of freedom with respect to the interface
degrees of freedom.

 bxA ˆˆˆ = (2.31)

 TsTs
2

*

221

*

11
ˆ PAPPAPA += (2.32)

 TsTs
2

*

221

*

11
ˆ PbPPbPb += (2.33)

Here, iP stand for the permutation matrices transforming an element local ordering of

the degrees of freedom located on the interface (the common edge in this example) into the
global ordering on the interface.

 () ()iiii
i nnnn interfaceinterfaceinterfaceinterface: ×→× MMP (2.34)

In other words, both sub-matrices are merged, as presented in Figure 2.10, and we
obtain a fully assembled matrix assigned to the common edge. The interface problem – the
common edge problem (2.31) – has been solved now, and we obtain the interface problem
solution x̂ . Finally, the global problem can be solved by executing partial backward
substitutions, based on the solutions propagating from the previous level systems. It may be

achieved by the replacement of the Schur complement contributions
*s

iA in (2.29) and

(2.30) by the identity matrices, replacing the right-hand-side parts s
ib by the obtained

solution (remapped into the element local ordering of the interface degrees of freedom), and
executing backward substitution on both systems.













=



















−− 1

11

*
1

1

1
*
11

PxP

b

x

x

10

BU
)Ts (2.35)













=



















−− 1

11

*
2

2

2
*
22

ˆ PxP

b

x

x

10

BU
Ts (2.36)

The computational cost of this alternative approach involves two partial forward

eliminations with 296 ⋅ operations and one full forward elimination with 33 operations.
This approach is over three times faster than straightforward elimination of the whole
matrix, in case of the two finite element mesh.

In the final part of the section, the solver algorithm is expressed by the graph
transformations working on the graph representation of the computational mesh. Let us
focus on the example of the initial mesh with two finite elements represented by the graph
presented in Figure 2.6.

There are three subsets of the graph transformations modeling the direct solver:
1) graph transformations executing the aggregation of the degrees of freedom into

multiple front matrices,
2) graph transformations executing the partial forward eliminations,
3) graph transformations executing the partial backward substitutions.
The process starts with the aggregation of the active elements interior nodes into two

so-called front matrices. This is expressed by the graph transformation presented in Figure

 73

2.11. The α symbol denotes the aggregation process and the i symbol denotes the global

index of the front matrix. Actually, the Iiα symbol is meant to create a new front matrix

and to aggregate the degrees of freedom of the element interior to the front matrix.

Fig.2.11. Graph transformation enforcing the aggregation of degrees of freedom of element interior

Fig.2.12. Graph representation of the mesh after execution of (P aggregate interior)2

Fig.2.13. Graph transformation aggregating edges located on the boundary

The graph representation of the mesh after the execution of (P aggregate interior) is

presented in Figure 2.12. Two front matrices related to the two initial mesh elements have
been created. The next step is to apply the graph transformations aggregating the element
edges and the corner vertices, which are located on the boundary of the domain. These
transformations are presented in Figure 2.13 and 2.14. The graph representation of the

 74

mesh, after these transformation have been executed, is presented in Figure 2.15. The final
step is to aggregate the common edge contributions to both local front matrices. This is
expressed by graph transformations presented in Figures 2.16 and 2.17. First, the common

edge contributions, and then the common vertices are aggregated. The ji,α symbol
expresses the aggregation of two contributions, related to the common edge or vertex,
to two frontal matrices assigned to both adjacent elements. The resulting graph
representation of the mesh is presented in Figure 2.18.

Fig.2.14. Graph transformation aggregating corner vertices located on the boundary. The

transformation is cloned for 4 directions representing 5E, 5W, SE, SW locations of graph vertices

Fig.2.15. Graph representation of the mesh after execution of – (P aggregate interior)2 –

(P aggregate boundary edge)6 – (P aggregate corner vertex)4

 75

Fig.2.16. Graph transformation aggregating degrees of freedom of the common edge

Fig.2.17. Graph transformation aggregating degrees of freedom of the common vertices

Fig.2.18. Graph representation of the mesh after execution of – (P aggregate interior)2 –
(P aggregate boundary edge)6 – (P aggregate corner vertex)4 – (P aggregate edge) –

(P aggregate common vertex)

 76

Fig.2.19. Graph transformation executing the elimination of internal degrees of freedom from i-th

frontal matrix

At this point, the aggregation process is finished. The two local frontal matrices

correspond to those presented in (2.2-2.3) before the elimination process starts. The
following set of graph transformations executes the elimination process.

The process of elimination follows the order identical to the process of aggregation of
degrees of freedom. First of all, the internal degrees of freedom are eliminated from both
frontal matrices, which is expressed by the graph transformation presented in Figure 2.19.
The process of elimination of degrees of freedom, related to the element edges and corner
vertices located on the boundary of the domain, is executed next. This is expressed by the
graph transformations presented in Figures 2.20 and 2.21.

Fig.2.20. Graph transformation executing the elimination of degrees of freedom related to boundary

edges

Fig.2.21. Graph transformation executing the elimination of degrees of freedom related to corner

vertices

 77

Fig.2.22. Graph representation of the mesh after the elimination of degrees of freedom related to

element interiors as well as to boundary edges and vertices

The graph representation of the mesh after the elimination of degrees of freedom,

related to the element interior and boundary edges, is presented in Figure 2.22. The degrees
of freedom which have been already eliminated are denoted by the β symbol.

At this point, the two local matrices correspond to the equations (2.29)-(2.30)
presenting the system after the elimination. Finally, the graph transformations responsible
for the forward elimination of the common interface are applied. These transformations
actually merge the two contributions, and implement the elimination process. The
transformations are presented in Figures 2.23 and 2.24.

Fig.2.23. Graph transformation executing the elimination of degrees of freedom related to common

edges

 78

Fig.2.24. Graph transformation executing the elimination of degrees of freedom related to common

vertices

The process of the solution of the coarse mesh problem can be expressed by the
control diagram presented in Figure 2.25. The first part of the diagram refers to the
aggregation process while the second part of the diagram refers to the elimination.
The process of the coarse mesh solver has been expressed as a sequence of atomic tasks,
defined as the execution of graph grammar productions on the graph representation of the
mesh.

The first atomic task, represented by the production (P aggregate interior), generates
a part of an element local matrix related to degrees of freedom of an element interior.
The finite element is identified by the graph vertex denoted by I symbol on the left-hand
side of the production. Usually, there are many elements, so there are many sub-graphs
representing different elements interiors, thus the atomic task can be executed in the
concurrent way. In fact, these atomic tasks create several element matrices and number

them by index i assigned to the right-hand side Iiα of the production.
The following atomic tasks are executed after all interiors have been aggregated (after

all (P aggregate interior) atomic tasks - productions have been executed). The following
atomic tasks concern the production (P aggregate corner vertex) which aggregates the
degrees of freedom related to element vertices located on the corners of the domain and the
production (P aggregate boundary edge) which aggregates the degrees of freedom
assigned to the edges located on the boundary. It is obvious that there are many such
boundary vertices and edges, and all these aggregations can be executed in the concurrent
way. Moreover, the executions can be mixed, which is denoted in Figure 2.25, by adding
the synchronization points before and after the execution of both atomic tasks. Note that the
element matrices are identified on the basis of index read from element interior node from
the left-hand side of the production.

 79

Fig. 2.25. Control diagram for coarse mesh solver algorithm on the level of atomic tasks

The following atomic tasks are executed after corner vertices and all boundary edges

have been aggregated. Note that boundary vertices which are not located on the corners of
the domain are still not aggregated. The next atomic tasks concern the productions (P

aggregate edge) and (P aggregate shared vertex), responsible for the aggregation of
edges and vertices shared between some adjacent elements. These atomic tasks can be
again executed in the concurrent way, and they can be mixed. The element matrices are also
identified on the basis of the index read from element interior node from the left-hand side
of the production.

The aggregation process is now completed. It is followed by partial forward
eliminations. The first atomic task refers to the production (P eliminate interior) and is
responsible for the elimination of the element interior degrees of freedom. The matrix on

which the elimination is executed is identified by the i index stored as attribute Iiα at the
interior node vertex on the graph representation of the mesh. Note that these eliminations
can be performed in the concurrent way, since they are executed on separate matrices.

The following atomic tasks are executed after all element interiors have been
eliminated. The next atomic tasks concern the production (P eliminate boundary edge),
eliminating the degrees of freedom assigned to the edges located on the boundary, and the
production (P eliminate corner vertex), eliminating the degrees of freedom assigned to
vertices located at the corners of the domain. The atomic tasks can be executed in the
concurrent way and they can be mixed (the elimination of boundary edges can be executed
at the same time as the elimination of corner vertices). Again, the element matrix is
identified by indices read from graph vertices.

The following atomic tasks are executed after all boundary edges and corner vertices
have been eliminated. The next atomic tasks refer to productions (P eliminate edge),
eliminating the degrees of freedom related to the shared edges and productions (P

eliminate common vertex), eliminating the degrees of freedom related to the shared
vertices. This time the elimination is executed on two matrices, identified by graph nodes
attributes. As a result of these two eliminations, we obtain two Schur complements, which
are merged. These atomic tasks can be executed in the concurrent way, providing that the
sub-graphs from the left-hand side of the production do not overlap. Note that these atomic
tasks can be also mixed.

 80

After the partial forward eliminations, the backward substitutions are executed. They
follow the same pattern as the aggregation and the elimination. Finally, all α and β

symbols are removed from the mesh.
This algorithm can be generalized in such a way that it may be applied to more

complex meshes. This will be discussed further in this chapter.
We assume that the coarse mesh solution is stored at the graph vertices. The solution

represents the shape function coefficients. It is stored in the form of graph attributes i
hpu

distributed among the graph vertices. The number of shape functions at the graph vertices
representing the finite element vertices is equal to 1. The number of shape functions at the
graph vertices representing the element edges is equal to p-1, where p denotes the
polynomial order of approximation at the edge. Finally, the number of shape functions at
the graph vertices representing the element interiors is equal to (ph-1)(pv-1), where
(ph , pv) denote the polynomial orders of approximation in the horizontal and vertical
directions.

2.1.3. Algorithm of global hp refinement

In the next step of the self-adaptive hp-FEM algorithm, the so-called fine mesh is
generated from the copy of the coarse mesh. Thus, the coarse mesh is duplicated, and the
so-called global hp refinement is executed on the copy of the coarse mesh. The global hp

refinement involves the following two steps:
1) application of the global h refinement,
2) application of the global p refinement.
The global h refinement employs the execution of the h refinement for each element of

the copied coarse mesh. The h refinement is expressed by breaking an element’s interior
and edges.

To break an element’s interior means to generate a new son vertex, four new edges
and four new interiors. From the point of view of the graph representation of the mesh, the
breaking of an element’s interior is expressed by the creation of a new graph vertex
denoting the newly created son vertex, four new graph vertices denoting newly created
edges, and four new graph vertices denoting newly created interiors. These newly created
graph vertices are connected to the broken interior. The locations of a finite element
vertices and edges are identified by 5, S, W, E, 5W, 5E, SW and SE labels assigned to
the graph edges.

To break an element edge means to generate a new vertex and two new edges. From
the point of view of the graph representation of the mesh, the breaking of an element edge
is expressed by the creation of a new graph vertex denoting the newly created son vertex
and two new graph vertices denoting the newly created edges.

These procedures are expressed by (P break interior) and (P break edge) graph
transformations presented in Figures 2.26 and 2.27.

 81

Fig.2.26. Graph transformation for breaking an element interior

Fig.2.27. Graph transformation for breaking an element edge

The following two mesh regularity rules are enforced during the process of mesh
transformation:

1) the 1-irregularity rule „a finite element can be broken only once without breaking

the adjacent large elements”,
2) the minimum rule “the polynomial order of approximation of an element edge

must be equal to the minimum of corresponding orders of approximation from

the element interiors”.
The 1-irregularity rule enforces breaking the unbroken large adjacent elements before

breaking a small element for the second time, which has been illustrated in Figure 1.7.
The purpose of this mesh regularity rule is to avoid multiple constrained edges, which leads
to the problems with approximation on such edges. In fact, breaking of an element consists
in two steps – to break element interior and to break element edges. The 1-irregularity rule
can be reformulated in the following way, to express this strategy of two steps.

An element edge can be broken only if two adjacent interiors have been already

broken, or the edge is adjacent to the boundary. An element interior can be broken only if

all adjacent interiors are of the same size as this interior, or smaller.
This is expressed by the graph transformations (PFE1-PFE4) presented in Figure

2.28, and the production (PJI) presented in Figure 2.29.

 82

Fig.2.28. Graph transformations allowing for breaking an element edge

Fig.2.29. Graph transformation allowing for breaking an element interior

Fig.2.30. Graph transformation for reconstructing connectivities between edges and interiors in the

western direction. The transformation is cloned for F1 replaced by Fe, F2 by F1 and e replaced by e2

or e3

The 1-irregularity rule is enforced on the level of graph grammar syntax. The interiors
which can be broken without violating the mesh regularity rule are denoted by the capital I
symbol. There is a graph transformation (P break interior) which allows for breaking
these interiors. The newly created interiors are denoted by the capital J symbol, however
there is no graph grammar transformation which allows for breaking J interiors. Thus, the
adjacent large elements must be broken first. Then, the element edges surrounded by
already broken interiors must be broken, too. There are several graph transformations
(PFE1-PFE4) which make it possible to break those element edges which are either

 83

surrounded by two broken interiors or are surrounded by one broken interior and are
adjacent to the boundary. These transformations change the edge symbol from F to E (or to
F2 or E2). These edges can be broken now using the graph transformation (P break edge).

Fig.2.31. Graph transformation for reconstructing connectivities between edges and interiors in the

northern direction. The transformation is cloned for e replaced by e2 or e3

The following set of graph transformations (Peast), (Pwest), (Pnorth), (Psouth),
presented in Figures 2.30-2.33, reconstructs the connectivities between edges and interiors.
The number of edges which surround an element interior is coded in the symbol of each
interior. Here the J symbol stands for an interior with no adjacent edges of the same size,
J2, J3 and J4 stand for an interior with, respectively, two, three or four adjacent edges of
the same size. An element interior can be broken only if it is surrounded by four edges of
the same size. The graph transformation (PJI) changes the J4 symbol to the I symbol,
allowing for the application of graph transformation (Pbreak interior).

Fig.2.32. Graph transformation for reconstructing connectivities between edges and interiors in the

southern direction. The transformation is cloned for e replaced by e2 or e3

Let us conclude this section with an exemplary execution of the global h refinement on
the graph representation of the two finite element mesh presented in Figure 2.34.
The corresponding graph representation of the mesh is presented in Figure 2.6.

 84

First, it is possible to break both element interiors, since they are surrounded by the
edges of the same size. This is illustrated in Figure 2.35. Second, it is possible to break all
the element edges, since they are either surrounded by two broken interiors, or by a broken
interior and the boundary. This is illustrated in Figure 2.36.

Next, the adjacency data are propagated from the parent graph vertices to the son graph
vertices. We execute all (Pwest) transformations, all (Peast) transformations, then all
(Psouth) transformations and (Pnorth) transformations. At this point, all the interiors are
denoted by J4 symbols. The interior symbols can be updated to the I symbols, to allow for
future refinements. The entire procedure is illustrated in Figure 2.37. The resulting fine

mesh corresponds to the following sequence of graph transformations (P break interior)
2
-

(P break edge)
7
-(Pwest)

2
-(Peast)

2
-(Pnorth)

2
-(Psouth)

2
-(PJI)

8 executed on the coarse
mesh. This is presented in Figure 2.38.

Fig.2.33. Graph transformation for reconstructing connectivities between edges and interiors in the

eastern direction. The transformation is cloned for e replaced by e2 or e3

Fig.2.34. Execution of the global h refinement on the two finite elements mesh

The process of h refinement can be now described in terms of the atomic tasks. The
order of execution of the atomic tasks for the h refinement is determined by the control
diagram, presented in Figure 2.39.

 85

The execution starts from the atomic tasks which refer to productions (PJI) and (P

break interior), with changing a label of graph vertex representing an element interior
node from J to I (since only vertices denoted by I symbol can be broken), and with
breaking element interior. All these atomic tasks can be executed in the concurrent way.

The following atomic tasks are executed after all the required interiors have been
broken. The atomic tasks refer to productions (PFE1-4), changing labels of graph vertices
representing an element edge node from F to E (since only vertices denoted by E symbol
can be broken). All these atomic tasks can be executed in the concurrent way.

After all symbols of graph vertices representing element edges have been updated, the
following atomic tasks related to production (P break edge) can be executed. The atomic
tasks break an element edge and can be executed in the concurrent way, since all edges are
independent.

The remaining atomic tasks are responsible for updating the adjacency data in the
eastern, western, northern and southern directions. All these atomic tasks can be executed
in the concurrent way, however they cannot be mixed. In other words, first all atomic tasks
related to (Peast) productions are executed in the concurrent way, next all atomic tasks
related to (Pwest) productions are executed in the concurrent way, then all atomic tasks
related to (Pnorth) productions are executed in the concurrent way and finally all atomic
tasks related to (Psouth) productions are executed, also in the concurrent way.

 86

F

F F

v

v vF

F

F

v

vF

S

NW

W

SW

N

B

B

B

iel

fake

fake

fake

v

NE

E

SE

2

2

S

NW

W

SW SE

E

N

B

B

B

iel

NE

fake

fake

fake

i i

S

NW NEN

J J

JJ

v

SESW

W E

Fi

Fi

Fi

Fi

S

NW NEN

J J

JJ

v

SESW

W E

Fi

Fi

Fi

Fi

Fig.2.35. Breaking two element interiors by two executions of (P break interior)

 87

v

v v

v

v

vFe Fe

vFe Fe

vFe Fe

Fe

Fe

Fe Fe

Fe Fe

Fe

v

v v v

B

B

B

iel

fake

fake

fake

v

2

2

B

B

B

iel

fake

fake

fake

i i

J J

JJ

v

Fi

Fi

Fi

Fi

J J

JJ

v

Fi

Fi

Fi

Fi

e

e

e

e e

e

e

Fe

Fig.2.36. Breaking all edges by seven executions of (P break edge). For simplicity, only single

father-son links are drawn and edge attributes are not present

The global h refinement is followed by the global p refinement. This involves an
increase in the polynomial orders of approximation for each element interior, followed by
the enforcement of the minimum rule. The polynomial orders of approximation are stored
as attributes of graph vertices (not presented in the above figures).

The attributes ()vh pp , which denote the polynomial orders of approximation

assigned to the element interiors in the horizontal and vertical directions are simply
increased by one to ()1,1 ++ vh pp . This is expressed by the graph transformation (P p-

refinement) presented in Figure 2.40.
The minimum rule, executed in the next step, determines the polynomial orders of

approximation of the element edges. The order of an edge must be equal to the minimal
order of element interiors adjacent to the edge. This can be expressed by graph
transformations presented in Figures 2.41 – 2.44. The graph transformations must be

 88

defined for graph vertices which represent the element edges located in the northern,
southern, eastern and western directions, with respect to the graph vertex representing the
element interior.

The process of p refinement can be also described in terms of the atomic tasks. The p

refinement procedure has been summarized in the control diagram presented in Figure 2.45.
The procedure consists in attributing element interiors by means of the required polynomial
orders of approximation and in executing the minimum rule for edges. All these atomic
tasks with associated graph grammar productions can be executed in the concurrent way,
but they cannot be mixed.

v

v v v

vFe Fe

vFe Fe

vFe Fe

Fe

Fe

Fe

v

v v v

v

B

B

B

iel

fake

fake

fake

v

2

2

B

B

B

iel

fake

fake

fake

i i

J

J

v

Fi

Fi

Fi

Fi

J

J

v

Fi

Fi

Fi

Fi

e

e

e

e e

e

e

Fe

J3

J3

F1

F1

F1

F1

J3

J3

Fig.2.37. Setting connectivities in the western direction by two executions of (Pwest)

 89

v

v v

v

v

v

v v v

B

B

B

iel

fake

fake

fake

v

2

2

B

B

B

iel

fake

fake

fake

i i

v

Fi

Fi

Fi

Fi v

Fi

Fi

Fi

Fi

e

e

e

e e

e

e

F1

F1F2

F2F1

F1

vF1 F1 F1 F1

v vF1 F1 F1 F1

I

I I

I

I I

I I

Fig.2.38. Fine mesh obtained from coarse mesh from Figure 2.8 after executing the following

sequence of graph transformations (P break interior)2-(P break edge)7-(Pwest)2-(Peast)2-(Pnorth)2-

(Psouth)2-(PJI)8

 90

Fig.2.39. Control diagram for h refinement algorithm on the level of atomic tasks

Fig.2.40. Graph transformation for performing local p refinement at graph vertex denoting an element

interior

Fig.2.41. Graph transformation enforcing the minimum rule on the eastern edge

 91

Fig.2.42. Graph transformation enforcing the minimum rule on the western edge

Fig.2.43. Graph transformation enforcing the minimum rule on the southern edge

Fig.2.44. Graph transformation enforcing the minimum rule on the northern edge

Fig.2.45. Control diagram for algorithm of p refinements

and enforcement of the minimum rule on the level of atomic tasks

 92

2.1.4. Algorithm of solution of fine mesh problem

In the next step of the self-adaptive hp-FEM, we solve the FEM discretization of the
weak form of the PDE (1.10-1.12) on the fine mesh.

The same algorithm of the direct solver which has been used in case of the coarse
mesh is applied now to the fine mesh. However, this time the finite elements from the
coarse mesh have been h refined (broken into new smaller son elements) during the global
hp refinement.

The solver algorithm can be generalized to an arbitrary mesh. This can be achieved by
considering the elimination tree constructed by the nested dissection algorithm (Khaira,
Miller, Sheffler 1992) executed for the initial mesh. The simplest example of the initial
mesh and its elimination tree is presented in Figure 2.46.

Fig.2.46. Elimination tree constructed for exemplary initial mesh with eight initial mesh elements

The elimination tree created for the initial mesh is updated when the mesh is refined
(elimination tree follows the refinements executed on the mesh), see Figure 2.47.

Fig.2.47. Elimination tree created for the initial mesh is updated when the mesh is refined

(elimination tree is constructed dynamically, during mesh refinements)

The solver starts with the elimination of the most expensive interior degrees of
freedom, as presented on panel (a) in Figure 2.48. The solver computes the local matrices

 93

related to the active elements and eliminates the degrees of freedom related to an element
interior and the boundary of the domain. The remaining degrees of freedom are related to
the edges shared with adjacent finite elements.

Fig.2.48. Execution of the solver on the eight finite element mesh

 94

In the next step (presented on panels (b) and (c) in Figure 2.48) the solver sums up the
contributions to the Schur complement and eliminates the degrees of freedom related to the
common edge shared between two adjacent finite elements. The process is repeated
recursively, as presented on panels (d) – (e), until we reach the root of the elimination tree.
This is presented on panel (f) in Figure 2.48. The interface problem is solved, which is
illustrated on panel (g) in Figure 2.48. The size of this interface problem is related to the
cross-section of the domain, going through the element edges. This process is followed by
the recursive backward substitutions presented on panels (h-j) in Figure 2.48. Thus, a
proper ordering defined by the elimination tree is based on the knowledge of the structure
of the initial mesh and on the history of mesh refinements. The solver algorithm can be
expressed by the following recursive routine:

matrix function recursive_forward_elimination(tree_node)
if tree_node has no son nodes then
 eliminate leaf element stiffness matrix internal nodes
 return Schur complement sub-matrix
else if tree_node has son nodes then
 do for each tree_node_son
 son_matrix = recursive_forward_elimination(tree_node_son)
 merge son_matrix into new_matrix
 enddo
 decide which unknowns of new_matrix can be eliminated
 perform partial forward elimination on new_matrix
 store the local system at tree_node
 return Schur complement sub-matrix
endif

Algorithm 3. Sequential recursive algorithm for forward elimination

The forward elimination is followed by analogous recursive backward substitution:

function recursive_backward_substitution(tree_node,
 partial_solution)
retrieve the local system from tree_node
replace the Schur complement sub-matrix by identity matrix
substitute partial solution at interface degrees of freedom
execute backward substitution of the local system
if tree_node has son nodes then
 do for each tree_node_son
 retrieve the partial_solution related to interface
 variables at tree_node_son
 call recursive_forward_elimination(tree_node_son,
 partial_solution)
 enddo
endif

Algorithm 4. Sequential recursive algorithm for backward substitution

 95

The generalized algorithm can be also expressed by the graph grammar
transformations. The set of graph transformations, presented in Figures 2.11-2.25, must be
extended to add new graph productions, defined for the labels of the new graph vertices.
These new graph productions can be applied to a new recursive structure of the graph
representation of the fine mesh.

Let us trace the process of the execution of the graph grammar-driven solver on the
fine mesh example. The process starts with the creation of several matrices, called the
frontal-matrices, each matrix for each element interior. It is followed by the aggregation of
degrees of freedom for each element interior. This has been expressed by the production (P

aggregate interior), presented in Figure 2.11. The graph representation of the fine mesh
after the first step is presented in Figure 2.50. In this way we create eight local frontal
matrices.

The process is followed by the aggregation of element edges located on the boundary,
and by the aggregation of the corner vertices. This has been expressed by the graph
transformations (P aggregate boundary edge) and (P aggregate corner vertex) presented
in Figures 2.13 and 2.14. However, this time the context is different: the edges of active
elements, located on the boundary, are denoted now by the F1 symbol, and the corner
vertices are located on the level of parent elements. Two new graph transformations are
presented in Figures 2.49 and 2.51. The graph representation of the fine mesh after these
transformations is presented in Figure 2.54.

The next step is to aggregate the common edges and vertices, which is expressed in the
graph transformation presented in Figure 2.52. First, two pairs of elements in the horizontal
directions are grouped together, and the common edge is aggregated to be eliminated later.
Second, the two sets of elements are joined into a new set of four elements, and one
common edge is aggregated to be eliminated later. In other words, the degrees of freedom
of a shared edge must be aggregated to two frontal matrices iA and jA related to the

elements which share an edge (this is denoted by ji,α symbol), while the degrees of
freedom of a shared vertex must be aggregated to four frontal matrices iA , jA , kA

and lA , of the four elements which share a vertex (this is denoted by lkji ,,,α symbol). It is

also necessary to process the shared vertices which are located on the boundary of the
domain, on the level of son elements. This is expressed in the graph transformation
presented in Figure 2.53. The graph representation of the fine mesh after these
transformations is presented in Figure 2.55.

At this point, the only degrees of freedom which have not been aggregated are situated
at the common interface, located on the vertical cross-section of the domain. In order to
aggregate them, we apply the graph transformations presented in Figures 2.56 and 2.57.
The resulting graph representation of the mesh is illustrated in Figure 2.60.

Now the aggregation process is finished. The degrees of freedom related to the
element interiors have been aggregated to a single frontal matrix. The degrees of freedom
related to the element edges have been aggregated to two frontal matrices. Finally, the
degrees of freedom related to the element vertices have been aggregated to four frontal
matrices.

The process of aggregation of degrees of freedom is followed by the process of partial
forward eliminations. The elimination starts at the level of active elements, with the
elimination of the degrees of freedom related to element interiors. This is expressed by the

 96

graph transformation for the coarse mesh solver (P eliminate interior), presented in Figure
2.19. The next step is to eliminate the degrees of freedom related to the boundary edges and
corner vertices, which results in two new graph transformations (P eliminate boundary

edge) and (P eliminate vertex), presented in Figures 2.58 and 2.59.
The graph representation of the mesh after these eliminations is illustrated in Figure

2.61. This corresponds to the panel (a) in Figure 2.48. In the following steps we merge into
pairs the Schur complements related to the uneliminated edges and vertices of the active
elements. The elimination is continued for fully assembled edges and vertices.

In a more detailed way, the next step is to join the elements into pairs in horizontal
directions, which is expressed by the graph transformations presented in Figure 2.62 and
2.63. The application of these transformations corresponds to merging the Schur
complements presented on panel (b) in Figure 2.48. The resulting graph representation of
the mesh is presented in Figure 2.65.

The next step is to eliminate the fully assembled edges and vertices from the frontal
matrices. This is presented on panel (c) in Figure 2.48 and reflected by the application of
the graph transformation presented in Figure 2.64, followed by the application of the graph
transformation (P merge shared vertex) for two external vertices.

The resulting graph representation of the mesh is presented in Figure 2.66. Again, the
resulting Schur complements are merged, which corresponds to panel (d) in Figure 2.48.
Next, the fully aggregated degrees of freedom are eliminated, which is reflected in panel (e)
in Figure 2.48 and denoted by the graph transformation presented in Figure 2.67. The last
step is to formulate and solve the common interface problem. This is done by the graph
transformation presented in Figures 2.68 and 2.69.

The partial forward eliminations are followed by recursive backward substitutions,
which repeat the same pattern as in case of the aggregation and elimination.

The presented solver algorithm can be generalized to an arbitrary mesh, since the
graph transformation follows the recursive structure of the graph representation of a mesh.

Fig.2.49. Graph transformation executing the aggregation of degrees of freedom related to

corner vertices located at the initial mesh element level, after the mesh has been refined

 97

Fig.2.50. Graph representation of the fine mesh after the execution of (P aggregate interior)8

Fig.2.51. Graph transformation executing the aggregation of degrees of freedom related to boundary

edges, on son elements

 98

Fig.2.52. Graph transformation executing the aggregation on son elements

Fig.2.53. Graph transformation executing the aggregation for shared vertex located on the boundary

 99

Fig.2.54. Graph representation of the fine mesh after the execution of (P aggregate interior)8 – (P

aggregate boundary edge)12 – (P aggregate corner vertex)4

 100

Fig.2.55. Graph representation of the fine mesh after the execution of (P aggregate interior)8 – (P

aggregate boundary edge)12 – (P aggregate corner vertex)4 – (P process son elements)2 – (P

process shared vertex)6

 101

Fig.2.56. Graph transformation executing the aggregation of interface

Fig.2.57. Graph transformation propagating the aggregation on interface

Fig.2.58. Graph transformation eliminating degrees of freedom related to boundary edges

 102

Fig.2.59. Graph transformation executing the elimination of degrees of freedom related to

corner vertices

 103

Fig.2.60. Graph representation of the fine mesh after the execution of (P aggregate interior)8 – (P

aggregate boundary edge)12 – (P aggregate corner vertex)4 – (P process son elements)2 – (P

process shared vertex)6– (P aggregate interface) – (P propagate interface aggregation)

 104

Fig.2.61. Graph representation of the fine mesh after the execution of (P aggregate interior)8 –
(P aggregate boundary edge)8 – (P aggregate corner vertex)4 – (P process son elements)2 –
(P process shared vertex)6– (P aggregate interface) – (P propagate interface aggregation) –

(P eliminate interior)8 – (P eliminate boundary edge)8 – (P eliminate corner vertex)4

 105

Fig.2.62. Graph transformation executing the merging of Schur complement contributions from

adjacent pairs of elements, into the common edge sub-matrix

Fig.2.63. Graph transformation executing the merging of Schur complement contributions from

adjacent pairs of elements into the common vertices sub-matrix

 106

Fig.2.64. Graph transformation eliminating fully assembled edges and vertices,

and merging the resulting Schur complements

 107

Fig.2.65. Graph representation of the fine mesh after the execution of (P aggregate interior)8 –
(P aggregate boundary edge)8 – (P aggregate corner vertex)4 – (P process son elements)2 –

 (P process shared vertex)6– (P aggregate interface) – (P propagate interface aggregation) –

(P eliminate interior)8 – (P eliminate boundary edge)8 – (P eliminate corner vertex)4–
(P merge interiors horizontal pairs)4– (P process shared vertices)4

 108

Fig.2.66. Graph representation of the fine mesh after the execution of (P aggregate interior)8 –
 (P aggregate boundary edge)8 – (P aggregate corner vertex)4 – (P process son elements)2 –
(P process shared vertex)6– (P aggregate interface) – (P propagate interface aggregation) –

(P eliminate interior)8 – (P eliminate boundary edge)8 – (P eliminate corner vertex)4–
(P merge interiors horizontal pairs)4– (P process shared vertices)4– (P merge into vertical)2–

(P process shared vertices)2

 109

Fig.2.67. Graph transformation merging Schur complements resulting from son elements

Fig.2.68. Graph transformation for the construction of common interface problem

Fig.2.69. Graph transformation for the solution of common interface problem

 110

Fig.2.70. Control diagram for aggregation on fine mesh on the level of atomic tasks

It is assumed that the fine mesh solution is stored at the graph vertices. The solution
represents the coefficients of the fine mesh shape functions. It is stored in the form of graph

attributes i

phu
1,2 +

 distributed among the graph vertices. The number of shape functions at

the graph vertices, representing finite element vertices, is equal to 1. The number of shape
functions at the graph vertices, representing element edges, is equal to p-1, where p denotes
the polynomial order of approximation at the edge. Finally, the number of shape functions
at the graph vertices, representing element interiors, is equal to (ph-1)(pv-1), where (ph , pv)
denote the polynomial orders of approximation in the horizontal and vertical directions.

Fig.2.71. Control diagram for elimination on fine mesh on the level of atomic tasks

The process of the fine mesh problem solution can be now described by a sequence of

atomic tasks. The control diagrams presenting the order of execution of atomic tasks with
assigned graph grammar productions are presented in Figures 2.70 and 2.71. Figure 2.70
presents the control diagram for the aggregation while Figure 2.71 presents the control
diagram for the elimination. All atomic tasks can be executed in the concurrent way, some
of them can be also grouped together (their execution can be mixed), which is denoted by
<<concurrent>> stereotype and by adding synchronization points before and after the
each group of atomic tasks. The solver algorithm and the control diagrams can be also
applied to an arbitrary multi-level graph representation of an arbitrary fine mesh.

 111

2.1.5. Algorithm of selection and execution of the optimal mesh

refinements

The next step of the self-adaptive hp-FEM algorithm is to choose the optimal
refinements. The algorithm employs the graph representation of the fine mesh, obtained by
copying the graph representation of the coarse mesh, and by performing the global hp

refinement. It is assumed that the coarse and fine mesh solutions are stored at the graph

vertices in the form of i
hpu and i

phu
1,2 +

 graph attributes. In fact, the graph vertices which

represent active finite elements and constitute the leaves of refinement tree, contain the

graph attributes i

phu
1,2 +

 for the fine mesh solution, and their parent vertices contain the

graph attributes i
hpu for the coarse mesh solution.

The general algorithm can be expressed in two steps. First, the estimation of the
relative error in the energy norm is computed for each active finite element,

K

phphK uu
,1

,1,2
error −=

+
 (2.37)

where ∑=
i

i
hp

i
hphp euu denotes the coarse mesh solution, and

∑ +++
=

i

i

ph
i

phph euu
1,21,21,2

 denotes the fine mesh solution, while i
hpe and i

phe
1,2 +

denote the coarse and fine mesh shape functions (compare Section 1.2.1). The norm is
computed on the element K. This operation is expressed by the graph grammar production
(P compute relative error), presented in Figure 2.72. The production is executed for all
element interiors.

Fig.2.72. Graph grammar production responsible for computing relative error on element interior

Second, the maximum relative error is computed
 { }K

K
errormaxmax_error = (2.38)

and all active elements with a relative error greater than 33% of the maximum relative error
are selected for a refinement.

Next, we choose the optimal refinement for each selected element. This is achieved by
analysing various possible strategies of the refinement. An element can be either h refined
(in horizontal or vertical directions, or both) or p refined (the polynomial order of
approximation can be modified in horizontal or vertical directions) or hp refined.

Now, for each analysed refinement strategy, for each element, we have to compute a
local interpolant w of the fine mesh solution

1,2 +phu . This is done using the projection-

based interpolation algorithm (Demkowicz 2006).

 112

Let us make the following observation. The coarse mesh approximation space hpV is a

subset of the approximation space wV , corresponding to a proposed refinement, which is

also a subset of the fine mesh approximation space
1,2 +phV

1,2

, +
⊂⊂

phwph VVV (2.39)

The projection-based interpolant w of the fine mesh solution for the element K is
computed by the application of the principles of locality, global continuity and optimality.
The principle of locality means that the interpolant is defined entirely in terms of the
restriction of the function to the element only. The principle of global continuity implies
that the union of element interpolants is globally conforming. The principle of optimality
implies that the interpolation errors must behave asymptotically, both in h and p, in the
same way as a current approximation error. First of all, the interpolant w must match
interpolated function

1,2 +phu at element vertices v

 () ()vuvw
ph 1,2 +

= (2.40)

With the vertex values fixed, locality and global continuity imply that the restriction of
the interpolant to an element edge should be calculated using the restriction of function

1,2 +phu only. The optimality implies that the appropriate edge norm should be applied for

the projection

 min
1,2

→−
+

e
ph wu (2.41)

for each edge e.
Finally, the projection for the element K in appropriate element norm is computed

 min
1,2

→−
+

K
ph wu (2.42)

to complete the definition of the projection-based interpolant w. Following Demkowicz

2006, the edge norm is selected as ()eH 2
1

 norm, and the element norm is selected as

()KH 1 norm. We refer to Demkowicz 2006 for more details on the projection-based

interpolation procedure. Having the local projection-based interpolant w of the fine mesh
solution

1,2 +phu for considered element refinement, we can compute the error decrease

rate

 ()
nrdof

rate
,1

1,2,1
,1,2

∆

−−−

=
++

K
ph

K
phph wuuu

w (2.43)

where nrdof∆ denotes an increase in the number of degrees of freedom on the coarse

mesh element resulting from the execution of the analysed mesh refinement strategy. The
nominator expresses a decrease in the relative error associated with a proposed refinement
of element K, the denominator expresses the corresponding increase in the number of
degrees of freedom.

 113

The procedure of evaluating different possible refinement strategies for an element is
expressed by the graph grammar production (P evaluate refinement), presented in Figure
2.73. The production is executed for all element interiors and for all considered refinement
strategies w.

Fig.2.73. Graph grammar production responsible for evaluation of a given refinement strategy w

The refinement strategy providing the maximum error decrease rate is selected for the

element K. This is expressed by the production (P select optimal refinement), presented
in Figure 2.74.

Fig.2.74. Graph grammar production responsible for selection of the optimal refinement

The algorithm can be summarized in the form of the control diagram presented in

Figure 2.75.
The algorithm has been partitioned into multiple atomic tasks. The algorithm starts

with the execution of atomic tasks related to the graph grammar productions (P compute

relative error). All these atomic tasks can be executed in the concurrent way. The next
atomic tasks compute the global maximum error. Then, the atomic tasks related to the
production (P evaluate refinement) are executed. Note that these atomic tasks can be also
executed in the concurrent way. In fact, there are many more such atomic tasks than graph
vertices representing finite element interiors, since there are many possible refinement
strategies for each graph vertex representing element interior.

There are several possibilities to limit a number of refinement strategies analysed for
an element. The quasi-optimal solution to this problem was proposed by Demkowicz, 2006.
The process of selection of the refinement strategy consists of two steps. First, we select the
optimal refinements for each element edge. The projection-based interpolation for the local
solution corresponding to the proposed edge refinement is based on the edge projections
(2.41). The number of possible edge refinements is quite limited (actually only one h

refinement and several p refinements may be considered for an edge). Second, we select a
type of refinement for an element interior. This selection is limited by the optimal
refinement previously selected for these element edges.

At this point, we execute the optimal refinement which have been selected for the
elements with a high relative error. This procedure consists of the following two steps:

1) to perform all the requested h refinements,
2) to perform all the requested p refinements.
The so-called 1-irregularity rule (as defined in Section 2.1.3) may result in some

additional h refinements. Let us describe the procedure in a more detailed way. An element
presented in Figure 2.76 has been selected for the isotropic h refinement. The element is
broken into four new son elements, in horizontal and vertical directions. Two nodes and

 114

one vertex on the common edge are constrained by the large element edge, with no new
nodes generated. The mesh is called irregular.

Fig.2.75. Control diagram for algorithm of selection and execution of optimal refinements

on the level of atomic tasks

Fig.2.76. Isotropic h refinement of an element

Next, one of the two small elements adjacent to the common edge is selected for an
additional isotropic h refinement. The execution of this new h refinement will lead to
multiple constrained nodes, as presented in Figure 2.77. In this case, there are three nodes
and two vertices constrained by the adjacent large element. These nodes and vertices will
not be generated until the adjacent large element is broken twice. This situation is

 115

extremely inconvenient from the technical point of view, since the approximation is highly
complicated in this case.

Fig.2.77. Isotropic h refinement of one of newly created son elements

The common practice in the engineering community is to enforce the isotropic h

refinement of the adjacent large element before the execution of the second h refinement of
a small element. In this example the large element must be broken first, which is illustrated
in Figure 2.78, and two nodes and one central vertex are created on the common edge.

However, two nodes and one vertex of the two smallest elements remain constrained
on the common edge. One of the two nodes which have been created is employed for the
constrained approximation over the two smallest elements adjacent to the common edge.

Fig.2.78. Additional isotropic h refinement of adjacent large element

Let us focus on the process of h and p refinements, expressed by the control diagram

presented in Figure 2.79. We start with the execution of selected h refinements. Graph
vertices representing finite elements to be broken are attributed by h refinement flags. This
is done by executing atomic tasks related to the production (P virtual href), presented in
Figure 2.79.

 116

Fig.2.79. Graph grammar productions attributing graph vertices, for element interiors intended for h

refinement (for graph vertices I and J3)

Now, the procedure of virtual h refinement is executed. Before breaking selected
elements, the graph vertices intended for h refinements are denoted by virtual refinement
flags. The virtual refinement flags propagate from small elements up to adjacent large
elements, in order to fullfill the 1-irregularity mesh rule. This is done by executing the
productions (P propage virtual href), presented in Figure 2.80. The atomic tasks assigned
to the execution of virtual refinements are performed in serial, since some of them may be
related to the same graph vertices. In this case, we use the logical “OR” between current
and new refinement flags.

At this point, the elements denoted by the virtual refinement flags are broken. This is
called the physical refinement. The process of the physical refinement employs the same
atomic tasks and graph grammar productions as for the global h refinement introduced in
Section 2.1.3. First we execute the atomic tasks related to the productions (P break

interior). They may be executed in the concurrent way. Then, we execute several atomic
tasks related to the productions (PFE1-4). They can be also executed in the concurrent way,
which is denoted by adding the synchronization points before and after these atomic tasks.
Finally, we execute a sequence of atomic tasks related to the productions (P break edge),
(P east), (P west), (P north) and (P south), also in the concurrent way.

Fig.2.80. Graph grammar productions enforcing 1-irregularity mesh rule

by the propagation of virtual refinements

 117

After all the selected h refinements have been executed, we focus on the execution of
selected p refinements. The p refinement consists in assigning the selected polynomial
orders of approximation to an element interior. This is done by executing atomic tasks
related to (P p-refine interior) productions, which attribute graph vertices representing
element interiors. The order of approximation for element edges is indicated by the
application of the minimum rule, defined in Section 2.1.3. The minimum rule is applied by
the execution of four atomic tasks related to the productions (P min rule east edge), (P

min rule west edge), (P min rule north edge) and (P min rule south edge). They enforce
the minimum rule for vertices representing the element edges located in the eastern,
western, northern and southern directions of element interiors with updated polynomial
orders of approximations. All these atomic tasks can be executed in the concurrent way,
which is expressed by the <<concurrent>> stereotype in control diagram in Figure
2.75.

2.1.6. The stopping condition

The optimal mesh resulting from the previous step becomes the coarse mesh for the next
iteration of the self-adaptive hp-FEM algorithm. The iterations are repeated until the
maximum relative error (2.37) is smaller than the required accuracy of the solution.
 tolerancemax_error ≤ (2.44)

2.2. Definition of computational tasks (grains) for parallel

processing model of the self-adaptive hp-FEM

In this section, the atomic tasks introduced in Definition 2.15 are agglomerated into
tasks, presented in Definition 2.17. Moreover, we assume that each task has its own local
graph representation of the mesh and works on a local sub-graph which represents a single
initial mesh element. A task is understood as the execution of several atomic tasks on a
local graph representing a single initial mesh element.

The control diagrams introduced on the level of atomic tasks in Definition 2.16 are
now redefined for the level of tasks (see Definition 2.18), since some algorithms require
inter-task communication. Thus, it is possible to define several communication channels
between tasks. Each task has its own global identificator, called rank. The control diagrams
defined for tasks are executed by all tasks on their own local graph representing a single
initial mesh element. The tasks constitute the grain for the load balancing and mesh
partitioning algorithms, introduced in the next section. The graph representation of the
computational mesh is stored in a partitioned manner, with each sub-graph representing a
single initial mesh element, assigned to a single task.

Summing up, the task is defined as an execution of several atomic tasks on a local
graph representation of a single initial mesh element, stored in the task’s local memory. The
execution of the atomic tasks within the task is managed by the control diagrams. However,
this time the control diagrams contain the predicates of applicability, clearly defining task
ranks that can execute this part of the control diagrams. More precisely, the predicates of
applicability are assigned to control diagram states.

 118

If a state from control diagram does not have a predicate of applicability, it is executed
by all tasks. However, if a state does contain the predicate of applicability, it is executed
only by the task with a given rank.

To express the self-adaptive algorithm on the level of tasks, with a graph
representation of the mesh distributed into tasks, it is necessary to introduce new graph
grammar productions for partitioning and merging of the graph representation of the mesh.

The first set of graph transformations is intended for mesh partitioning. These
transformations use the recursive propagation of the partition through the refinement trees.
The first production presented in Figure 2.81 initializes the partition process by splitting
two adjacent finite elements and adding a new graph vertex Int for the propagation of the
mesh partition.

Fig.2.81. Production for partitioning two adjacent elements.

The new Int vertex is created to propagate the partition

The Int vertex propagates the partition through the refinement trees. There are
different structures of the refinement trees to be considered. In case of the graph
transformation presented in Figure 2.82, we need to partition an element edge broken into
two son edges, with the first son edge, denoted by e symbol, being broken, and the second
son edge, denoted by F2 symbol, remaining unbroken.

Fig.2.82. Partition of edge with one son edge broken and the other one unbroken

In the second case, presented in Figure 2.83 we need to partition one element edge
node with two son edges, where both son edges denoted by F2 symbol are not broken. This
is the end of the partition of a branch of tree.

 119

In the third case, presented in Figure 2.84, we need to partition one element edge with
two son edges, where both son edges, denoted by e symbol, are broken. Two new graph
vertices labeled by Int symbol are created to propagate the partition into both branches.

The second set of graph transformations shows the merging of two sub-graphs,
previously partitioned by transformations (DD1)-(DD4).

Fig.2.83. Partition of edge with two unbroken son edges

Fig.2.84. Partition of edge with two broken son edges

Fig.2.85. Initialization of merging process

 120

Fig.2.86. Merging of two broken edges

Fig.2.87. Merging of two unbroken edges. The transformation is cloned with eJ replaced by eJ2

The first production presented in Figure 2.85 initializes the merging process by joining
two adjacent finite elements and adding a new graph vertex Joint for propagation of the
merging process. It’s necessary to analyse different structures of the refinement tree.

In the first case presented in Figure 2.86 we need to join two identical broken edges,
denoted by e symbol. We need to maintain the corresponding numbering of bounds. In the
second case presented in Figure 2.87 we have to join two unbroken edges, while in the last
case, presented in Figure 2.88, we have to join two broken son edges. The joining process
propagates into both branches. Thus, two new graph vertices labeled with Join symbols are
created. We need to maintain the corresponding numbering of bounds.

 121

Fig.2.88. Merging of two broken son edges. The transformation is cloned with eJ replaced by eJ2

In the following sub-section, the control diagrams are redefined to describe all parts of the
self-adaptive hp-FEM algorithm executed on the level of tasks.

2.2.1. Generation of the initial mesh

The generation of the initial mesh is now partitioned into multiple tasks. We assume that
each task is assigned to a single initial mesh element and has a global identifier called the
rank. In order to simplify the communication between tasks, it is assumed that each task
generates the topology of the entire mesh, with global numbering of initial mesh elements.
Next, each task generates a structure of initial mesh element with the number equal to the
task rank. The set of graph grammar productions for the generation of an intial mesh has
been updated to assign attributes to the initial mesh elements (see Figure 2.89).

Fig 2.89. Updated graph grammar productions for the generation of initial mesh

 122

As a result, we generate the topology of the initial mesh, with initial mesh elements
numbered. The process of the mesh generation is managed by the control diagram
presented in Figure 2.90.

Fig 2.90. Control diagram for the generation of initial mesh on the level of tasks

To simplify this example we assume that the structure of the initial mesh is linear. In

other words, an initial mesh consists of a row of initial mesh elements. The control diagram
presented in Figure 2.90 can generate initial meshes with any number of elements, in the
linear sequence. Thus, the input for the initial mesh generation algorithm is the initial mesh
coded as the order of production. For the initial mesh with a single initial mesh element,
only the productions (P1)-(P5) are executed. For the initial mesh with two initial mesh
elements, the productions (P1)-(P2)-(P4) are executed. For the initial mesh with m initial
mesh elements, the productions (P1)-(P2)-(P3)

m-2
-(P4) are executed. Thus, the initial mesh

is coded by the number of (P3) productions to be executed.
The topology of the initial mesh is supposed to be generated for all tasks. Then, only a

task with the rank equal to the number of initial mesh elements, executes the production

(PII) generating the structure of the initial mesh. Finally, all tasks execute twice the new
production (PIInt), presented in Figure 2.91. The production distinguishes the boundaries
of the domain (graph vertices with B symbols) from the interface between initial mesh
elements, denoted now by graph vertices with BI symbols.

Fig 2.91. Graph grammar production distinguishing boundary from the interface

It should be emphasized that the generation of the topology of the initial mesh is

actually a redundant operation. If the tasks are used in the distributed memory or hybrid

 123

parallel machine architectures, and the number of processors is comparable to the number
of tasks, it is not a problem. However, if the tasks are used in the shared memory
architecture or the number of tasks is much higher than the number of processors, this may
slow down significantly the generation process. In such case, an alternative strategy
algorithm can be employed. The topology of the entire mesh can be generated only by the
first task, and sent later to all other tasks, since in the shared memory architecture, the
send/receiver operations are implemented by rewritting data from one part of the memory
to the other.

Let us conclude this section with the example presented in Figure 2.92. It shows the
two initial element mesh distributed to two tasks. The first task contains the topology of the
entire mesh and the structure of the first element, while the second task contains the
topology of the entire mesh and the structure of the second element.

Fig 2.92. The two initial element mesh genereted for two tasks

When the process of the initial mesh generation is finished, we obtain multiple tasks,

each of them containing the topology of the entire mesh and the structure of the single
initial mesh element assigned to this task.

2.2.2. Solution of coarse mesh problem

At this point, we can solve the coarse mesh problem. In order to execute the coarse
mesh solver algorithm it is necessary to define communication channels between tasks.
In case of the simplified linear sequence of graph grammar productions, the communication
channels are defined only between two consecutive tasks. Then, the coarse mesh solver
algorithm can be summarized by the control diagram presented in Figure 2.93.

Let us trace the execution of the coarse mesh solver on the exemplary two initial
element mesh distributed to two tasks, presented in Figure 2.92.

First, each task executes the productions (P aggregate interior)-(P aggregate

boundary edge)
3
-(P aggregate corner vertex)

2. The result of the execution of this
sequence of productions for the first and the second task is presented in Figure 2.95. The
graph grammar productions create local frontal matrices, one for each task. The frontal
matrices have global numbering, and the number of the frontal matrix is inherited from the

 124

task rank. The productions aggregate to the local frontal matrix the degrees of freedom
related to element interior and boundary edges.

Fig 2.93. Control diagram for the execution of coarse mesh solver on the level of tasks

Next, each task makes a copy of the sub-graph representing its initial mesh element,

which is illustrated in Figure 2.96. At this point, the control diagram makes a distinction
between the odd and even tasks. The odd tasks send the copy of the sub-graph representing
their initial mesh element to adjacent even tasks. Since the structure of the considered initial
mesh is linear, the tasks 2k+1, for k>0, send the copy of sub-graph to tasks 2k+2, and to
tasks 2k. Then, the even tasks send the copy of sub-graph representing their initial mesh
element to odd tasks. Again, it means that tasks 2k for k>0 send the sub-graph to tasks
2k+1 and 2k-1. In other words, the tasks exchange sub-graphs representing initial mesh
elements with adjacent tasks. Note that the tasks send only sub-graphs, without exchanging
the frontal matrices. Now, each task attributes the received sub-graphs as ghost sub-graphs
with ghost initial mesh elements. The tasks merge the received sub-graphs with their local

 125

graphs. The resulting graphs for the simplest possible two-task configuration are presented
in Figure 2.96.

It is possible to aggregate now the degrees of freedom related to the common edge.
There are two frontal matrices, the first one assigned to the first task, with the interior of the
first element already aggregated, and the second one assigned to the second task, with the
interior of the second element already aggregated. The first task aggregates the contribution
related to the common edge from the first element to the first frontal matrix, and the second
task aggregates the contribution related to the common edge from the second element to the
second frontal matrix. This is expressed by graph grammar productions (P aggregate

edge)-(P aggregate shared vertex)
2.

At this point, the aggregation process is finished. The first task stores the fully
aggregated frontal matrix of the first element, while the second task stores the fully
aggregated frontal matrix of the second element. This is illustrated in Figure 2.97.

Fig 2.94. The two tasks after the aggregation of internal degrees of freedom

 126

Fig. 2.95. Each task makes a copy of its initial mesh element

Fig. 2.96. Each task merges the received ghost sub-graphs representing adjacent initial mesh element

 127

Fig. 2.97. Each task aggregates the common edge contribution to its frontal matrix

Now, each task executes the productions (P eliminate interior)–

(P eliminate boundary edge)
3
–(P eliminate corner vertex)

2 on its graph. The degrees of
freedom assigned to the element interiors and boundary edges are eliminated from both
frontal matrices. This is illustrated in Figure 2.98. As a result, each matrix contains a local
contribution to the common edge problem.

Fig 2.98. Each task eliminates the element interior from its frontal matrix

Now, we should formulate and solve the common interface problem. It is necessary to

send the common interface contribution from one task to the other. The second task sends
the matrix contribution to the first task, which receives the matrix and merges both
contributions. Then, the common interface problem is solved by the first task by executing
the productions (P eliminate edge)-(P eliminate shared vertices)

2. This sequence is
illustrated in Figures 2.99 and 2.100. Finally, all tasks execute analogous backward
substitutions (which follow the reverse execution pattern, and are omitted for simplicity)
and remove the ghost elements.

 128

Fig 2.99. The second task sents its matrix contribution to the first task

Fig 2.100. Solution of common interface problem performed by the first task

2.2.3. h refinement

The h refinement algorithm is executed either during the global hp refinement, where
all finite elements are broken into four new elements, or after the selection of the optimal
refinement, where only some selected elements are broken, which sometimes requires a
refinement of some additional elements in order to fullfill the 1-irregularity rule. It is
assumed that there are several tasks, each of them with a sub-graph representing a single
initial mesh element, possibly refined into several smaller finite elements.

There are two steps of the h refinement algorithm. In the first step the virtual
refinements are executed, in order to enforce the 1-irregularity rule, by attributing finite
elements to be broken. On the level of tasks, the algorithm requires some additional
communication between tasks assigned to adjacent initial mesh elements. The control
diagram executed by all tasks for the h refinement procedure is presented in Figure 2.101.

 129

Fig 2.101. Control diagram for h refinement executed on the level of tasks

First, the tasks exchange graphs with adjacent tasks, attribute them as ghost graphs, and

merge with local graphs. The procedure is called “Exchange ghost graphs” and follows a
similar pattern as the procedure introduced at the beginning of Section 2.2.2. All the atomic
tasks and communications executed during the exchange of ghost graphs are summarized in
the control diagram presented in Figure 2.102.

After the ghost elements have been exchanged, the virtual h refinements are executed.
The productions (P virtual href) are executed by all tasks for graph nodes representing the
element interiors which are to be broken. Note that some initial mesh elements may have
been already broken, and there may be several finite elements in a single task.
In case of the global hp refinement, the production is executed for all elements. In case of
the optimal h refinement, the production is executed only for the selected graph vertices
(this aspect of the h refinement will be explained later in Section 2.2.6).

Next, the production (P propagate virtual href) is executed in order to attribute some
additional graph vertices representing the element interiors which should be also broken
to enforce the 1-irregularity rule.

 130

Fig 2.102. Control diagram for the exchange of ghost graphs

After all virtual refinement flags have been set for all tasks, each task sends its virtual

refinement flags to the adjacent tasks, to attribute a corresponding ghost graph.
The communication is managed on the control diagram by the predicates of applicability
with odd and even tasks. After the exchange of the virtual refinements, the productions (P

propagate virtual href) are executed again, to propagate virtual refinement flags from
ghost graphs into the graph representing the initial mesh element assigned to the task. The
procedure must be repeated until there are no changes in the non-ghost graphs attributes.

Finally, the physical h refinements are executed, which is summarized on the control
diagram presented in Figure 2.103. The last step is to remove the ghost graphs from all
tasks.

Fig 2.103. Control diagram for the execution of physical h refinements

 131

2.2.4. p refinement

Fig 2.104. Control diagram for the execution of p refinements

Fig.2.105. Illustration of parallel p refinement algorithm

The execution of the p refinement procedure is very similar to the execution of the h

refinement procedure, as presented in Figure 2.104. The ghost graphs are exchanged and
the graph vertices representing element interiors which are to be p refined are attributed by
the productions (P p-refined interior). The p refinement flags are sent to two adjacent

 132

graphs, to be used for the ghost graphs. Then, a sequence of graph grammar productions
responsible for the enforcement of the minimum rule for edges is executed. The procedure
is illustrated in Figure 2.105.

2.2.5. Solution of the fine mesh problem

The coarse mesh solver algorithm is generalized to the case of the refined mesh. There
are two control diagrams, presented in Figure 2.106 and 2.107. The first control diagram
describes the process of the aggregation, while the second control diagram describes the
process of the elimination, both working now on the level of tasks.

Fig 2.106. Control diagram for the aggregation on fine mesh

The aggregation and the elimination on the fine mesh follow a similar pattern as in

case of the coarse mesh solver. The control diagram expresses the execution of the solver
algorithm on the elimination tree introduced in Section 2.1.5. The contributions to the
Schur complements are sent from even to odd tasks. The tasks that have sent the Schur
complements are finished. The tasks that have received the Schur complements merge them
with their local contributions and execute the partial forward elimination of the fully
assembled degrees of freedom. The process is repeated until there is only one task with the
common interface problem fully assembled. Finally, the common interface problem is
solved and the backward substitutions are executed, following the reverse pattern (for the
sake of simplicity this is omitted in our presentation).

 133

Fig 2.107. Control diagram for the elimination on fine mesh

2.2.6. Selection of the optimal refinements

After both the coarse and the fine mesh problems have been solved, it is necessary to
select the optimal refinements on the level of tasks, which is summarized in the control
diagram presented in Figure 2.108. This control diagram is similar to the diagram presented
in Figure 2.79 in Section 2.1.5 for the level of atomic tasks. This time the selection of the
optimal refinements is performed locally by each task, on its local graph. The control
diagram includes also the execution of the selected h and p refinements, which follow the
pattern introduced in Sections 2.2.3-2.2.4. However, this time the h and p refinements
coded by the productions (P virtual href) and (P p-refine interior) are executed only for
some selected elements.

 134

Fig 2.108. Control diagram for the selection of optimal refinements

 135

2.3. Run-time management algorithms

This section introduces scheduling, load balancing, mesh partitioning and merging as
well as mapping algorithms, defined as follows:

Definition 2.21

The scheduling algorithm is the method by which computational tasks defined in Section
2.2 are given access to system resources (processors). The scheduling algorithm is consists
in the graph partitioning, load balancing, graph merging and mapping algorithms.

Definition 2.22

The graph partitioning algorithm is the method by which the graph representation of a
single sub-domain is partitioned into several sub-graphs, each of them associated with a
single initial mesh element.

Definition 2.23
The load balancing algorithm is the method by which given set of computational tasks
defined in Section 2.2, with assigned estimations of the computational cost, is agglomerated
into several almost equally loaded groups called sub-domains.

Definition 2.24
The graph merging algorithm is the method by which several sub-graphs, each of them
representing a single initial mesh element, are agglomerated together into a graph
representing a single sub-domain.

Definition 2.25

The mapping algorithm is the method by which the sub-domains resulting from the load
balancing agorithm are assigned to particular parallel machine architecture.

2.3.1. Load balancing and graph partitioning algorithms

The load balancing is performed on the level of tasks introduced in Section 2.2.
In other words, the tasks defined on the level of initial mesh elements become now the
grains used for the load balancing procedure. The partition of the mesh on the level of
initial mesh elements is sufficient for large problems and for problems with many
singularities. However, it is not suitable for small problems with a small number of
singularities. On the other hand, this is not a problem, because they are not computationally
expensive. This observation is described in the following remarks.

Remark 2.1. If a number of tasks defined on the level of initial mesh elements and a

number of local singularities are large enough, the load balancing can be effectively
performed.

Remark 2.2. The computational cost for a single task defined on the level of the initial

mesh element is equal to

 136

 () ()∑ ++=
K

33
11)(nal_costcomputatio K

v
K

h ppiel (2.45)

for two-dimensional meshes, and

 () () ()∑ +++

=

K

K
z

K
y

K
x ppp

iel

333
111

)(nal_costcomputatio

 (2.46)

for three-dimensional meshes.

In this context, the computational cost is the total sum of the computational
complexities of the integration or elimination of degrees of freedom on active elements K

located inside the initial mesh element iel.

With the above definition of the grain and the computational cost, we can introduce
now the scheduling algorithm. The scheduling algorithm is understood here as the
agglomeration of tasks into so-called super-tasks, in order to assign each super-task to a
single processor.

We introduce the following new graph grammar productions to estimate the
computational cost for each task. The production (P compute load) presented in Figure
2.109, is responsible for the evaluation of the computational cost according to (2.45), for
either the integration or elimination of the degrees of freedom on a single finite element.

Fig 2.109. Graph grammar production estimating the computational cost of integration or elimination

The following graph grammar production (P propagate compute load) presented in
Figure 2.110 is responsible for the recursive summing up of computational cost estimations
along the refinement trees. There are several similar graph grammar productions, with
capital I replaced by small i, in order to include all possible configurations of refinements
on the trees.

Fig 2.110. Graph grammar production propagating the estimation of computational cost

along the refinement tree

 137

Finally, we can execute the production (P propagate compute cost) which attributes
graph vertices by means of the estimation of computational cost on the topology level
representing a single initial mesh element (see Figure 2.111). After all these graph grammar
productions are executed, each initial mesh element has its computational cost estimated.

Fig 2.111. Graph grammar production attributing initial mesh element by estimating its load

The scheduling algorithm requires the following input data:
a) the global rank of the task,
b) the estimation of the computational cost for the initial mesh element assigned to the

task,
c) the number of available processors.

The scheduling algorithm assigns the tasks (grains) to the processors. We assume the
1—1 relation between super-tasks and processors. There are two possible realizations of the
scheduling algorithm.

In the first version of the algorithm we assume that the entire initial mesh has been
generated in the first super-task, on the first processor. Then, the load balancing algorithm
is executed on the first processor, and several sub-graphs representing initial mesh elements
are sent to other super-tasks, assigned to other processors.

The algorithm is summarized in the following control diagrams executed by super-
tasks. The first control diagram, presented in Figure 2.112, is executed only by the first
super-task, which generates the entire initial mesh.

Fig 2.112. Control diagram for the first super-task, for the generation of the entire initial mesh

Next, the first task executes the newly introduced graph grammar productions for the

estimation of computational cost for all initial mesh elements, as illustrated in Figure 2.113.
The load balancing procedure is executed later. This is summarized in the “balance load”
and “assign sub-graphs to processors” states on the control diagram. These are the two load
balancing algorithms considered here:

 138

1) Hilbert Space Filling Curve (HSFC),
2) nested dissections.

For the detailed description of these algorithms we refer to the documentation of the
ZOLTAN library.

After the decision about the quasi-optimal redistribution of the graph is made, we
execute several mesh partitioning productions, in order to split the graph into such number
of sub-graphs that will correspond to all initial mesh elements. Those sub-graphs are later
sent to the destination super-tasks, according to the decisions made by the load balancing
algorithms. Thus, all other super-tasks execute the control diagram presented in Figure
2.114.

Each super-task merges all received sub-graphs into a single graph. Such realization of
the scheduling algorithm is expensive from the point of view of the communication.
However, as it is presented later in the numerical experiments, the amount of data
exchanged during the load balancing and mesh partitioning algorithms constitutes only
10% of the communication needed while executing the fine mesh solver algorithm. The
reason for this is that the Schur complement contributions exchanged between super-tasks
are much larger than sub-graphs.

Fig 2.113. Control diagram for the first super-task, for the load balancing and mesh partitioning

 139

Fig 2.114. Control diagram for all but the first super-tasks, for the load balancing and mesh

partitioning

After each iteration of the self-adaptive hp-FEM algorithm, the distribution of the
computational cost may significantly change, since some elements may be refined.
The graph representation of the mesh, stored in a distributed manner between super-tasks,
must be redistributed now, to maintain quasi-uniform load balancing. Thus, we need to
define a new scheduling algorithm. Each super-task executes the same control diagram,
presented in Figure 2.115. It is assumed now that each super-task estimates the
computational cost for its own graph. The data for the load balancing algorithm are
provided in a distributed manner. The load balancing algorithm collects data from all super-
tasks, makes decision about a new quasi-optimal distribution of the mesh, and notifies each
super-task about the tasks that must be sent to other super-tasks and about tasks that must
be received from other super-graphs. An example of the load balancing algorithms
implemented in this way is the ZOLTAN library.

 140

Fig 2.115. Control diagram for all super-tasks, for the mesh repartitioning

 141

Fig 2.116. Control diagram for super-tasks,

for send/receive of graphs from source/to receiver processors

2.3.2. Mapping algorithm

Remark 2.3. The optimal mapping of computational tasks into processors is achieved
when each computational task is assigned to the leaves of elimination tree, in a consecutive
manner.

Proof : The computational tasks should be mapped into processors in such a way that the
resulting communication bandwidth will be minimal. In general, the mapping problem is
NP-complete. To solve the mapping problem in a quasi-optimal way, we have to localize
these parts of the algorithm which are the most expensive ones from the point of view of
the communication cost. We need to identify also the architecture of the destination parallel
machine.

The most expensive part of the self-adaptive hp-FEM algorithm is the parallel solver.
It involves multiple independent point-to-point communications. The independent
communications mean that all pairs of communicating processors are separated. The
messages in the solver are transmitted between separate pairs of processors (between child
nodes in the elimination tree). In today's HPC clusters there are nodes of several (usually 2
to 16) processors. These nodes are interconnected by high performance switches or
hierarchy of switches (e.g. Clos topology Clos 1984). Figure 2.117 presents the
performance profiles for inside-node processor-to-processor communications and between-

 142

nodes processor-to-processor communications, measured on the CHAMPION linux cluster.
The inside-nodes communications are cheaper than the between-nodes communications.
The effective bandwidth for concurrent messages between multiple pairs of separate
processors is presented in Figure 2.118.

On the CHAMPION cluster, there are 8 processors at each node. The effective
bandwidth decreases when the number of communicating processors is the multiplication
of eight.

The best performance can be reached when the tasks assigned to the eliminated
elements are sorted along the elimination tree leaves and assigned to consecutive
processors. If for the elimination tree presented in Figure 2.119, the tasks 0-7 are
agglomerated to one super-task and assigned to the first node, and the tasks 8-15 are
agglomerated to another super-task and assigned to the second node, there will be only one
between-nodes communication: a message between the sons of tree root □

Fig.2.117. Performance profiles for dual-processor communications.

Intra-processor: On Node (Non-Cached removes data from cache before timing).
Inter-processor: Between Nodes (1 and 2 simultaneous communications)

Fig.2.118. Effective bandwidth profiles for concurrent communication through a switch hierarchy

 143

Fig.2.119. Mapping the solver elimination tree into processors

2.4. Parallel processing model with super-tasks

for the self-adaptive algorithm

Finally, we have reached the level of super-tasks. Several tasks introduced by
Definition 2.17 have been agglomerated by the scheduling algorithms to super-tasks,
introduced by Definition 2.19. The self-adaptive hp-FEM algorithm must be redefined now
on the level of super-tasks. All the control diagrams, previously defined for the level of
tasks (see Definition 2.18), are rewritten now for the level of super-tasks (see Definition
2.20). Each super-task works now on its local graph, obtained by merging several graphs,
which belong to all tasks agglomerated to a single super-task. The graph assigned to a
single super-task corresponds now to many initial mesh elements. It is assumed that each
super-task is assigned to a single processor. We define also the communication channels
between super-tasks. Since the assumption about the linear structure of initial mesh
elements is still valid, the communication channels are established again between
consecutive super-tasks. This is our simplification, made in order to reduce the number of
technical details in this presentation.

Figures 2.120-2.128 present the control diagrams updated from the level of tasks to the
level of super-tasks. In fact, the diagrams are quite similar to those defined on the task
level. The predicates of applicability in these control diagrams use global identifiers for
super-tasks. It is assumed that the global identifier for a super-task is a number of processor
assigned to this task, since there is the 1—1 relation between super-tasks and processors.
The super-tasks work on larger graphs than the tasks. Thus, the number of operations
executed by a super-task on its local graph is larger than the number of operations executed
by a task on its local graph.

The main difference is in the coarse and fine mesh solvers. The solvers on the level of
super tasks, presented in Figures 2.4.1, 2.4.7 and 2.4.8, must eliminate the degrees of
freedom assigned to common edges of the adjacent finite elements of the super-tasks. Thus,
the first part of the control diagram contains more productions to be executed, but the other

 144

part of the control diagram, responsible for the elimination of the interface problem,
is actually the same as for the control diagram on the level of tasks.

The number of operations performed by super-tasks is usually larger than the number
of operations performed by tasks, since the super-tasks possess larger graphs. A super-task
must evaluate the computational cost for all sub-graphs representing initial mesh elements
assigned to this super-task.

Fig.2.120. Control diagram for the execution of the coarse mesh solver on the level of super-tasks

 145

Fig.2.121. Control diagram for the extraction of ghost elements on the level of super-tasks

(corresponding to the “make ghost graphs” state from the control diagram presented in Figure 2.4.1)

Fig.2.122. Control diagram for the exchange of ghost elements on the level of super-tasks

 146

The control diagrams for the super-tasks are almost the same as for the tasks. Each
state from the control diagram represents a production that is executed on a super-task
graph. The left-hand side of a production identifies the sub-graph to which the production
can be applied. In case of the super-tasks, each production is executed in the concurrent
way, in different places on the super-task graph.

Fig.2.123. Control diagram for the execution of h refinements on the level of super-tasks

Fig.2.124. Control diagram for the execution of physical h refinements on the level of super-tasks

 147

Fig.2.125. Control diagram for the execution of p refinements on the level of super-tasks

Fig.2.126. Control diagram for the agglomeration on the fine mesh on the level of super-tasks

 148

Fig.2.127. Control diagram for the elimination on the fine mesh on the level of super-tasks

 149

Fig.2.128. Control diagram for the selection of optimal refinements on the level of super-tasks

 150

2.5. Theoretical analysis of the computational and

communication complexities

The theoretical analysis presented in this section refers to the self-adaptive hp-FEM
algorithm defined on the level of super-tasks. We focus on the following parts of the
algorithm.

The first section is related to the computational and communication times of the mesh
partitioning algorithms. In particular, we analyse the computational and communication
times for the exchange of ghost elements. The computational and communication times for
the load balancing algorithms are not included here, since we employ the load balancing
algorithms, such as HSFC and nested dissection algorithms, and their computational and
communication times have been already described by Bauer, Patra 2004 and Khaira, Miller,
Sheffler, 1992.

In the following sections, we examine the computational and communication times of
the mesh adaptation and solver algorithms.

Finally, the times are evaluated for the proposed extension of the solver algorithm,
with the reutilization of partial LU factorizations.

2.5.1. Mesh partitioning algorithms

Remark 2.4.

The time spend by i-th super-task on the computation of the computational cost (2.45-2.46)
over the graph representation of the sub-domain is

 () () N NT elemelem
i

1 comp O= (2.47)

where elemN is a number of active elements located on the initial mesh elements of a

super-task. This can be roughly estimated as a number of h refinements multiplied by a
number of created son elements, that is

 () 












= ∑

=

refN

1j

1-jinit
elem

refinit
elem1 comp 4NN, NT Oi (2.48)

where init
elemN is a number of initial mesh elements of a super-task, refN is the depth of the

refinement tree that is less or equal to a number of iterations of the self-adaptive hp-FEM
algorithm.

Proof: The computational time concerns the execution of the productions (P compute

load), (P propagate compute load) and (P compute load initial element), presented in
Figure 2.115 □

Remark 2.5.

The time spend by i-th super-task on the communication in the parallel algorithm for
estimation of computational cost for a super-task is equal to zero

 () 0elem1 comm =�T i (2.49)

Proof: This is a straightforward observation, since the algorithm is purely local □

 151

Remark 2.6.

The time spend by i-th super-task on the computation in the parallel algorithm of the
separation of all graphs representing a single initial mesh element is

 () 












= ∑

=

refN

1i

1-iinit
elem

refinit
elem

i
2 comp 24NN, N OT (2.50)

where init
elemN is a number of initial mesh elements of a super-task, 4 stands for four edges

of an initial mesh element, and the last term ∑
=

refN

1i

1-i2 is equal to a number of edges to be

separated on the refinement tree, with its root located on one of the four edges of the initial
mesh element.

Proof: The computational time concerns the execution of the productions (DD0)-(DD4),
presented in Figure 2.115 □

Remark 2.7.
The time spend by i-th super-task on the communication in the parallel algorithm of the
mesh repartitioning is

 () () N N elemelem
i

3 comm OT = (2.51)

where elemN is a number of active elements located on the initial mesh elements of a

super-task. This can be roughly estimated by (2.48).

Proof: This estimation corresponds to the execution of the control diagram presented in
Figure 2.116, for a linear sequence of initial mesh elements, where all super-tasks are
connected by the loop-like communication channels. In such case, the quasi-optimal
partition can be preserved by exchanging the sub-graphs related to the initial mesh elements
with two adjacent super-tasks. In a more general case (Bauer, Patra 2004) if the HSFC load
balancing algorithm is applied, it is possible to create a communication loop along the
space filling curve. In this case, we can also preserve a quasi-uniform load balancing, by
exchanging data between two adjacent super-tasks along this curve. Thus, on average, each
super-task sends and receives the amount of data equal to the size of its graph □

Remark 2.8.

The time spend by i-th super-task on the computation in the mesh repartitioning parallel
algorithm is

 () () N N elemelem
i

3 comp OT = (2.52)

Proof: The computations related to the mesh repartitioning algorithm, presented in Figures
2.115 and 2.116 involve packing and unpacking of sub-graphs to be exchanged, thus the
computation time is of the same order as the communication time □

Remark 2.9.

The time spend by i-th super-task on the communication in the parallel algorithm of
exchange of the ghost elements is

 152

 () () NN int
elem

int
elem

i
4 comm OT = (2.53)

where int
elemN is a number of active elements of a super task, located on the initial mesh

elements adjacent to the interface, which can be roughly estimated as a number of h
refinements multiplied by a number of created son elements, that is

 







= ∑

=

refN

1i

1-iinit int,
elem

int 4NN Oelem (2.54)

where init int,
elemN is a number of initial mesh elements adjacent to the interface and refN is the

depth of the refinement tree that is less or equal to a number of iterations of the self-
adaptive hp-FEM algorithm.

Remark 2.10.
The time spend by i-th super-task on the computations in the parallel algorithm of exchange
of the ghost elements is

 () () N N int
elem

int
elem

i
4 comp OT = (2.55)

Proof: The computational time related to the exchange of ghost elements, presented in
Figures 2.121 and 2.122 involve packing and unpacking of the sub-graphs to be exchanged,
thus the computational time is of the same order as the communication time □

2.5.2. Mesh adaptation algorithms

Remark 2.11.

The time spend by i-th super-task on the communication in the parallel algorithm of h

refinements is

 () ()int
elem

int
elem

i
5 comm NN OT = (2.56)

Proof: This corresponds to the control diagram presented in Figure 2.123. The virtual
refinement flags are exchanged between the adjacent super-tasks. The number of
exchanged virtual refinements corresponds to the number of graph vertices representing the
interiors of active elements located on the ghost sub-graphs adjacent to the interface □

Remark 2.12.
The time spend by i-th super-task on the computation in the parallel algorithm of h

refinements is

 () ()elemelem5 comp NN OT
i = (2.57)

Proof: This corresponds to the execution of the productions (P virtual href) and (P

propagate virtual href), presented on the control diagram in Figure 2.123. The execution
of these productions attributes the graph vertices representing active element interiors. All
active elements are affected by the algorithm in order to check the applicability of
1-irregularity rule □

 153

Remark 2.13.

The time spend by i-th super-task on the communication in the parallel algorithm of p

refinements is

 () ()int
elem

int
elem

i
6 comm NN OT = (2.58)

Proof: This corresponds to the control diagram presented in Figure 2.125. The p
refinement flags are exchanged between the adjacent super-tasks. A number of exchanged p

refinements corresponds to a number of graph vertices representing the interiors of active
elements located on the ghost sub-graphs adjacent to the interface □

Remark 2.14.
The time spend by i-th super-task on the computation in the parallel algorithm of p

refinements is

 () ()elemelem
i

6 comp NN OT = (2.59)

Proof: This corresponds to the execution of the productions (P p-refine interior),
presented on the control diagram in Figure 2.125. The execution of these productions
attributes the graph vertices representing active element interiors. All active elements are
affected by the algorithm □

2.5.3. Solver algorithms

In this section, we desrcibe the theoretical analysis of the efficiency of the parallel
recursive solver algorithm described in Appendix D.4, expressed by graph grammar
productions introduced in Sections 2.1.4 and 2.4. It is assumed that the solver is executed

on a square 2D finite element mesh with ntotal
elem� 22= finite elements, as presented in Figure

2.129 for n=2. In other words, now we take into consideration a more general
computational mesh, not only a row of initial mesh elements, as in case of the graph
grammar model.

We assume that the order of approximation in the interior of all elements is equal to
()vh pp , . The total number of the degrees of freedom in such an element is equal to

 ()() () ()121211nrdof ++++++= vhvh pppp (2.60)

We assume that ppp vh == , to simplify the theoretical analysis. Thus, a number of

degrees of freedom is

 () () ()22 141nrdof pOpp =+++= (2.61)

a number of degrees of freedom on element interior is

 () ()221nrdofinterior pOp =+= (2.62)

a number of degrees of freedom on interface is
 () ()pOp =+= 14nrdof interface (2.63)

 154

Fig.2.129. Step-by-step elimination of degrees of freedom on a square domain.

The processor numbers are in brackets, and the grey lines denote the point-to-point communications.

Remark 2.15.
The time spend on the computation in the sequential solver algorithm is

() ()336232
3

6
solver comp 22, ppOp�p�O�pT

nntotal
elem

total
elem

total
elem +=








+=

where ntotal
elem� 22= is the total number of elements, and p is the polynomial order of

approximation assumed to be uniform over the mesh.

Proof: On the level of elimination tree leaves, the solver eliminates the interior degrees of
freedom together with the element edges located on the boundary. The time spend on
computation in this operation for a single element can be estimated as

 () comp
2 tnrdofinterior nrdof interfacenrdof interface + (2.64)

for internal element,

 () () comp
2 tnrdof edgenrdofinterior nrdof interfacenrdofinterior ++ (2.65)

for an element adjacent to the boundary,

 () () comp
2 tnrdof edge2nrdofinterior nrdof interfacenrdofinterior ++ (2.66)

for a corner element. Here compt denotes the time of execution of a single arithmetic

operation. In all these cases, the computation time is ()6pO . There are nnn 2222 = such

elements.
The next step is to join the elements into pairs. The common edges are eliminated. The

computation time of the elimination of a common edge for a pair of elements is

 ()() () comp
2 tnrdof edge2212nrdof edge12212 ⋅+⋅+⋅+⋅ (2.67)

since there are 2 external vertical edges, 4 external horizontal edges, and one common edge

to be eliminated. There are 1222
2 −= nn

 such pairs of elements.

 155

Then, the elements are joined into sets of four, and two common edges are eliminated.
The computation time is

 ()() () comp
2 tnrdof edge24nrdof edge224 ⋅+⋅ (2.68)

since there are 4 external horizontal edges and 4 external vertical edges to be eliminated.
All internal edges have been already eliminated, and there are 2 remaining common edges

to be eliminated. There are 2211 222 −−− = nnn such sets of elements.
The procedure illustrated in Fig.2.129 is repeated until all elements are grouped in one

set only.

The total computation time is of the order of 62 pn (elimination of elements interiors)

plus ()() () ppn 421422 212 +++− (elimination of one common edge for a pair of elements)

plus ()() () ppn 242242 222 ⋅+⋅− (elimination of two common edges for a set of four

elements) plus ()() () ppn 4222242222 232 ⋅+⋅+⋅+⋅− (elimination of two common edges

for a set of eight elements), plus further contributions. This can be expressed by the
following sum:

()() ()

() () () ()
()3362

1

22221221122

21262

22

24252222223222

4214222

ppO

pppp

ppp

nn

n

k

kkknkkkkkn

nn

+≈





 ⋅⋅+⋅+⋅⋅+⋅

+++++

∑
=

−++−−

−

(2.69)

□

Remark 2.16.
The maximum for all processors P of the time spend on the computation in the parallel
solver algorithm is

()

() ()()333362

32
3

3
2

3

6max
solver omp

222

,,

pppO

p�p
P

�
p

P

�
OP�nT

nmnmn

total
elem

total
elem

total
elemtotal

elemc

++

=















+










+=

−−

where ntotal
elem� 22= is the total number of elements, mP 22= is the number of processors,

and p is the polynomial order of approximation assumed to be uniform over the mesh.

Proof: To estimate the computational time, let us assume that the number of processors is

mP 22= . Each processor performs the elimination on its part of the elimination tree. If
m=n, then number of processors is equal to the number ef elements and each processor is
assigned to a single leaf (see Figure 2.129). If m<n, then each processor is assigned to the

equal branch of the tree. The computational time of this operation for mP 22= processors
is

 () ()
comp

3362 t22 pp
mnmn −− + (2.70)

After this step, each processor performs elimination up to some level of the
elimination tree, e.g. processor 4 in Figure 2.129 performs eliminations up to the third level

 156

of the tree. Only processor 0 performs all eliminations up to the root of the tree. The total
execution time spend by processor 0 on these operations is of the order of

() () () ()
()33

1

2222122212

2

24252222222222

pO

pppp

n

n

mk

kkknkkkkk

≈





 ⋅⋅+⋅+⋅+⋅+⋅∑

+=

−++

(2.71)

□

Remark 2.17.
The maximum for all processors P time spend on the communication in the parallel solver
algorithm is

() () ()222max
solver comm 2, pOp�Op�T ntotal

elem
total
elem ==

where ntotal
elem� 22= is the total number of elements, and p is the polynomial order of

approximation assumed to be uniform over the mesh.

Proof: The communication involves no more than ()12 +−mn parallel point to point

communications where Schur complement contributions are sent (compare Figure 2.129).
This can be estimated as

 ()()∑
+=

+⋅
n

mk

k
ptt

1

2
commstartup 22 (2.72)

since the size of every contribution matrix is pk ⋅2 . Here startupt is the message startup

time (the time required to initiate the communication) and commt is the time of transfer of

a double precision value. We neglect startupt since the amount of transfered data is large.

This communication time is of the order of ()222 pO n . The size of each message can be

reduced by sending only a list of non-zero matrix entries □

Remark 2.18.

iTTTTT cc
iii

c ∀+=++ max
solver omm

max
solver ompsolver idlesolver commsolver omp

where i
cT solver omp is the computational time for i-th processor, iT timecomm is the

communication time for i-th processor, iT solver idle is the idle time for i-th processor,
max

solver ompcT is the maximum for all processors P computational time computed in Remark

2.16, max
solver ommcT is the maximum for all processors P communication time computed in

Remark 2.17 and i is the processor number.

Proof: According to Figure 2.129 the maximum computational and communication time is
equal to the execution time for processor 0. All other processors perform computations only
on a part of the elimination tree, send the resulting Schur complement contribution to some

 157

other processor, and then become idle. Thus, the execution time plus the communication

time plus idle time for all processor is equal to max
solver comm

max
solver comp TT + □

Fig.2.130. Efficiency of the parallel solver as a function of number of processors and polynomial

order of approximation

Remark 2.19.

The relative efficiency of the solver grows when the polynomial order of approximation is
increased (when the mesh is p refined).
 1lim =∞→ Efficiencyp (2.73)

Proof: The relative efficiency for mP 22= processors is

()
()

() ()()
()

() comm
mn

comp
mnmnn

comp
nn

comm
n

comp
nmnmn

comp
nn

ii
P

tptppp

tpp

tptppp

tpp

TTTP

T

PT

T
Efficiency

2223233362

3362

22333362

3362

solver idlesolver comm
i

solver comp

1
solver comp1

2222

22

2222

22

++−

−−

+++

+
=

=
+++

+
=

=
++

==

 (2.74)

where 1
solver compT is the computation time for a sequential solver, i

cT solver omp is the

computational time for i-th processor, iT timecomm is the communication time for i-th

processor, iT solver idle is the idle time for i-th processor, compt stands for the execution time

of a single instruction and commt is the time of transfering a single double precision value.

 158

The efficiency plot for different numbers of processor and different values of polynomial
orders of approximation is presented in Figure 2.130 □

2.5.4. Reutilization of partial LU factorizations

This section is a theoretical analysis of a possible extension of the solver algorithm,
with the reutilization of partial LU factorizations. For the technical details on the algorithm
of the solver with reutilizations of partial LU factorizations, see Appendix D. In the next
part of this section, we analyse the computational and communication times of the
algorithm of the solver, with the extension for the reutilization of partial LU factorizations.

Remark 2.20. The time spend on the computation in the sequential solver algorithm with
reutilization of partial LU factorizations is

() ()33632
3

61
1solver -re comp 2, ppOp�pOp�T

ntotal
elem

total
elem +=








+=

Proof: Let us consider a square computational mesh, presented in Figure 2.129, with
n2total

elem 2N = elements. We assume that the problem for the computational mesh has been

already solved, and only one element has been h refined in the direction of a mesh corner
singularity. In this case, there is a need to compute all LU factorizations related to the
elimination sub-tree assigned to a broken corner element. It is also necessary to recompute
all LU factorizations on a single path of the refined element (represented by a leaf in the
original elimination tree), up to the root of the tree. The computational time for a broken
element is

 () () () (){ } comp
22226 242244214224 tppppp ⋅+⋅+++++ (2.75)

since there are four element interiors, two single common edges and one double edge. The
computational complexity of the recomputation of the whole path, from the refined leaf up
to the elimination tree root, can be estimated as in the Remark 2.16. The difference is that
now there is only one set of elements on each level of the tree. Thus, the computational
time, without the computations on the level of leaf element, already estimated in (2.75), is

() ()

() ()

() () 







 ⋅+⋅+⋅+⋅


 +⋅+⋅+⋅+⋅

++++

∑
=

++

pp

pp

pp

kkkkk

n

k

kkkkk

222222222

222222222

42142

22

1

1221

22

 (2.76)

The total computational time of the solver reutilizing LU factorization is equal to the
sum of (2.75) and (2.76), that is

 () ()

()() ()33636636

1

363361
1solver -re comp

2221

2

ppOppO

pOpOpOT

nn

n

k

k

+=−++=

=













++=

+

=

+∑ (2.77)

□

 159

Remark 2.21. The total computational time of the sequential solver algorithm with r

refined leafs (resulting from 4
r singularities) is

() ()33632
3

61
rsolver -re 2,, prprOp�rprOrp�T

ntotal
elem

total
elem +=








+= .

Proof: In case of multiple refined leaves, the pessimistic estimation is that each leaf will
generate a separate path to be totally recomputed. Thus, the total computational time with

r refined leafs (resulting from 4
r singularities) is

 ()() ()336366361
rsolver -re 2221 prprOprprOT nn +=−++= + (2.78)

□

Remark 2.22. The sequential solver algorithm with reutilization of partial LU

factorizations is 










r
O

total
elemN

 times faster than the solver without the reutilization, where

total
elemN is a number of elements.

 









=










=

r
O

r
O

T

T
n total

elem
2

1
rsolver -re

1 N2
 (2.79)

Remark 2.23. The total execution time of the parallel solver algorithm with reutilization of
LU factorizations after r elements have been refined is

 ()=pP�T total
elem

P ,,rsolver -re comm

total
elem

comp
total
elem tp

P

�
tp�p 232

3
6 +








+

() ()
comm

mn
comp

n
tptpp

22336 22 −++= (2.80)

This is ”the best parallel time” that can be achieved by the parallel solver with reutilization
of partial LU factorizations, provided that we have enough available processors

rP m ≥= 22 . In other words, the number of the processors we use cannot be higher than the
number of refined elements r.

Proof: In case of the parallelization of the solver with reutilization of partial LU
factorizations, the maximum number of processors that can be used is equal to r (a number
of elements refined on the current mesh). Each refinement requires a recomputation of the
entire path from the refined leaf up to the tree root. This is a purely sequential operation.

If the number of processors is larger or equal to the number of executed refinements

rP m ≥= 22 , the total computational time can be roughly estimated as a parallel execution
of computations for r paths, from a leaf up to the root of the tree, which corresponds to
(2.77). The communication time remains unchanged, since there is still a need to exchange
the LU factorization, even if they are taken from local tree nodes. Thus the communication
time can be estimated as in the Remark 2.17 □

 160

Remark 2.24. The parallel solver with reutilization of partial LU factorizations is












r
O

total
elemN

 times faster than the solver without the reutilization, where � is a number of

elements.

Proof: If rP m ≥= 22 then

 ()() 









≤










== −

r
O

P
OO

T

T mn

P
r

P
total
elem

total
elem2

solver -re

NN
2 (2.81)

□

2.6. Simulational study of scalability

In this section we describe several numerical experiments performed in order to test
the scalability of the parallel self-adaptive hp-FEM algorithm. The numerical tests have
been executed with the use of the hp2Dpar and hp3Dpar implementations of the parallel
self-adaptive hp-FEM algorithm (for the details on the implementation, see Appendix C).
The implementations employ the self-adaptive hp-FEM algorithm extended to an arbitrary
two- and three-dimensional rectangular finite element meshes.

2.6.1. Scalability of the parallel self-adaptive hp-FEM algorithm in

two dimensions, with the grain defined on the level of initial

mesh elements and with multiple front parallel solver

The first numerical test concerns the scalability of the self-adaptive hp-FEM algorithm

with rectangular finite elements implemented for two dimensions in the hp2Dpar code,
interfaced with the multiple front parallel solver developed by Walsh, Demkowicz 1999
(for the technical details on the implementation, see Appendix C; for the multiple front
solver algorithm, see Appendix D).

There are two goals of the first numerical test:
1. to test the scalability of the parallel self-adaptive hp-FEM algorithm implemented

in two dimensions on the level of super-tasks, with load balancing and mesh
partitioning, for which the grains are defined on the level of tasks,

2. to test the scalability of the multiple front parallel solver applied to
two-dimensional hp adaptive computations.

 161

Fig.2.131. Initial mesh for the battery problem test

The test is based on the battery problem from the Sandia National Laboratory
(described in Chapter 3.1.2). The sequential and parallel algorithms implemented in hp2D

and hp2Dpar codes have been executed on the initial mesh presented in Figure 2.131. The
initial mesh contains 512 initial mesh elements. Such a large number of initial mesh
elements is expected to maintain a uniform load balancing for a large number of processors.
The computational problem has been solved up to 0.1 % relative error of the solution in the
energy norm. This has required 45 iterations of the self-adaptive hp-FEM algorithm. The
parallel algorithm has been executed on 4, 8, 16 and 32 processors, on the LONGHORN
linux cluster from Texas Advanced Computing Center.

For different numbers of processors we have executed the measurements of the total
computational time (Figure 2.132), of efficiency (Figure 2.133)

PTP

T
Efficiency 1= (2.82)

and of speedup (Figure 2.134)

PT

T
Speedup 1= (2.83)

Here 1T is the total sequential code time, PT is the total parallel code time for P processors.

Since the number of initial mesh elements was 512, there are many tasks assigned to a
single processor (each super-task consists of many tasks).

Fig.2.132. Total computational time for different numbers of processors, for the battery problem

 162

Fig.2.133. Efficiency for different numbers of processors, for the battery problem

Fig.2.134. Speedup for different numbers of processors, for the battery problem

In order to investigate the loss of speedup for a large number of processors, we have

performed the detailed measurements for 16 and 32 processors.
The execution time for each part of the algorithm during all iterations of the self-

adaptive hp-FEM is presented in Figure 2.135. The total execution time varies from 23
seconds in the first iteration up to 124 seconds in the last one. The highest influence on the
total execution time has the ``Fine mesh solution”, as it was expected. This execution time
is uniformly rising from 11 seconds in the first iteration, when the size of fine grid problem
is 20,000 degrees of freedom, up to 85 seconds, when the size of fine grid problem is about
80,000 degrees of freedom. Another expensive part is the ``Selection of optimal
refinements”, where the optimal refinements for each finite element are determined by
comparing the error decrease rates for all considered hp refinements. The algorithm
requires a solution of several local systems of equations for each particular finite element,
and its cost is rising with the number of degrees of freedom. The next most expensive parts
are the “Coarse mesh solution” and the “Execution of h refinements”. The less expensive
parts are the “Execution of p refinements” and the “Global hp refinement”.

The measurements of the serial version of the algorithm, presented in Figure 2.135
have been compared with similar measurements for the parallel version of the algorithm
executed on 16 processors, presented in Figure 2.136.

 163

The number of iterations, required in order to obtain the same 0.1 % accuracy as in the
serial version, is lower and equal to 37. This can be explained by better accuracy of the
parallel frontal solver algorithm, in comparison with the sequential solver algorithm.

We have compared the refinement histories for parallel and serial computations.
The first difference appears in sixth iteration, as presented in Figure 2.137. The difference
results from numerically different error estimations for the same finite element. In the

parallel code, the error estimation for the element was equal to -7100,11031⋅ , while the

estimation in the serial code was -7100,14381⋅ . The difference in the eighth digit results in
a different p-strategy chosen by the element. The next relevant difference appears in the
seventh iteration, as presented in Figure 2.138, and results again from numerically different
error estimations for some finite elements. The error estimation is calculated as a difference
between coarse and fine grid solutions.

Fig.2.135. Measurements of execution times for particular parts of sequential algorithm,

for the battery problem

The better accuracy of the parallel multiple front solver algorithm, in comparison with

the serial front solver, leads to slightly better choices in the refinement algorithm. The
number of differences grows with an increasing number of iterations and results in faster
convergence of the numerical error within the parallel algorithm.

 164

The total computational time for the parallel execution varies from about 4 seconds in
the first iteration up to 18 seconds in the last one. Again, the most expensive part is the
“Fine grid solution”, for which the execution time varies from about 2 seconds up to about
9 seconds. The next most expensive components are the “Selection of optimal refinements”
and the “Coarse mesh solution”. For the parallel version of the algorithm, the “Integration”
part is also essential. The mesh transformations, such as the “Execution of h and p
refinements” and the „Global hp refinement” have almost no influence on the parallel
algorithm.

We can make the following observations as a result of comparing the sequential and
parallel algorithms. The parallel algorithm is about 8 times faster on 16 processors, thus the
efficiency of the parallel algorithm on 16 processors is about 50 %. The fine mesh problem
solution is 10 times faster on 16 processors, with 70 % efficiency. The selection of optimal
refinements is about 8 times faster and delivers 50 % efficiency. Both, the coarse mesh
solution and the integration are about 3 times faster, with 20 % efficiency only. The mesh
transformations are not expensive. The h adaptations take no more than 4 seconds on a
single processor and less than 1 second on 16 processors. Similarly, the p refinements take
less than 2 seconds on a single processor and less than 1 second on 16 processors, and the
global hp refinement (fine mesh generation) always takes less than 1 second.

Finally, a similar comparison has been performed for 32 processors, as shown in
Figure 2.139. Surprisingly, in case of 32 processors, the overall shape of execution is
similar to the shape for 16 processors.

The parallel algorithm is also about 8 times faster on 32 processors, thus the efficiency
of the parallel algorithm on 16 processors decreases down to 25 %. The fine mesh problem
solution is also 10 times faster on 32 processors, which results in 35 % efficiency only. The
selection of the optimal refinements is also about 8 times faster; the coarse mesh solution
and the integration are about 3 times faster. The mesh transformations are again not
expensive, less than 1 second on 32 processors.

 165

Fig.2.136. Measurements of maximum execution time for all processors

for particular parts of parallel algorithm, executed on 16 processors, for the battery problem

In order to further investigate the loss of efficiency for 32 processors, the following

experiment has been performed. The computational cost of the elimination for a single
finite element, with the basic operation defined as a single arithmetic operation is

 () ()33 11nal_costcomputatio ++= vh pp (2.84)

since a number of degrees of freedom on an element with polynomial order of
approximation ph in the horizontal and pv in vertical direction is ()()11 ++ vh pp , and the

elimination is a cube of the number of degrees of freedom. The cost of the integration
performed by a single computational task is also defined by (2.84).

 166

Fig.2.137. First difference in the mesh obtained in the sixth iteration by the parallel and the serial

algorithms, for the battery problem. Top panel: serial code. Bottom panel: parallel code. Different
colours denote different polynomial orders of approximation

Fig.2.138. Another difference in the mesh obtained in the seventh iteration by the parallel and the
serial algorithms , for the battery problem. Top panel: serial code. Bottom panel: parallel code.

Different colours denote different polynomial orders of approximation

 167

Fig.2.139. Measurements of the maximum execution times for all processors

for particular parts of the parallel algorithm, executed on 32 processors, for the battery problem

In order to investigate the problem of a lack of significant differences between
computational times for 16 and 32 processors, we have performed some measurements of
the computational loads for all processors, during particular iterations. Figure 2.140
presents the measured distribution of computational load, for each of 32 processors, in
particular iterations. The total computational load for each initial mesh element is estimated
as a sum of loads from all active finite elements within the initial mesh element. Up to the
sixth iteration, the computational load is uniformly distributed between all tasks, and the
number of tasks per processor is almost constant. After the sixth iteration, the load begins
to rise dramatically on about 14 processors, while other processors have zero load and no
computational tasks assigned.

The reason for such behavior can be explained by the following example. Let us
consider a case of 4 computational tasks corresponding to 4 initial mesh elements, with
different polynomial orders of approximations. The left top element has both orders of
approximation equal to 9, thus the computational cost for this element is 106. Both adjacent
elements have one order of approximation equal to 9 (to fulfill the minimum rule), and the
other order of approximation equal to 1. Thus, the computational cost for these elements is
103. Finally, the bottom right element has both orders of approximation equal to 1, which
results in the computational cost of order 101. The optimal load balancing in case of 4
processors is that processor 1 has the first element with the highest load, and all other
elements are assigned to processor 2 (see Figure 2.141). In other words, processors 3 and 4
have no computational tasks assigned.

 168

Fig.2.140. Load distribution for 32 processors during particular iterations of the self-adaptive hp-

FEM, for the battery problem

In the Sandia battery problem there are about four areas of the computational mesh
where the singularities are present, and most of the hp-refinements are required in the
neighborhood of these areas. There are about sixteen initial mesh elements which
completely cover these areas with singularities. After some initial steps, where global hp-
refinements take place, the algorithm starts strong hp-refinements around the detected
singularities, as presented in Figure 2.142. These refinements are performed exclusively
within these sixteen initial mesh elements. The load for some of these elements is one order
of magnitude higher than overall load for all other elements.

The following conclusions can be drawn from this experiment:
a) the most time-consuming step of the computations is the fine mesh solution, as it is

presented in Figures 2.136 and 2.139,
b) the computational costs for the mesh transformation algorithms, including the

mesh refinements and mesh partitioning, is one order of magnitude smaller than
the computational cost for the solver. This implies that we need to investigate the
development of a better parallel solver,

c) in order to solve the battery problem wih accuracy 0.1% of the relative error in the
energy norm, it is necessary to perform 43 iterations of the serial algorithm, but

 169

only 37 iterations of the parallel algorithm on 16 processors, and again 32
iterations of the parallel algorithm with 32 processors. Thus, we need to compare
43 iterations of the serial code with 37 iterations of the parallel code,

d) the scalability of the parallel code is limited by the number of singularities. This is
because there are only 4 initial mesh elements covering an area with the strongest
singularities. After some initial number of iterations, most of hp refinements are
required in the neighborhood of these areas. However, this is a difficulty only in
case of small problems with a small number of singularities.

Fig.2.141. Load balance for four tasks with different polynomial orders of approximation, where the
first task has high polynomial orders of approximation resulting in computational cost several orders

of magnitude higher than other elements. The optimal load balance is such that the first task is
assigned to the first processors, all other tasks are assigned to the second processor, and remaining

processors are idle.

2.6.2. Scalability of the parallel self-adaptive hp-FEM algorithm in

three dimensions, with the grain defined on the level of initial

mesh elements and with multiple front parallel solver

A similar test has been executed in three dimensions, with the use of hp3D and

hp3Dpar applications. The goals of this test are as follows:
a) to test the scalability of the parallel self-adaptive hp-FEM algorithm implemented in

three dimensions on the level of super-tasks, partitioned with the grains defined on the
level of tasks (on the level of sub-graphs corresponding to the initial mesh elements),

b) to test the scalability of the multiple front parallel solver applied to three-dimensional
hp adaptive computations.
The problem of highly non-uniform load on finite elements with different polynomial

orders of approximation is more visible in three dimensions. There are three polynomial
orders of approximation for 3D elements, along x, y and z axis of the coordinate system.
The computational cost of the elimination for a 3D element with the basic operation defined
as a single arithmetic operation, can be estimated as

 () () ()333 111nal_costcomputatio +++= zyx ppp (2.85)

 170

Fig.2.142. Highly hp-refined initial mesh element in the neighborhood of a strong singularity.

Different colours denote different polynomial orders of approximation

The problem of non-uniform load will be discussed using three cases, described in
detail in Chapters 3.2.1, 3.2.3 and 3.2.2:

1) the 3D Fichera model problem,
2) the Step-and-Flash Imprint Lithography (SFIL), the patterning process which uses

photopolimerization to replicate microchip pattern from the template into the
substrate. The goal of the hp-FEM simulation in this case is to compute volumetric
shrinkage of the feature modeled by linear elasticity with thermal expansion
coefficient,

3) the resistance heating of the Al-Si billet in steel die for tixoforming process. The
goal of hp-FEM simulation is to compute heat distribution during the resistance
heating process, modeled by the Poisson equation with Fourier boundary condition
of the third type.

When the computational problem contains singularities related to either jumps in
material data, jumps of prescribed boundary conditions, or complicated geometry, the
generated hp meshes are irregular and may contain very small finite elements with high
polynomial orders of approximation, especially in the areas close to these singularities.

In the first case, there is only one singularity in the center of the domain. The
generated hp mesh contains a single finite element with interior node where the polynomial
orders of approximation are set to 7 in all three directions as well as three finite elements
with interior nodes where the polynomial orders of approximation are set to 6 in two
directions and to 7 in the third direction. The load representing the computational cost of
these elements for integration and elimination components is much higher than the load for
all other elements (see Figure 2.143).

In the second case, there is one central finite element with the polynomial orders of
approximation higher than the orders of other finite elements. The load for this element is
higher than the load for all other finite elements, and it is equal to 5 in two directions and to
6 in the third direction (see Figure 2.144).

In the third case, there are many singularities related to jumps in material data. There
are many finite elements with high polynomial orders of approximation and the load
distribution is quite uniform (see Figure 2.145).

 171

Let us focus now on the Fichera problem. The Fichera problem has been solved with
accuracy 1% of the relative error in the energy norm. The total computational times,
efficiency and speedup are illustrated in Figures 2.146-2.148. The computational time for
different parts of the self-adaptive hp-FEM algorithm for particular iterations, for 4 and 8
processors are presented in Figures 2.149-2.150.

Moreover, the detailed measurements of the particular parts of the multiple front
parallel solver algorithm have been performed. The measurements for 4 processors are
presented in Figure 2.119, while the measurements for 8 processors are presented in Figure
2.120.

We can draw the following conclusions from the measurements performed for the
Fichera problem:

e) the most time-consuming step of the computations is the fine mesh solution, as
presented in Figures 2.149-2.150,

f) the most time-consuming step of the solver is the forward elimination, as
illustrated in Figures 2.151-2.152, however the time necessary for the solution of
the interface problem grows as a quadratic function with the iteration number,

g) if the degrees of freedom corresponding to the fine grid solution, obtained from the
parallel solver, differ from those obtained using the serial version of the code by
10-8 or more, the resulting meshes selected by the mesh optimization algorithm
start diverging from each other,

h) in order to solve the Fichera problem with the accuracy 1% of the relative error in
the energy norm, it is necessary to perform 6 iterations of the serial algorithm, but
only 5 iterations of the parallel algorithm on 4 processors, and again 6 iterations of
the parallel algorithm code on 8 processors. Thus, we need to compare 6 iterations
of the serial code with 5 iterations of the parallel code on 4 processors, and with 6
iterations of parallel code on 8 processors.

 172

Fig.2.143. Load imbalance for computational tasks, for the Fichera model problem

The time of the fine grid solution for 8 processors is not well balanced, as presented in

Figure 2.143. The reason for this is the number of initial mesh elements covering the
singularities in the Fichera problem. In the Fichera problem, there are only 4 initial mesh
elements covering an area with the strongest singularities. Most of hp refinements in the
Fichera problem are required in the neighborhood of this area.

 173

Fig.2.144. Load imbalance for computational tasks, for the SFIL problem

When the number of singularities in the problem is small, the load distribution for

computational super-tasks is not uniform. This is related to a high contrast in the
polynomial orders of approximation used in the computational tasks (initial mesh
elements).

The detailed measurements for particular parts of the multiple front solver algorithm
executed on the Fichera model problem are presented in Figures 2.144 and 2.145, for 4 and
8 processors respectively.

Table 2.4

The number of degrees of freedom for particular iterations of the 3D self-adaptive hp-FEM,
for the Fichera model problem

Iteration Number of degrees of freedom
1 705
2 1407
3 2621
4 4882
5 9093
6 16935

The numbers of degrees of freedom for particular iterations of the self-adaptive hp-

FEM algorithm in this experiment are illustrated in Table 2.4.

 174

Fig.2.145. Load imbalance in computational tasks, for the resistance heating problem

Fig.2.146. Total computational times for different numbers of processors, for the Fichera problem

Fig.2.147. Efficiency for different numbers of processors, for the Fichera problem

 175

Fig.2.148. Speedup for different numbers of processors, for the Fichera problem

Fig.2.149. Measurements of execution times for particular parts of the parallel algorithm on

4 processors, for the Fichera problem. The last processor is responsible for the solution of interface
problem

 176

Fig.2.150. Measurements of execution times for particular parts of the parallel algorithm on
8 processors , for the Fichera problem. The last processor is responsible for the solution of interface

problem

 177

Fig.2.151. Execution times for the multiple front solver, executed on 4 processors for the fine mesh,

for the Fichera problem

The following conclusions can be drawn from this experiment:
a) the multiple front solver algorithm eliminates the interior nodes of a sub-domain

very slowly (the partial forward elimination on sub-domains, executed to compute
the Schur complement contribution is very slow). This is because the entire sub-
domain is aggregated at the same time, without constructing the multi-level
elimination trees,

b) the time of the global interface problem solution grows as a quadratic function.
This is because the entire interface problem is aggregated to a single global matrix.

 178

Fig.2.152. Execution times for the multiple front solver, executed on 8 processors for the fine mesh,

for the Fichera problem

2.6.3. Scalability of the parallel self-adaptive hp-FEM algorithm in

three dimensions, with the grain defined on the level of initial

mesh elements and with multi-level parallel solver

In this section, we describe the third sequence of numerical experiments. The goal of

these experiments is to test the scalability of a new multi-level parallel solver implemented
in three dimensions and interfaced with the hp3Dpar code. For the technical details on the
solver algorithm and its implementation , see Appendix D.

The new solver algorithm improves the way of solving the interface problem by the
multiple front solver. The algorithm is still not as general as the parallel solver introduced
in Section 2.1.4, however it consitutes the first step towards that solver.

The multi-level parallel solver employs the sequential version of the MUMPS solver
for computing the Schur complements of degrees of freedom related to the interior of a
single sub-domain, with respect to the degrees of freedom related to the interface. This is
done by performing partial forward eliminations followed by partial backward substitutions
(for more details, see Appendix D).

The experiment has been peformed with hp3Dpar application, on the 3D Direct
Current (DC) borehole resistivity measurements simulation problem, described in detail in

 179

Chapter 3.2.5. For those experiments we use the uniform hp mesh with 20,000 finite
elements, with uniform polynomial orders of approximation p=3, and with 700,000 degrees
of freedom, as presented in Figure 2.153.

The efficiency of this solver is documented in Figure 2.154. The low efficiency of the
solver for a small number of processors can be explained as follows: the total time spent by
sequential MUMPS solver on the forward elimination on the entire domain is about five
times faster than the time needed for the partial forward elimination of the interior degrees
of freedom, with respect to the interface degrees of freedom on a single sub-domain.
The MUMPS is able to construct an efficient ordering of the degrees of freedom
corresponding to the cylindrical shape of the domain. However, in case of four sub-
domains, the construction of a good ordering is limited by the presence of interface degrees
of freedom that must be always at the end of the list of sub-domain degrees of freedom. In
order to notice any speedup for the parallel solver, the solver must be executed on at least
four processors. The execution times for 16 processors, shown in Figure 2.155, are not
uniform and depend strongly on the sub-domain local numbering of nodes for the MUMPS
solver. The “Schur complement on level 2 (and 3)” stands for the second and third level of
the elimination tree constructed for the global interface problem. The corresponding
execution times for 4 and 8 processors are illustrated in Figures 2.156 and 2.157.

Another problem consists in solving the same equation for a non-uniform mesh with
polynomial orders of approximation p=1,…,8 and with about 250 000 degrees of freedom
(see Figure 2.158). The efficiency of the solver is presented in Figure 2.159. The maximum
efficiency of 60% is reached for 8 processors, while the efficiency for 16 processors is
worse.

Fig.2.153. Uniform mesh of 20,000 finite elements of order p = 3, with about 700 000 degrees of

freedom

 180

Fig.2.154. Efficiency of the parallel solver for the mesh from Figure 2.153

Fig.2.155. Total execution time for different parts of the solver algorithm, for 16 processors,

for the mesh from Figure 2.153

Fig.2.156. Total execution time for different parts of the solver algorithm, for 8 processors,

for the mesh from Figure 2.153

 181

Fig.2.157. Total execution time for different parts of the solver algorithm, for 4 processors,

for the mesh from Figure 2.153

The execution times for 4, 8 and 16 processors, presented in Figures 2.160-2.162 are
much more uniform. This is because there are many degrees of freedom inside highly hp-
refined elements. This is related to the fact that there are many highly refined finite
elements inside each sub-domain, and most of the execution time is spent on eliminating
the interior degrees of freedom from sub-domains.

Fig.2.158. Non-uniform hp mesh, with p=1,…,8, with 250, 000 degrees of freedom, distributed into 8

sub-domains

 182

Fig.2.159. Efficiency of the parallel solver, for the mesh from Figure 2.158

Fig.2.160. Total execution time for different parts of the solver algorithm, for 16 processors,

for the mesh from Figure 2.158

Fig.2.161. Total execution time for different parts of the solver algorithm, for 8 processors,

for the mesh from Figure 2.158

 183

Fig.2.162. Total execution time for different parts of the solver algorithm, for 4 processors,

for the mesh from Figure 2.158

The following conclusions can be drawn from this experiment:
a) the total execution time spent by MUMPS on eliminating the degrees of freedom

related to the interiors of sub-domains is highly non-uniform. It seems that
the MUMPS solver has problems with generating a proper ordering for large
sub-domains with many finite elements and high polynomial orders of
approximation. The optimal order of elimination should start with the elimination
of the most expensive element interiors, through the element faces and edges.
The computational cost of the elimination of element interiors is three orders of
magnitude higher than of the elimination of element faces and edges,

b) in order to improve the scalability of the solver, it is necessary to provide a quasi-
optimal order of elimination for the interiors of sub-domains. It can be done by
creating a new parallel solver working according to the elimination pattern strictly
provided by the graph grammar model introduced in Section 2.1.4.

2.6.4. Scalability of the parallel self-adaptive hp-FEM algorithm in

two and a half dimensions, with the grain defined on the level

of initial mesh elements and with multi-level multi-frontal

direct sub-structuring parallel solver

The fourth sequence of numerical experiments concerns the multi-level multi-frontal

direct sub-structuring parallel solver algorithm, created on the basis of the graph grammar
model of the direct solver presented in Section 2.1.4. The solver will be called shortly the
parallel recursive solver. For the technical details on the implementation of the parallel
recursive solver algorithm, see Appendix D.

The parallel recursive solver has been tested on the 3D DC borehole resistivity
measurement simulations problem, formulated on the 2D mesh in the non-orthogonal
system of coordinates, with Fourier series expansions in the third, azimuthal direction
(compare Chapter 3.2.4).

 184

The parallel recursive solver algorithm has been tested on the following three hp
meshes, presented in Figure 2.163 on the LONESTAR cluster from the Texas Advanced
Computing Center (TACC):

1) the first mesh has 2304 active finite elements and uniform p=3 throughout the
entire mesh,

2) the second mesh has 9216 active finite elements and uniform p=4,
3) the third mesh is the optimal mesh acquired by performing 10 iterations of the self-

adaptive hp-FEM. The mesh is highly non-uniform with the polynomial orders of
approximation varying from p=1,...,8.

There are 10 Fourier modes used in the azimuthal direction (see Chapter 3.2.4). Thus,
the total number of the degrees of freedom related to a single node is equal to 10p, where p

denotes the polynomial orders of approximation in the node.
There are 576 initial mesh elements on each mesh. The first mesh has been obtained

by performing one global hp refinement, i.e. each initial mesh element has been broken into
4 son elements, and the polynomial orders of approximation have been uniformly raised by
one (from p=2 to p=3). It implies that the depth of the refinement trees is equal to 2 on the
first mesh. The second mesh has been obtained by performing two global hp refinements,
so the depth of the refinement tree is equal to 4. The third non-uniform mesh has been
obtained by performing multiple h, p or hp refinements selected by the self-adaptive hp-
FEM algorithm. The number of degrees of freedom as well as the number of non-zero
entries is presented in Table 2.5.

Fig.2.163. Three hp meshes used for testing the solver

The measurements presented in Figures 2.164, 2.166 and 2.168 describe the maximum
time (on processors) spent for the sequential elimination on refinement trees and on sub-
domains, as well as the total time spent on backward substitutions. The logarithmic scale is
used to measure time in Figures 2.164 and 2.166. The Figures 2.165, 2.167, and 2.169 show

 185

the maximum memory usage, where the maximum is taken from all nodes of the distributed
elimination tree.

Table 2.5

Three computational meshes used in the numerical experiments

 First
uniform p=3

Second
uniform p=4

Third
non-uniform
p=1,…,8

Problem size � 315 555 1 482 570 51 290
Number of non-zero entries �Z 10 745 846 68 826 475 1 666 190

Fig.2.164. Execution times of the parallel recursive solver algorithm, measured on the first mesh

Fig.2.165. Maximum memory usage of the parallel recursive solver algorithm, measured on the first

mesh

 186

Fig.2.166. Execution times of the parallel recursive solver algorithm, measured on the second mesh

Fig.2.167. Maximum memory usage of the parallel recursive solver algorithm, measured on the

second mesh

 187

Fig.2.168. Execution times of the parallel recursive solver algorithm, measured on the third mesh

Fig.2.169. Maximum memory usage of the parallel recursive solver algorithm, measured on the third

mesh

The following conclusions can be drawn from the presented measurements:
a) all considered meshes have been obtained from the initial mesh with 32⋅18 = 576

rectangular initial elements. All the meshes have been partitioned at the level of the
initial mesh. The first and the second meshes have been uniformly hp refined, so each
initial mesh element is uniformly loaded,

b) we achieve the maximum speedup of the parallel recursive solver algorithm and the
minimum memory usage when the structure of the elimination tree is regular.
If the sub-domains have a regular pattern (regular number of finite element layers), e.g.

 188

as presented in Figure 2.171, the elimination tree also has a regular pattern: the depth
of the elimination tree is uniform (all paths from the tree root down to each leaf have
the same length). The performance of the solver algorithm is worse when the structure
of the elimination tree is not uniform, e.g. there is the longest single path from the root
of the elimination tree down to the deepest single leaf,

c) for the first mesh, the maximum speedup is achieved for 16 (576/16=36=6⋅6 layers) or
48 (576/48=12=4⋅3 layers) processors. Besides, the memory usage decreases rapidly
for 48 or 96 (576/96=6=3⋅2 layers) processors.
For the second mesh, the maximum speedup is achieved for 144 (576/144=4=2⋅2
layers) or 192 (576/192=3=1⋅3 layers) processors, and the memory usage decreases for
96, 144 or 192 processors.
The third mesh is not uniformly hp refined and the mesh partition can be highly non-
uniform, so the structure of the elimination tree can be also non-uniform. In this case,
the maximum speedup or decrease of memory usage does not follow the above pattern,

d) the parallel recursive solver algorithm scales very well up to the maximum number of
used processors, both in terms of the execution time and memory usage. The limitation
of the solver scalability is the size of the maximal sequential part of the algorithm. This
involves a recomputation of the partial LU factorizations on the longest path, from the
root of the elimination tree, through the level of sub-domains, the level of initial mesh
elements, down to the deepest leaf of the refinement tree. Such a limit has been
probably reached for the third mesh, when using 72 processors.

The next numerical experiment concerns the measurements of the efficiency of the

parallel solver. The solver has been again executed on the 3D DC borehole resistivity
measurement simulations.

The employed computational mesh has been constructed from the 2D coarse mesh
with 32⋅18 = 576 rectangular elements, by breaking each element into four sons and
increasing the polynomial orders of approximation to 2 for every edge and every interior.
The 3D problem has been reduced to 2D by using the Fourier series expansion in non-
orthogonal system of coordinates (see Chapter 3.2.4 for more details). There are 10 Fourier
modes employed at each node, and the total number of degrees of freedom is about
141, 000. The number of unknowns at each node is equal to the number of Fourier modes,
the polynomial orders of approximation are equal to 2, so the comparison between
theoretical and experimental efficiencies should be made as for p=20.

Table 2.6

Execution times of parallel recursive solver algorithm for an increasing number of processors

processors 1 2 4 8 12 16 20 24 28 32 40 48
time [s] 211 117 73 42 33 25 30 24 25 17 12 6.81

processors 56 64 72 80 88 96 104 112 120 128 144 160

time [s] 8.78 7 5.52 4.45 4.5 3.52 3.67 3.13 3.13 3.16 2.06 2.49

processors 176 192 208 224 240 256

time [s] 2.41 1.72 1.85 2.02 2.12 2.26

 189

The execution times of parallel recursive solver algorithm for an increasing number of
processors are presented in Table 2.6. The detailed efficiency measurements for an
increasing number of processors are presented in Figure 2.170.

Fig.2.170. Efficiency of the parallel recursive solver algorithm measured on 141,000 degrees of

freedom, for the mesh with 10 Fourier modes and uniform p=2

Fig.2.171. Structure of sub-domains for different numbers of processors

 190

2.6.5. Comparison of the scalability of the multi-level multi-frontal

direct sub-structuring parallel solver with the MUMPS

parallel solver

This section presents a comparison of the parallel recursive solver with the MUMPS
solver. The recursive solver has been compared with two versions of parallel MUMPS
solver with METIS ordering:

1) the parallel MUMPS solver with distributed entries (the input matrix stored in the
distributed manner, submitted from all processors in assembled format),

2) the direct sub-structuring method with sequential MUMPS solver used to compute
the Schur complements on the sub-domains and with parallel MUMPS solver with
distributed entries used to solve the interface problem.

The comparison has been performed on three meshes, described in detail at the
beginning of this section. The measurements of the execution time and memory usage for
the parallel recursive solver algorithm are illustrated in Figures 2.164 - 2.169. The
corresponding measurements of the MUMPS solver with distributed entries are presented
in Figures 2.172, 2.173, 2.176, 2.179, 2.180 and the corresponding measurements of the
direct sub-structuring method with MUMPS solver are presented in Figures 2.174, 2.175,
2.177, 2.178 and 2.181.

The Integration in Figures 2.172, 2.176 and 2.179 means the integration of local
matrices for hp finite elements. It is performed by the interface routine preparing an
assembled list of non-zero entries for the MUMPS. In case of the MUMPS-based direct
sub-structuring method presented in Figures 2.174, 2.177 and 2.181, the Integration stands
for the integration for active finite elements, and the Preparation means transferring the
Schur complement outputs into the lists of non-zero entries for the MUMPS parallel solver
with distributed entries.

Note that the Integration for the MUMPS solver means the integration for active finite
elements and it is performed in a loop when preparing an assembled list of non-zero entries
in the interface to the MUMPS routine. In the parallel recursive solver algorithm, the
integration for active finite elements is executed on the leaves of the elimination tree. These
operations are included in the Elimination on refinement trees. The Analysis stage for the
MUMPS involves the execution of the connectivity graph algorithm (e.g. METIS).
This is not necessary in case of the parallel recursive solver algorithm, since the order of
elimination is directly obtained from the mesh data structure (the binary tree constructed for
the sub-domains and initial mesh elements, and the order of elimination on refinement trees
follows the history of refinements stored in our data structure).

The Factorization for the MUMPS involves all Elimination on initial mesh elements

and Elimination on refinement trees. There is no way to distinguish these two parts for the
MUMPS solver. The Backward substitution for the recursive solver is equivalent to the
Solution for the MUMPS.

 191

Fig.2.172. Execution time of the parallel MUMPS solver with distributed entries, measured on the

first mesh

Fig.2.173. Minimum and maximum memory usage of the parallel MUMPS solver with distributed

entries, measured on the first mesh

 192

Fig.2.174. Execution times of particular parts of the MUMPS-based direct sub-structuring method,

measured on the first mesh

Fig.2.175. Minimum and maximum memory usage of the MUMPS-based direct sub-structuring

method, measured on the first mesh

 193

Fig.2.176. Execution time of the parallel MUMPS solver with distributed entries, measured on the

second mesh

Fig.2.177. Execution times of particular parts of the MUMPS-based direct sub-structuring method,

measured on the second mesh

 194

Fig.2.178. Minimum and maximum memory usage of the MUMPS-based direct sub-structuring

method, measured on the second mesh

Fig.2.179. Execution time of the parallel MUMPS solver with distributed entries, measured on the

third mesh

 195

Fig.2.180. Minimum and maximum memory usage of the parallel MUMPS solver with distributed

entries, measured on the third mesh

Fig.2.181. Execution times of particular parts of the MUMPS-based direct sub-structuring method,

measured on the third mesh

 196

We can draw the following conclusions about the efficiency of the parallel recursive
solver algorithm:

a) we have introduced an efficient parallel direct solver for hp-FEM. It is based on the
three-level elimination trees: sub-domains, initial mesh elements, and refinement
trees. The solver uses the knowledge of the history of refinements to construct the
third level elimination tree. The solver is modeled by a set of graph grammar
productions presented in Chapters 2.1.2 and 2.1.4,

b) the comparison of the theoretical analysis with the experimental data shows that
the efficiency of the implemented parallel recursive solver algorithm is worse for a
low number of processors. This is because in the numerical experiment we have
used the domain which has a shape not of square, but rather of a rectangle,

c) the efficiency of the paralell recursive solver algorithm is maximal for the number
of processors that divides the number of finite elements of the computational mesh.
There are 32*18 = 576 initial mesh elements. The maximum speedup for a large
number of processors is reached on 144 or 192 processors. In case of 144
processors, there are 576/144 = 4 initial mesh elements per processor. In case of
192 processors, there are 576/192 = 3 initial mesh elements per processor. For both
4 and 3 initial mesh elements per processor, the elimination trees have a regular
structure, presented in Figure 2.171, and the algorithm scales well. However, when
the number of processors does not divide the number of finite elements, a structure
of sub-domain may vary, the elimination trees have different sizes, which results in
a loss of the solver scalability,

d) the efficiency of the parallel recursive solver algorithm is higher the computational
problems with large number of degrees of freedom per node. The number of
degrees of freedom per node is equal to the polynomial order of approximation
multiplied by a number of equations. Thus, the solver becomes efficient if there are
multiple equations in the problem (like multiple Fourier modes in the 3D DC
borehole resistivity measurements simulation problem) or the polynomial order of
approximation on the hp mesh is high. The self-adaptive hp-FEM increases the
polynomial orders of approximation in consecutive iterations, so the efficiency of
the solver grows when the mesh is more p refined.

The following conclusions can be drawn from the presented comparison of the parallel
recursive solver with the MUMPS solver:

a) the parallel recursive solver is slower than the parallel MUMPS solvers, for a low
number of processors, because of the following reasons:
− the solver algorithms, which generate a local numbering of matrices at tree

nodes and make decisions about the degrees of freedom that can be
eliminated, are not optimized,

− we assume that all matrices are non-symmetric to minimize the memory usage
by performing the trick described in Appendix D, while the tested MUMPS
parallel solvers work on symmetric matrices,

− the backward substitution is accompanied by an additional full forward
elimination, necessary to regenerate the structure of the LU factorization,

b) on the other hand, the parallel recursive solver scales very well, up to the
maximum number of used processors, and becomes twice as fast as the MUMPS

 197

solver for a large number of processors (57 seconds for the solver on the second
mesh versus 112 seconds of the parallel MUMPS with distributed entries),

c) the MUMPS-based direct sub-structuring method usually runs out of memory for a
large number of processors (40 or 32 for the first or the second mesh respectively -
it requires more than 8096 MB of memory per processor),

d) all presented problems are relatively sparse, and all MUMPS-based parallel solvers
reach the minimum execution time on 8 or 16 processors. However, the memory
usage for all three types of MUMPS-based solver is large. The memory usage is
usually stabilized for the parallel MUMPS with distributed entries, but the
execution time increases. On the other hand, the memory usage of the parallel
recursive solver is lower than for any MUMPS solver.

 198

3. Applications

The parallel self-adaptive hp-FEM algorithm has been implemented in the parhp2d

code (Paszyński, Kurtz, Demkowicz 2006). The two-dimensional code has been
generalized to three dimensions in the parhp3d code (Paszyński, Demkowicz 2006). The
technical details of both implementations are explained in Appendix C.

A number of two- and three-dimensional computational problems, presented in this
chapter, have been solved by the implemented codes. Some of these problems are purely
academic, whereas others are real-life applications to industry.

The numerical experiments presented in this chapter illustrate the power of the self-
adaptive hp-FEM algorithm. Most of the presented problems are very challenging
engineering problems, for which a highly accurate numerical solution is needed. The high
accuracy solution on relatively small computational meshes may be achieved thanks to the
exponential convergence of the self-adaptive hp-FEM algorithm. Such high accuracy
solutions are either impossible to obtain at all with other numerical methods, or possible to
obtain with classical methods, but on huge computational grids with millions of degrees of
freedom.

First, Section 3.1.2 presents the battery problem from the Sandia National Laboratory.
It is related to the minimization of energy loss due to internal heating of the battery. The
high accuracy, less than 1% of the relative error in the energy norm is necessary. The self-
adaptive hp-FEM is the only known algorithm providing such numerical solution in
reasonable computational time (less than many hours).

Another challenging engineering problem, presented in Section 3.2.3, is the Step-and-
Flash Imprint Lithography. The problem is connected with the simulation of the modern
micro-cheap production technology. A high accuracy solution of this direct problem on
computationally cheap meshes is required for the solution of the inverse problem related to
the optimization of the production process.

Finally, in Sections 3.2.4 and 3.2.5 we describe the problems of 3D DC/AC borehole
resistivity measurement simulations in deviated wells with steal casing. These are also
challenging engineering problems that can be solved only by employing the parallel self-
adaptive hp-FEM algorithm. The only existing solutions to these problems are those
presented here, and it seems impossible to solve them by means of other known numerical
methods (Pardo, Torres-Verdin, Paszyński 2008 and Pardo, Torres-Verdin, Nam,
Paszyński, Calo 2008). The problem is formulated in Section 3.2.4 using the Fourier series
expansions in non-orthogonal system of coordinates, and in Section 3.2.5 using fully three-
dimensional formulation. These problems are of great interest to the oil industry.

 199

All other computational problems are model academic problems used as benchmarks
for the parallel self-adaptive hp-FEM algorithm. All of them have been used in numerical
experiments performed to verify the parallel self-adaptive hp-FEM algorithms, to test their
scalability, efficiency and speedup.

This chapter provides also the exact mathematical formulation of all these problems.

Fig.3.1. Different colours for different polynomial orders of approximations

The approximation spaces on the computational meshes presented in this chapter
contain the polynomials of different orders. These orders are denoted by different colours,
as presented in Figure 3.1.

3.1. Two-dimensional applications

3.1.1. L-shape domain model problem

Fig.3.2. L-shape domain

The L-shape domain problem is a model academic problem formulated by Babuška in
1986, to test the convergence of the p and hp adaptive algorithms. The problem consists in
solving the temperature distribution on the L-shape domain, presented in Figure 3.2, with
fixed zero temperature in the internal part of the boundary, and the Neumann boundary
condition prescribing the heat transfer on the external boundary. There is a single
singularity in the central point of the domain (the gradient of temperature goes to infinity,
compare Figure 3.3), so an accurate numerical solution requires a sequence of adaptations
in the direction of the central point. The problem has been solved by the parallel
par2Dhp90 code (Paszyński, Kurtz, Demkowicz 2003, Paszyński, Kurtz, Demkowicz
2006).

 200

Fig.3.3. Detailed view at the u∇ at the central part of the mesh

3.1.1.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃2: the temperature distribution such that

 0
2

1
2

2

=
∂

∂
∑
=i ix

u
 in Ω (3.1)

with boundary conditions
 0=u on DΓ (3.2)

 g
n

u
=

∂

∂
 on �Γ (3.3)

with n being the unit normal outward to Ω∂ vector, and

 () 






 Π
+=

2
sin, 3

2

3

2

θθ rrg (3.4)

is defined in the radial system of coordinates with the origin point O presented in Figure
3.2. The formula (3.4) is actually the exact solution to the L-shape problem.

3.1.1.2. Weak formulation

Find Vu∈ such that
 () () Vvvlvub ∈∀=, (3.5)

 () ∫ ∑
Ω = ∂

∂

∂

∂
= dx

x

v

x

u
vub

i ii

2

1
, (3.6)

 () ∫
Γ

=
�

dSvgvl (3.7)

where

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (3.8)

 201

zoom x 1 zoom x 10

zoom x 100

zoom x 10000 zoom x 100000 zoom x 1000000

zoom x 10000000

zoom x 100000000
solution

Fig.3.4. Sequence of meshes generated by the self-adaptive hp-FEM algorithm, for the Fichera
problem. The final optimal mesh delivers a solution with relative error below 0,001%. The resulting
temperature distribution is also presented here. The bottom panels present different colours denoting

different polynomial orders of approximation and the scale for the temperature scalar field

3.1.1.3. Results

The self-adaptive hp-FEM generates a sequence of meshes delivering exponential
convergence of the relative error in the energy norm, with respect to the number of degrees

 202

of freedom. The sequence of meshes together with the solution is presented in Figure 3.4.
The corresponding convergence curve has been discussed in Preface (compare Figure 1.5)

3.1.2. Battery problem

Fig.3.5. Domain for the battery problem

The battery problem comes from the Sandia National Laboratory, located in New
Mexico, USA, the largest US government-owned scientific laboratory. The domain of the
problem presented in Figure 3.5 contains five highly anisotropic materials. The problem
consists in solving the Poisson equation, with an anisotropic heat transfer coefficient K

depending on a kind of material and on the heat transfer direction. There are strong
singularities in all areas where three different materials meet. The self-adaptive hp-FEM
algorithm is the only way to solve this problem with accuracy less then 1% of the relative
error in the energy norm. The optimal mesh generated after 43 iterations of the self-
adaptive hp-FEM algorithm requires less than 3000 degrees of freedom. All other mesh
adaptation techniques require several millions of degrees of freedom to achieve such 1%

 203

relative error accuracy. Figure 3.7 shows the comparison of convergence histories of the
self-adaptive hp-FEM algorithm with the h adaptive algorithm. The battery problem has
been solved by par2Dhp90 code (Paszyński, Kurtz, Demkowicz 2006).

3.1.2.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃2: the temperature distribution such that

 ()k

j
ij

ji i

f
x

u
K

x
=















∂

∂

∂

∂
− ∑

=

2

1,
 in Ω (3.9)

with anisotropic heat transfer












==

)(
22

)(
11)(

0

0
k

k
k

K

K
KK (3.10)

defined for particular materials (k)=1,…,5 as

Table 3.1

Heat transfer coefficients for different materials

Material (k) 1 2 3 4 5
)(

11
k

K 25 7 5 0.2 0.05

)(
22

k
K 25 0.8 0.0001 0.2 0.05

with heat source term defined for particular materials (k)=1,…,5 as

Table 3.2

Heat source values for different materials

Material (k) 1 2 3 4 5
)(kf 0 1 1 0 0

 ugn
x

u
K

kk

i
i

i
ii

)()(
2

1
β−=

∂

∂
∑
=

 on kΓ (3.11)

where)()(, kkg β for particular parts of the boundary { }IVIIIIIIk ,,,∈ are given in Table

3.3.

Table 3.3

Boundary condition data for different materials

Boundary condition data)(kβ)(kg

I 0.0 0.0
II 1.0 3.0
III 2.0 2.0
IV 3.0 1.0

 204

3.1.2.2. Weak formulation

Find Vu∈ such that
 () () Vvvlvub ∈∀=, (3.12)

 () ∫∫ ∑
ΓΩ =

+
∂

∂

∂

∂
= dSvudS

x

v

x

u
Kvub

ii i
ii β

2

1
, (3.13)

 () ∫∫
ΓΓ

+= dSvgdSvfvl (3.14)

where

 ()








∞<∇+Ω∈= ∫
Ω

dxvvLvV
222 : (3.15)

3.1.2.3. Results

The self-adaptive hp-FEM generates a sequence of meshes delivering the exponential
convergence, as presented in Figure 3.6. The resulting optimal mesh provides the solution
with 0.1 % relative error accuracy (see Figures 3.8 and 3.9).

Fig.3.6. Convergence history of the self-adaptive hp-FEM algorithm for the battery problem

 205

Fig.3.7. Comparison of convergence of h and hp adaptive algorithms

Fig.3.8. Optimal mesh generated by the self-adaptive hp-FEM.

Different colours denote different polynomial orders of approximations (compare Figure 3.1.)

 206

Fig.3.9. Solution with 0.1% relative error

It should be emphasized that the solution of the problem with 0.1% relative error in the
energy norm can be achieved in practice only by using the self-adaptive hp-FEM algorithm.
This is because the size of the computational mesh generated by other mesh adaptation
algorithms providing the 0.1% accuracy of the solution is huge. Let us compare the history
of convergence of the self-adaptive hp-FEM algorithm with the self-adaptive h-FEM
algorithm (the fully automatic h adaptivity on a uniform p=2 meshes). All other mesh
adaptation techniques based on the two-grid paradigm are worse than the self-adaptive hp-

FEM and self-adaptive h-FEM algorithms, so it is enough to compare only those two
algorithms. The lack of exponential convergence of the self-adaptive h-FEM algorithm,
illustrated in Figure 3.7, implies that the computational mesh providing 0.1% accuracy will
contain several millions of degrees of freedom, while the optimal mesh generated by the
self-adaptive hp-FEM contains less than 3000 degrees of freedom only.

 207

3.2. Three-dimensional applications

3.2.1. Fichera model problem

The Fichera problem is a model academic problem developed to test the convergence
of the adaptive algorithms. It is a three-dimensional generalization of the L-shape domain
problem described in Chapter 3.1.1. The Fichera model problem is defined for a cubic
domain with 1/8 of the cube removed (see Figure 3.10). There is also a single singularity at
the central point of the domain. The Neumann boundary conditions employ the solution g

to the L-shape domain problem. The Fichera problem has been solved with par3Dhp90

code (Paszyński, Demkowicz 2007).

Fig.3.10. Domain for the Fichera problem

3.2.1.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃3: the temperature distribution such that

 0
3

1
2

2

=
∂

∂
∑
=i ix

u
in Ω (3.16)

with boundary conditions
 0=u on DΓ (3.17)

 g
n

u
=

∂

∂
 on �Γ (3.18)

with n being the unit normal outward to Ω∂ vector, and g is the exact solution (3.4).

 208

3.2.1.2. Weak formulation
Find Vu∈ such that

 () () Vvvlvub ∈∀=, (3.19)

 () ∫ ∑
Ω = ∂

∂

∂

∂
= dx

x

v

x

u
vub

i ii

3

1
, (3.20)

 () ∫
Γ

=
�

dSvgvl (3.21)

where

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (3.22)

3.2.1.3. Results
The sequence of meshes generated by the self-adaptive hp-FEM together with the

solution is presented in Figures 3.11 and 3.12. The corresponding exponential convergence
curve is presented in Figure 3.13.

Fig.3.11. Solution of the Fichera problem with 1% relative error accuracy

 209

Fig.3.12. Sequence of meshes generated by the self-adaptive hp-FEM for the Fichera problem.
Different colours denote different polynomial orders of approximations (compare Figure 3.1.)

Fig.3.13. Convergence curve for the Fichera problem

 210

3.2.2. Resistance heating of the Al-Si billet in steal die

In this section an industrial problem of the resistance heating of Al-Si billet in steel die
for thixoforming process, formulated in Sołek 2004, is solved using the self-adaptive hp-

FEM algorithm. It involves two interconnected problems: the electric current and the
heating. In the original model, both of them were solved together. In the model presented
here, we take into consideration only the heating problem. The heat generated as a result of
electrical resistance is balanced with heat convection on model boundaries. This is
a simplified approach providing that the heat is constant on each part of the domain.

The model geometry and boundary conditions are presented in Figure 3.14. Due to
numerical needs, the model has been transformed into non-dimensional units. There are
three main parts of the assembly: Al-Si billet, steel die and steel stamp.The interfaces
between these parts are introduced as “artificial materials”. The material properties for all
real and artificial materials are presented in Table 3.4. The low thermal conductivity
coefficients of “interface materials” inhibits heat flux between all parts of the assembly.
The heat generated as a result of electrical resistance is introduced as constant heat
generated in the entire model area. For more details, see Paszyński, Macioł 2007.

Fig.3.14. Computational domain for the resistance heating problem

 211

Table 3.4

Material data for the resistance heating problem

Material
resistance R
(generated heat
 Q=iR

2 [W/m3])

thermal
conductivity K

boundary
convection H

 [Ohm] [W/mK] [W/m2K]
Al-Si 1 160 1000
Steel 5 45 800
Al-Si
interface

1 8 -

Steel-steel
interface

1 5 -

3.2.2.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃3: the temperature distribution such that

 Q
x

u
K

i i

=
∂

∂
− ∑

=

3

1
2

2

 in Ω (3.23)

with boundary conditions

 ()uuH
n

u
env −=

∂
∂

 on �Γ (3.24)

where n is the unit normal outward to Ω∂ vector, envu is the ambient (enviromental)

temperature, H is the boundary convection coefficient, defined on the Neumann boundary,
denoted by light grey and grey colours in Figure 3.14, and free boundary condition (no
boundary condition) on the other part of the boundary, denoted by black colour in Figure
3.14.

3.2.2.2. Weak formulation

Find Vu∈ such that
 () () Vvvlvub ∈∀=, (3.25)

 () ∫∫ ∑
ΓΩ =

+
∂
∂

∂
∂

= dSvuHdx
x

v

x

u
Kvub

i ii

3

1

, (3.26)

 () ∫∫
ΓΓ

+= dSvedSvfvl env (3.27)

where

 ()








∞<∇+Ω∈= ∫
Ω

dxvvLvV
222 : (3.28)

 212

3.2.2.3. Results

The sequence of meshes and the solution are presented in Figures 3.15 and 3.16. The
corresponding exponential convergence history is presented in Table 3.5.
The result of this simulation is the temperature distribution. Figure 3.16 shows that the
highest temperature occurs in the stamp. This effect is strongly undesired because Al-Si
billet is heated mainly with the convection mechanism, and not with the resistance
mechanism. The differences between thermal conduction coefficients and heat generation
quantities result in considerable differences between temperatures in parts of the assembly.
The temperature gradients also vary considerably.

Fig.3.15. Sequence of meshes generated by self-adaptive hp-FEM for the resistance heating problem.
Different colours denote different polynomial orders of approximations (compare Figure 3.1)

 213

Fig.3.16. Solution of the resistance heating problem with 1% relative error accuracy

Table 3.5

Number of degrees of freedom and relative error for the generated sequence of meshes

Iteration Number of degrees of
freedom

Relative error in energy

1 116 58.43%
2 753 5.05%
3 2353 3.56%
4 6477 3.35%
5 32034 0.98%

3.2.3. Step-and-Flash Imprint Lithography simulations

Step and flash imprint lithography (SFIL) is a patterning process utilizing
photopolymerization to replicate the topography of a template onto a substrate (Bailey,
Colburn, Choi, Grot, Ekerdt, Sreenivasan, Willson, 2002, Colburn, Suez, Choi, Meissi,
Bailey, Sreenivasan, Ekerdt, Willson, 2001, Burns, Johnson, Schmid, Kim, Dickey,
Meiring, Burns, Stacey, Willson, 2004).

The SFIL process can be described in the following six steps, as it is illustrated in
Figure 3.17.

1) dispense. The SFIL process employs a template / substrate alignment scheme to
bring a rigid template and substrate into parallelism, trapping the etch barrier in the
relief structure of the template,

2) imprint. The gap is closed until the force that ensures a thin base layer is reached,
3) exposure. The template is then illuminated through the backside to cure etch

barrier,
4) separate. The template is withdrawn, leaving low-aspect ratio, high resolution

features in the etch barrier,

 214

5) breakthrough etch. The residual etch barrier (base layer) is etched away with a
short halogen plasma etch,

6) transfer etch. The pattern is transferred into the transfer layer with an anisotropic
oxygen reactive ion etch, creating high-aspect ratio, high resolution features in the
organic transfer layer.

Fig.3.17. Step-and-Flash Imprint Lithography process

The major processing steps of SFIL include: depositing a low viscosity, silicon

containing, photocurable etch barrier on to a substrate; bringing the template into contact
with the etch barrier; curing the etch barrier solution through UV exposure; releasing the
template, while leaving high-resolution features behind; a short, halogen break-through
etch; and finally an anisotropic oxygen reactive ion etch to yield high aspect ratio, high
resolution features.

 215

Fig.3.18. Shrinkage of the feature after removal of the template

(picture obtained from Prof. Grant C. Willson from The University of Texas at Austin)

Photopolymerization, however, is often accompanied by densification. The interaction
potential between photopolymer precursors undergoing free radical polymerization changes
from van der Waals’ to covalent. The average distance between molecules decreases and
causes volumetric contraction. Densification of the SFIL photopolymer (the etch barrier)
may affect both the cross sectional shape of the feature and the placement of relief patterns.
The exemplary shrinkage of the feature measured after removing the template is presented
in Figure 3.18.

The linear elasticity model with thermal expansion coefficient is used to verify the
material response of polymerized networks in cured etch-barrier layers that are formed
during the third step of the SFIL process. The problem has been solved on the 3D cubic
shape domain, presented in Figure 3.19.

For more details on the problem formulation, see Paszyński, Romkes, Collister,
Meiring, Demkowicz, Willson, 2005.

Fig.3.19. Domain for the SFIL problem

 216

3.2.3.1. Strong formulation

Find () () () ()() 3
321

3 ,,: RxuxuxuxuxRu ∈=→∋Ω⊃ the displacement vector field

such that

 0
3

1
=

∂

∂
∑
=j j

ij

x

σ
 in Ω (3.29)

where

 ()oij
i

kkijijij TT −−+= ∑
=

δαεδλεµσ
3

1
2 (3.30)

where















∂

∂
+

∂

∂
=

i

j

j

i
ij

x

u

x

u

2

1
ε (3.31)

is the Green tensor, ijδ is the Kronecker delta, µ and λ are Lame coefficients, defined in

terms of the Young modulus E and Poisson ratio ν

()ν

µ
+

=
12

E
 (3.32)

ν

ν
λ

+
=

1

E
 (3.33)

The α is the thermal expansion coefficient, defined as the volumetric shrinkage of the
etch barrier for the 1 degree increase of the temperature () 10 =−=∆ TTT

 0<
∆

∆
=

TV

V
α (3.34)

The values of the Young modulus, Poisson ratio and the thermal expansion coefficient
are provided by the experiments (Colburn, 2001) and by the inverse analysis (Paszyński,
Barabasz, Schaefer, 2007). The values used in the numerical simulation are listed in Table
3.6.

Table 3.6

Values of the Young modulus and Poisson ratio obtained by measurements, and the value of the
thermal expansion coefficient obtained by inverse analysis

Parameter E ν α

Value 1 [GPa] 0.3 -0.06115

The boundary conditions for the SFIL problem are
 0=u on DΓ (3.35)

with free boundary condition (no boundary condition) on the external boundary.

 217

3.2.3.2. Weak formulation

Find Vu∈ such that
 () () Vvvlvub ∈∀=, (3.36)

 () ∫ ∑
Ω = ∂

∂

∂

∂
= dx

x

v

x

u
Evub

lkji j

i

l

k
ijkl

3

1,,,
, (3.37)

 () ∫ ∑
Γ = ∂

∂
∆=

�

dS
x

v
Tvl

i i

i
3

1
α (3.38)

where
 () klijjkiljlikijklE δδλδδδδµ ++= (3.39)

and

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (3.40)

3.2.3.3. Results

The convergence of the self-adaptive hp-FEM for this problem is also exponential.
The sequence of meshes and the solution are presented in Figures 3.20 and 3.21. The
corresponding convergence curve is presented in Figure 3.22.

Fig.3.20. Sequence of meshes generated by the self-adaptive hp-FEM for the SFIL problem, with the
front and bottom of the final mesh. Different colours denote different polynomial orders of

approximations presented in Figure 3.1

 218

Fig.3.21. Three components of the displacement field (in nanometers)
for the solution obtained on the final mesh

Fig.3.22. History of convergence for the SFIL problem

Note that the optimal mesh providing a high accuracy solution generated by the self-
adaptive hp-FEM algorithm contains only 2843 degrees of freedom. This is critical for the
solution of the inverse problem, which requires multiple direct problem solutions for
different values of the model parameters, such as the Young modulus and Poisson ratio.
This has been discussed also in Paszyński, Barabasz, Schaefer 2007.

 219

3.2.4. 3D DC/AC borehole resistivity measurement simulations

in deviated wells with non-orthogonal system of coordinates

In this section we discuss the problem of 3D direct and alternate current (DC/AC)
borehole resistivity measurement simulations in deviated well. The problem comes from
the Joint Research Consortium on the Formation Evaluation, the University of Texas in
Austin.

The expression “simulation of measurements” is widely used within the geophysical
community. A quantity of interest, in this case the voltage, is measured at a receiver
electrode located in the logging instrument. This section presents computer simulations of
how those measurements are obtained.

Nowadays, the logging instruments are equipped with several transmitter and receiver
electrodes. These instruments move along the axis of the borehole and measure the voltage
induced at the receiver electrodes at different positions. The voltage measured at the
receivers is expected to be proportional to the electrical conductivity of the nearby
formation. Thus, the logging instruments are used to estimate the properties (in this case,
the electrical conductivity) of the sub-surface material, with the ultimate objective of
describing hydrocarbon (oil and gas) bearing formations.

In this chapter the behavior of a resistivity logging instrument is examined by
performing its computer-based simulations for the borehole environment. The resulting
simulator is intended to be used in future as a core part of the inverse problem
infrastructure. The inverse infrastructure will give the possibility to determine the unknown
conductivities of formation layers, on the basis of actual measurements recorded by logging
instruments.

The resistivity logging tool with receiver and transmitter electrodes is moving along
the trajectory of the well. The electromagnetic waves generated by the transmitter electrode
are reflected from formation layers and recorded by the receiver electrodes. The oil industry
is particularly interested in the 3D simulations of resistivity measurements in deviated
wells, where the angle between the borehole and the formation layers is not equal to 90
degrees (900 ≠θ).

A fast numerical high accuracy solution of the direct problem is necessary to solve the
inverse problem which consists in localizing the oil formation in the ground. The solution
of this problem is of great interest to the oil industry. It is possible to find a high accuracy
solution of the direct problem only by using the parallel self-adaptive hp-FEM algorithm
presented in this dissertation.

3.2.4.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃3: the electrostatic scalar potential such that

 J
x

u

i i

o∇=
∂

∂
−∑

=

3

1
2

2

σ in Ω (3.41)

 (conductive media equation) where Jo∇ is the load (divergence of the impressed current,
Pardo, Demkowicz, Torres-Verdin, Paszyński 2006) and σ represents the conductivity of
the media.

 220

3.2.4.2. Weak formulation

To solve the above 3D problem (3.41), we introduce the new quasi-cylindrical non-
orthogonal system of coordinates shown in Figure 3.23. This chapter presents a summary of
the derivation presented in detail in Pardo, Calo, Torres-Verdin, Nam 2007 and Pardo,
Torres-Verdin, Nam, Paszyński, Calo 2008. The notation from these papers is also used
here. The variational formulation with respect to the electric potential u in new system of
coordinates can be expressed in the following way:

Find Vu∈ such that:

 VvdJvd
vu

n nn

∈∀∇=
∂

∂

∂

∂
∫∫ ∑
ΩΩ =

ζζ ˆˆ
3

1
o

ζ
σ

ζ
 (3.42)

where

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (3.43)

The electric conductivity of media in new system of coordinates is equal to

JacJacJac
T11:ˆ −−= σσ , and JacJJ oo ∇=∇ :ˆ with Jac being the Jacobian matrix of

the change of coordinates with respect to the Cartesian reference system of coordinates
()321 ,, xxx , namely,

()
()321

321

,,

,,

ζζζ∂

∂
=

xxx
Jac (3.44)

Then, we take a Fourier series expansion of the solution, material and 2ζ direction

 () ()∑
+∞=

−∞=
=

l

l

lj
l euu 2

31321 ,,, ζζζζζζ (3.45)

 () ()∑
+∞=

−∞=
=

m

m

mj
m e 2

31321 ,,, ζζζσζζζσ (3.46)

 () ()∑
+∞=

−∞=
∇=∇

l

l

lj
l eJJ 2

31321 ,,, ζζζζζζ oo (3.47)

where

∫
Π

−

Π
=

2

0
2

2

2

1
ζζ

deuu
lj

l , ∫
Π

−

Π
=

2

0
2

2

2

1
ζσσ ζ

de
mj

m and ∫
Π

−

Π
=∇

2

0
2

2

2

1
ζζ

defJ
lj

lo

and j is the imaginary unit. We introduce symbol lF such that applied to a scalar function u

it produces the lth Fourier modal coefficient lu , and when applied to a vector or matrix, it

produces a vector or matrix of the components being lth Fourier modal coefficients of the
original vector or matrix components.

Using the Fourier series expansions we get the following variational formulation:
Find () VuFl ∈ such that:

 221

() ()

() VvdefFv

de
v

F
u

F

lj
l

mlj
ml

ml

∈∀=

=
∂
∂










∂
∂

∫

∫ ∑

Ω

Ω

+
+∞

−∞=

ζ

ζ

2

2

ˆ

ˆ
,

ζ

ζ

ξ
σ

ξ (3.48)

The summation is applied with respect to ∞≤≤−∞ ml, . We select a mono-modal test

function 2ζkj
k evv = .

Fig.3.23. Three non-orthogonal systems of coordinates in the borehole and formation layers

Thanks to the orthogonality of the Fourier modes in ()Ω2L the variational problem

(3.48) reduces to:
Find () VuFl ∈ such that:

()

() () () VvFddfFvF

dd
v

FF
u

F

kkk

kn

kn
llkl

D

D

∈∀=

=








∂
∂










∂
∂

∫

∫ ∑

Ω

Ω

+=

−=
−

2

2

31

2

2
31

ˆ

ˆ

ζζ

ζζ
ξ

σ
ξ

 (3.49)

since five Fourier modes are enough to represent exactly the new material coefficients. For
more details, see Pardo, Calo, Torres-Verdin, Nam 2007.

In a similar (however more algebraically complicated) manner the variational
formulation for the AC problem can be derived, which is presented in Pardo, Torres-Verdin,
Nam, Paszyński, Calo 2008.

3.2.4.3. Results
The simulations described in this chapter provide a highly accurate value of the

potential of the electromagnetic field for different position of the transmitter and receiver
electrodes.

 222

In order to achieve this goal, we must generate highly non-uniform meshes with high
polynomial order of approximation in the entire domain. An exemplary mesh providing
such a high accuracy solution for a single position of receiver and transmitter electrodes is
presented in Figure 3.24.

The main goal of the simulation is to generate the so-called resistivity logging curves
which are of great interest to the oil industry. The curves are obtained by solving either DC
or AC formulation, for many positions of the receiver and transmitter antenna, for different
dip angles. The simulation reflects the process of resistivity measurements by the tool
shifted along the borehole.

Figure 3.25 presents the solution of an exemplary 3D AC problem, for the resistivities
of formation layers introduced on the first panel of this figure. The logging curves
presented on the second and third panel in Figure 3.25 become a solution of this problem.
The simulation is performed for axially-symmetric and for 30 and 60 degrees deviated well.
We take into consideration real and complex components of the solution.

Several other challenging 3D problems from the Joint Research Consortium on
Formation Evaluation have been solved by employing the Fourier series expansion in the
non-orthogonal system of coordinates, as described in Paszyński, Pardo, Torres-Verdin,
Demkowicz, Calo, 2007, Paszyński, Pardo, Torres-Verdín, 2007, Pardo, Torres-Verdin,
Nam, Paszyński, Calo, 2008, Pardo, Calo, Torres-Verdin, Nam, 2008.

Each of these problems is related to different configurations of the tool and formation
layers. The parallel self-adaptive hp-FEM is the only known numerical method providing a
high accuracy solution in reasonable time (less than few minutes).

Fig.3.24. Optimal mesh generated by the self-adaptive hp-FEM code

 223

3.2.5. 3D DC borehole resistivity measurement simulations with

through-casing instruments in deviated well

The problem of simulating 3D direct current (DC) borehole resistivity measurements
with through-casing instruments for the assessment of rock formation properties comes
from the Joint Research Consortium on Formation Evaluation. This problem is the most
challenging problem coming from the Consortium. It has been solved by using fully 3D
formulation.

In order to avoid the mechanical collapse of wells in oil fields, the use of steel casing
has been a common technique throughout the last decades. However, the casing of a well
with a steel pipe has some undesired effects. For instance, the assessment of electrical
properties of the rock formation becomes more challenging, since the casing highly
attenuates the electromagnetic fields. As a matter of fact, it was not until the last decade
when it was possible for the first time to obtain meaningful data from electromagnetic
logging measurements. As this data becomes available, there is an increasing need to
perform computer-aided simulations of resistivity measurements through casing to assess
subsurface rock formation properties.

Fig.3.25. Exemplary logging curve obtained from the AC simulation

The main challenge for simulating through-casing measurements is the large
conductivity contrast between the rock formation and the casing. This requires the use of
large computational domains and accurate numerical methods to deal with high contrasts on

 224

the materials (up to eleven orders of magnitude), strong singularities and large dynamic
ranges (up to fourteen orders of magnitude).

The simulations obtained from deviated cased wells (when the borehole is not
perpendicular to the rock formation layers) are of special interest to the oil industry.

For the analysis of this problem we take into consideration one current (emitter) and
three voltage (collector) electrodes that are used to measure the second difference of the
electric potential along the well trajectory.

The problem geometry can be described by using cylindrical coordinates ()z,,ϕρ .

The following sources, receivers, and materials are used in Figure 3.26:
a) four (one current and three voltage) 2 × 5-cm ring electrodes located 8 cm from the

axis of symmetry and moving along the vertical direction (z axis). Voltage
(collector) electrodes are located 100, 125, and 150 cm above the current (emitter)
electrode, respectively,

b) borehole: a cylinder AΩ of radius 10 cm surrounding the axis of symmetry

(){ }cm10:,, ≤=Ω ρϕ zxA with resistivity mR ⋅Ω= 1.0 ,

c) casing: a pipe (cylindrical shell) BΩ of thickness 1.27 cm surrounding the axis of

symmetry (){ }cm27.11cm10:,, ≤≤=Ω ρϕ zxB , with resistivity mR ⋅Ω= −510 ,

d) formation material 1: a subdomain CΩ defined by

(){ }cm100cm0,cm27.11:,, ≤≤>=Ω zzxC ρϕ with resistivity mR ⋅Ω= 410 ,

e) formation material 2: a subdomain DΩ defined by

(){ }cm0cm50,cm27.11:,, ≤≤−>=Ω zzxD ρϕ with resistivity mR ⋅Ω= 01.0 ,

f) formation material 3: a subdomain EΩ defined by

(){ }cm100orcm27.11:,, >>=Ω zzxE ρϕ with resistivity mR ⋅Ω= 5 .

 225

Fig.3.26. Two-dimensional cross-section of the 3D DC borehole resistivity measurements with

through-casing instruments

The self-adaptive hp-FEM managed to simulate for the first time the 3D DC borehole

resistivity measurements with through-casing instruments in deviated well.

3.2.5.1. Strong formulation

Find () RxuxRu ∈→∋Ω⊃3: the electrostatic scalar potential such that

 ∑∑
== ∂

∂
=

∂

∂
−

3

1

3

1
2

2

i ii i x

J

x

u
σ in Ω (3.50)

where J denotes a prescribed, impressed current source, σ is the conductivity, and the
electrostatic scalar potential u is related to the electric field E by
 uE −∇= (3.51)

The boundary conditions are defined as
 0=u on DΓ (3.52)

 g
n

u
=

∂

∂
σ on �Γ (3.53)

where g is the prescribed flux on �Γ , with n being the unit normal outward to Ω∂ vector.

 226

3.2.5.2. Weak formulation

Find Vu∈ such that
 () () Vvvlvub ∈∀=, (3.54)

 () ∫ ∑
Ω = ∂

∂

∂

∂
= dx

x

v

x

u
vub

i ii

3

1
, σ (3.55)

 () ∫∫ ∑
ΓΩ =

+
∂

∂
=

�

dSvgdSv
x

J
vl

i i

3

1
 (3.56)

where

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (3.57)

3.2.5.3. Results
Figures 3.27 and 3.28 present exemplary computational hp meshes generated by the

self-adaptive hp-FEM algorithm for the problem of through-casing resistivity instruments,
as well as the solution for a single logging position.

Fig.3.27. Coarse and fine meshes from the first iteration of the self-adaptive hp-FEM algorithm, and
the exemplary highly hp refined mesh, for the deviated well case

For more details on the problem formulation and numerical results, see Pardo, Torres-

Verdin, Paszyński 2008.

 227

Fig.3.28. Simulation of through-casing resistivity measurements in 60 degrees deviated well.

Logging instrument incorporates one transmitter and three receiver antennas.
Left panel: Cross-section of the final hp-grid. Different colours indicate different polynomial orders

of approximation, from 1 (linear polynomials) up to 6 (polynomials of degree 6).
Right panel: Final solution (scalar potential)

The main goal of the simulation is to generate the so-called resistivity logging curves,

which are of great interest to the oil industry. These curves are obtained by solving
variational problem (3.54-3.57) for different positions of the receiver and transmitter
antenna, for different dip angles. An exemplary logging curve for 60 degrees deviated well
is presented in Figure 3.29 and the corresponding resistivities of formation layers are
presented in Figure 3.26.

Fig.3.29. Exemplary logging curve from the simulation of through-casing resistivity measurements

for 60 degrees deviated well

 228

Several other challenging 3D problems from the Joint Research Consortium on
Formation Evaluation have been also solved, as described in Paszyński, Demkowicz,
Pardo, 2005, Pardo, Calo, Torres-Verdin, Paszyński, Nam, 2007, Pardo, Demkowicz,
Torres-Verdin, Paszyński, 2006, Pardo, Demkowicz, Torres-Verdin, Paszyński, 2007a,
Pardo, Demkowicz, Torres-Verdin, Paszyński, 2007b, Pardo, Paszyński, Demkowicz,
Torres-Verdin, 2005a, Pardo, Paszyński, Demkowicz, Torres-Verdin, 2005b, Pardo,
Paszyński, Torres-Verdin, Demkowicz, 2006a, Pardo, Paszyński, Torres-Verdin,
Demkowicz, 2006b, Pardo, Paszyński, Torres-Verdin, Demkowicz 2007, Pardo, Torres-
Verdin, Paszynski, 2008, Pardo, Torres-Verdin, Paszynski, Michler, Demkowicz, 2006,
Paszyński, Pardo, Demkowicz, Torres-Verdin, 2006, Paszyński, Pardo, Torres-Verdin,
2007a, Paszyński, Pardo, Torres-Verdin, 2007b, Paszyński, Pardo, Torres-Verdín, 2007c,
Paszyński, Pardo, Torres-Verdin, Demkowicz, 2006, Paszyński, Pardo, Demkowicz,
Torres-Verdin, 2007.

All those problems are especially important for the oil industry. Each of them is related
to different configurations of the tool and formation layers. The parallel self-adaptive hp-

FEM is the only known numerical method providing a high accuracy solution in reasonable
time (less than few minutes).

 229

1. Conclusions and future work

4.1. Summary of obtained results

The material presented in this work allows us to develop a formal mathematical model

of a wide class of adaptive mesh-based algorithms.. The computational mesh has been
presented as a composite programmable graph (CP-graph) and the mesh transformations
performed by the adaptive algorithms have been represented by the graph grammar
productions. We have introduced the control diagrams to establish the partial order of
executions of graph grammar productions (graph transformations).

The graph grammar-based formalism has been employed in Chapter 2.1 to describe the
self-adaptive hp Finite Element Method (hp-FEM) algorithm, one of the most complicated
mesh-based adaptive algorithms. We have introduced the formal graph grammar-based
definition of all parts of the self-adaptive hp-FEM algorithm. It includes the following
algorithms:
a) the algorithm generating the initial mesh,
b) the coarse mesh direct solver algorithm,
c) the algorithm transforming the coarse mesh into the fine mesh,
d) the algorithm of the fine mesh direct solver,
e) the algorithm for the selection of optimal mesh refinements,
f) the algorithms executing a required h or p refinement and enforcing the mesh

regularity rules.

The developed formalism has allowed us to examine the concurrency of the above

algorithms. For that reason, the model of concurrency has been developed in Chapter 2.1. It
is based on the atomic computational task defined as a single graph grammar production,
assumed to be undividable sequential operation. The interdependences among the graph
grammar productions (atomic tasks) were analysed and summarized in the control
diagrams. The control diagrams of the graph grammar model set the partial order of
execution and identify graph grammar productions that can be executed concurrently. The
model of concurrency for the atomic tasks assumes that the graph representation of the
mesh is fully available for every task.

Several atomic tasks have been agglomerated to the so-called task, representing the
operations performed on the level of sub-graphs corresponding to a single initial mesh
element. The agglomeration has been performed under the assumption that each task has its
own local memory, and stores its local sub-graph representing a single initial mesh element.

 230

The tasks constitute the grain for the mesh partitioning and load balancing algorithms. We
have defined the communication channels between tasks and the self-adaptive algorithm
has been redefined in Section 2.2 on the level of sub-graphs representing single initial mesh
elements. The new control diagrams have been created, defining the partial order of
execution of atomic tasks from the point of view of tasks, with some additional inter-task
communication added. The tasks defined on the level of sub-graphs assigned to the initial
mesh elements constitute the grain for the load balancing and mesh partitioning algorithms,
defined in Section 2.3. Thus, the CP-graph representation of the mesh has been partitioned
on the level of sub-graphs representing the initial mesh elements and we have introduced a
new set of graph grammar productions responsible for partitioning and merging the graph
representation of the mesh into several sub-domains.

Next, several tasks – grains have been agglomerated to the so-called super-tasks. The
agglomeration has been performed under the assumption that each super-task has its own
local memory, and stores its local sub-graph representing a single sub-domain with multiple
initial mesh elements. The super-tasks model is suitable for the distributed memory
architectures, where the number of processors is usually smaller than the number of tasks.
At this point, it is assumed that each super-task is assigned to a single processor. Thus, each
super task has its own global identifier, the processor number. At the end of each iteration
of the self-adaptive hp-FEM algorithm, the partition into several super-tasks has been
updated by executing the load balancing algorithm. Again, it has been done using the grain
defined as the tasks. The input for the load balancing algorithm is the estimation of the
computational cost for all tasks. The output from the algorithms is a new redistribution of
tasks. The tasks have been again agglomerated into super-tasks.

In Section 2.4 the self-adaptive hp-FEM algorithm has been expressed on the level of
super-tasks. The control diagrams have been updated to define the atomic tasks executed by
each super-task, with some necessary inter-super-task communication added.

In Section 2.5 we have discussed the computational and communication complexities
of some selected parts of the self-adaptive algorithm and, consequently, several numerical
experiments were performed in Section 2.6. From the theoretical analysis and numerical
experiments it results that the scalability of the parallel self-adaptive hp-FEM algorithm
partitioned on the level of tasks – grains related to the initial mesh elements is quite good.
Several parallel direct solvers have been interfaced then with the algorithm and tested on
the LONGHORN and LONESTAR linux clusters from Texas Advanced Computing
Center. It has been proven that the best scalability of the direct solver is achieved for the
parallel solver implemented according to the presented graph grammar-based model.

The numerical experiments indicate that the load balancing and mesh repartitioning
algorithms performed on the level of initial mesh elements balance well the computations if
the computational problem contains many singularities. If a problem is small and contains a
small number of local singularities, the mesh adaptation usually occurs in in the closest
neighborhood of those singularities, and there are only a limited number of undividable
tasks – related to the sub-graphs assigned to the initial mesh elements covering these
singularities. But this is not a problem, since small problems with small number of
singularities do not require massive parallel computations. The parallel self-adaptive hp-

FEM algorithm scales well for large problems with large number of singularities, which has
been documented by the performed numerical experiments.

 231

The two- and three-dimensional self-adaptive hp-FEM algorithms have been already
implemented in the hp2Dpar and hp3Dpar codes. Many challenging engineering problems,
including the applications to material science, geo-science and remote sensing, nano-
lithography (micro-cheap production process) and wave propagation problems have been
solved by the implemented algorithms. The numerical experiments discussed in Chapter 3
present the power of the self-adaptive hp-FEM algorithm. All the described problems
require high accuracy of the numerical solution. Up till now, it has been impossible to
achieve such solution using other numerical methods. The self-adaptive hp-FEM, thanks to
the exponential convergence of the numerical error with respect to the mesh size, is able to
solve these problems with high numerical accuracy on relatively small meshes. Other
numerical methods either require grids with millions of degrees of freedom, or even are not
able to solve these problems at all.

4.2. Significance of obtained results

Up till now, neither a comprehensive formal model of the adaptive mesh-based

algorithms, nor a universal methodology for the parallelization of all components of these
algorithms has been created. The formalism proposed in this dissertation enables a
complete description of concurrent versions of the class of adaptive mesh-based algorithms.
The adaptive mesh-based algorithms are very complex, they consist of multiple inter-
dependent sub-algorithms, each of them requiring a different parallelization strategy to be
considered.

The graph grammar model allows for a comprehensive description of all aspects of the
adaptive algorithms, including the generation of initial mesh, the direct solver algorithm,
the mesh transformations including h and p adaptivity, as well as the enforcement of the
mesh regularity rules (the 1-irregularity rule and the minimum rule).

For the first time, a formal analysis of the parallelization of the adaptive mesh-based
algorithms has been performed. As a result, we have managed to create the model of
concurrency, by means of relating the atomic tasks with graph grammar productions and of
denoting partial ordering of these productions. This has allowed us to examine the potential
concurrency in all parts of the adaptive algorithms. The created model expresses for the
first time the concurrent version of the self-adaptive hp-FEM algorithm intended for the
shared memory architecture.

 The atomic tasks have been agglomerated into tasks, in order to partition the graph
representation of the mesh into several sub-graphs, related to the initial mesh elements.
Each task is supposed to use a local memory, where it stores its sub-graphs, representing a
single initial mesh element. The self-adaptive hp-FEM algorithm has been expressed on the
level of tasks by introducing several control diagrams defining the partial order of
execution of atomic tasks by a single task, with some necessary additional minimum inter-
task communication. The tasks have become later the grain for the load balancing and mesh
repartitioning algorithms. Thus, several tasks have been again agglomerated into super-
tasks, representing the partition of the graph representation of the mesh into multiple sub-
graphs, assigned to the sub-domains with multiple initial mesh elements. The load
balancing / mesh repartitioning algorithms have updated the partition of graph
representation of the mesh into new super-tasks after each iteration of the self-adaptive hp-

 232

FEM algorithm. The control diagrams have been finally updated, to express the algorithm
executed on the level of super-tasks. The resulting model enables an efficient
implementation of parallel self-adaptive hp-FEM algorithm for the distributed and hybrid
memory architectures.

The adaptive hp-FEM algorithms require efficient sequential and parallel solvers. In
general, the solvers can be classified as iterative or direct. The iterative solvers are more
efficient than the direct solvers, provided that the considered system of equations is well-
conditioned. A complex, dynamically changing structure of the computational mesh and
non-uniform polynomial orders of approximation result in problems with convergence of
iterative solvers (since the resulting system of equations is not well-conditioned). The only
existing iterative solvers used by the adaptive algorithms are based on multi-grid paradigm
(usually two-grid paradigm). The solution for a much larger fine mesh is obtained by
several solutions of the computational problem projected onto a smaller coarse mesh. The
coarse mesh solution must be obtained by the direct solver. Thus, there is a need for
efficient sequential and parallel direct solvers, even if iterative multi-grid solvers are
applied.

Up till now, there has been no direct solver incorporated to the structure of adaptive hp

meshes. We have managed to create a new sequential and parallel direct solver algorithm
using the structure of hp mesh to solve the problem in an efficient way. The solver employs
the multi-level structure of the elimination tree created out of the graph representation of
the hp mesh. The multi-level structure allows us to separate the level of refinements from
the level of initial mesh elements and the level of sub-domains used by the domain
decomposition paradigm. The implemented parallel version of the solver algorithm has
been compared to the MUMPS solver, known as one of the best available parallel direct
solver. The developed parallel solver has outperformed the MUMPS solver both in terms of
the execution time and memory usage. Moreover, the proposed solver allows for a
reutilization of partial LU factorizations distributed within the nodes of the elimination tree.
This reduces the computational complexity of the solver in a significant way, since the
partial LU factorization has to be recomputed only on the refined parts of the mesh.

On the basis of the developed formalism, the self-adaptive hp-FEM algorithm has been
designed and implemented in both two and three dimensions. Nowadays it is the only
existing fully automatic hp-adaptive FEM software system in the world. The project proves
to be successful thanks to the developed graph grammar model, a thorough theoretical
analysis of the computational and communication complexities of the parallel algorithms,
and the resulting efficient design and implementation of pioneer algorithms. The two- and
three-dimensional software systems allow us to solve several challenging engineering
problems.

Let us mention two examples of such challenging problems. The two-dimensional
battery problem from the Sandia National Laboratories is very specific because of strong
material contrast with anisotropic properties. Contrary to other known methods, the self-
adaptive hp-FEM provides the solution with accuracy less than 1% relative error in the
energy norm, for a mesh with less than 3000 degrees of freedom. Other solutions require
several millions of degrees of freedom to solve the problem with the same accuracy.
The simulation performed for the three-dimensional direct current (DC) borehole resistivity
measurements acquired in steel-cased deviated wells for the assessment of rock formation
properties are the only existing numerical simulations of this process. This is because of a

 233

high contrast of material data in the model – resistivities of formation layers and steel
casing differs by six orders of magnitude – and it is possible to achieve the required high
accuracy of the solution only by using the self-adaptive hp-FEM algorithm.

4.3. Current and future work

The sequential and parallel self-adaptive hp-FEM algorithms have been designed for

elliptic boundary-value problems, in the form presented in Appendix B (B.1-B.8). The
extension of the self-adaptive hp-FEM code for the Stokes problem is currently under
development (Matuszyk, Paszyński, 2007a, Matuszyk, Paszyński, 2007b, Matuszyk,
Paszyński, 2007c, Matuszyk, Paszyński, 2008). There are two main challenges that have to
be faced during the extension process:

1) the need of approximation of two continuous fields: vector velocity field

() RxuxRu ∈→∋Ω⊃2: , and scalar pressure field () RxpxRu ∈→∋Ω⊃: ,

2) the assumption of minimal changes in the code implies the usage of the equal-

order approximation p

p

Q

Q for the velocity and pressure. This implies a

necessity of using a stabilization technique to overcome the limitations imposed on
FE spaces by the famous Ladyzhenskaya-Babuška-Brezzi (LBB) condition
(Brezzi, Fortin 1991). A good example of such method is the Hughes-Franca
stabilization method (Hughes, Franca, Balestra, 1986, Hughes, Franca, 1987).

Both the sequential and parallel self-adaptive hp-FEM algorithms are limited to the

stationary problems. The extension of the self-adaptive hp-FEM algorithm to the non-
stationary problems is currently under development Matuszyk, Paszyński, 2007c. Again,
there are some challenges that we have to deal with during the extension process:

a) the non-stationary problems require the computational meshes from the current and
previous time step to be stored in memory. During the adaptive computations, the
meshes are usually non-conforming, since they are obtained by a sequence of h and
p refinements from a prescribed initial mesh. The solution from the previous time
step is applied to obtain the current time step solution. Thus, we need to implement
a suitable projection between the current and the previous time steps,

b) the nature of the solution changes from one time step to the other. The optimal hp

mesh for the previous time step may be no longer optimal for the next time step.
Some refinements may be no longer necessary. Thus, the mesh unrefinement
algorithm must be designed in order to optimize the size of computational meshes.

The presented CP-graph grammar model is limited to the two-dimensional rectangular

finite elements (Paszyński, Paszyńska 2007). The extension of the graph grammar model to
the triangular finite elements is under development. The graph grammar for the triangular
elements can be designed using very similar graph transformations, as presented in
(Paszyńska, Paszyński, Grabska 2008).

The presented graph grammar model is limited to the two-dimensional meshes. The
two-dimensional hp2Dpar code has been created by designing the UML model classes and

 234

objects related to CP-graph vertices with classes and objects. The three-dimensional code
hp3Dpar has been designed by the generalization of the UML diagrams to three
dimensions. The parallel algorithms for the three-dimensional code have been obtained by
the generalization of the two-dimensional algorithms, expressed by graph grammar
transformations, to the three dimensions. However, there is still a need for a formal model
of the three-dimensional computations. This is a challenging task, since the three-
dimensional graph grammar model seems to be very complicated.

The current version of the multi-level multi-frontal direct-substructuring parallel
solver, defined in Appendix D, does not include the reutilization of partial LU
factorizations, introduced in Section 2.4. The future work will involve the development of a
new version of the solver, efficiently employing the reutilization techniques. Some
preliminary work on the theoretical analysis of the reutilization algorithm has been already
presented in (Paszyński, Schaefer 2008).

The multi-level multi-frontal direct-substructuring parallel solver can be used as the
coarse mesh solver for the parallel version of the two-grid solver, designed for hp-FEM.
The sequential version of the two-grid solver has been developed by David Pardo (Pardo,
2004). The solver uses the two-grid paradigm. The fine mesh problem solution is achieved
by means of several solutions of the problem projected onto the coarse mesh. The main
technical challenge for the parallel two-grid solver algorithm is to maintain patches of finite
elements, which can be much wider than a single initial mesh element. One solution is to
employ the domain decomposition paradigm with overlapping sub-domains. Another
solution is to develop the iterative solver on the shared data structure. The preliminary
results for the second approach have been described in Pardo, Nam, Torres-Verdin,
Paszyński 2008.

The inverse parametric problems belong to the group of the heaviest computational
tasks. Their solution require a sequence of direct problem solutions, e.g. obtained by using
the self-adaptive hp-FEM, thus the accuracy of the inverse problem solution is limited by
the accuracy of the direct problem solution. Using the maximum accuracy for the direct
problem solution by each iteration of the inverse solver leads to unnecessary computational
costs. A better strategy is to balance dynamically the accuracy of both iterations.

The relation between the error of optimization method, defined as the incorrectness of
objective function value, and the hp-FEM solution error has been already developed
(Paszyński, Barabasz, Schaefer, 2007). The method was tested with the Hook-Jeeves
algorithm used for the inverse problem, for the identification of the SFIL process
parameters (Paszyński, Szeliga, Barabasz, 2007). The theoretical foundations for the
Hierarchical Genetic Search (HGS) inverse algorithm coupled with hp-FEM have been also
already developed (Schaefer, Barabasz, Paszyński, 2007, Schaefer, Barabasz, Paszyński,
2008). The future work will involve a further theoretical analysis of this method as well as
its successful implementation.

The self-adaptive hp FEM starts from an arbitrary initial mesh, selected by the user. It
generates a sequence of meshes delivering convergence of the accuracy of the numerical
solution with respect to the mesh size. The sequence of meshes is obtained by performing
multiple h, p or hp refinements. The h refinement consists in breaking selected finite
element into smaller son elements, and the p refinement consists in adjusting polynomial
order of approximation on selected element edges and interiors. The ration of convergence
of the solution on a sequence of meshes depends on the quality of the selected initial mesh.

 235

The best convergence is obtained when the initial mesh fits the material data. The design of
such optimal initial mesh by hand is very difficult, and sometimes even impossible, e.g.
when the material data comes from some stochastic procedure.

The foundations of the genetic algorithm for the optimal selection of the initial mesh
have been already presented (Paszyńska, Paszyński 2007, Paszyńska, Paszyński, 2008), and
the future work will focus on a further development of the algorithm.

The agent-oriented programming paradigm seems to be very promising for developing
efficient applications in the distributed environment, with multiple computational nodes
and with dynamically changing topology of the network. The future work will involve the
design and development of the agent-oriented version of the self-adaptive hp-FEM
algorithm. Some preliminary work on this problem has been already discussed in
(Paszyński, 2006, Paszyński, 2007b).

 236

 237

References

Amestoy P. R., Duff I. S., L'Excellent J.-Y., 2000: Multifrontal parallel distributed

symmetric and unsymmetric solvers. Computer Methods in Applied Mechanics and
Engineering 184, 501-520

Amestoy P. R., Duff I. S., Koster J. and L'Excellent J.-Y., 2001: A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM Journal of Matrix Analysis
and Applications, 23, 1, 15-41

Amestoy P. R., Guermouche A., L'Excellent J.-Y., Pralet S., 2006: Hybrid scheduling for
the parallel solution of linear systems. Parallel Computing, 32, 2, 136-156

Babuška I., Guo B., 1986a: The hp-version of the finite element method, Part I: The basic

approximation results. Computational Mechanics, 1, 21-41

Babuška I., Guo B., 1986b: The hp-version of the finite element method, Part II: General

results and applications. Computational. Mechanics, 1, 203-220

Bailey T. C., Colburn M. E., Choi B. J., Grot A., Ekerdt J. G., Sreenivasan S. V., Willson
C. G., 2002: Step and Flash Imprint Lithography: A Low-Pressure, Room Temperature

�anoimprint Patterning Process. Alternative Lithography. Unleashing the Potentials of

�anotechnology. C. Sotomayor Torres, Editor, Elsevier

Bajer A., Rachowicz A., Walsh T., Demkowicz T., 2001: A Two-Grid Parallel Solver for

Time Harmonic Maxwell's Equations and hp Meshes. Proceedings of Second European
Conference on Computational Mechanics, Kraków, June 25-29

Banaś K., 2003: A Model for Parallel Adaptive Finite Element Software. Proceedings of
15th International Conference on Domain Decomposition Methods, Freie Universitat
Berlin, July 21-25

Banaś K., Płażek J., 1997: Parallel Iterative Solvers for the Finite Element Method. 13th
international conference on Computer Methods in Mechanics, Vol. I, 115-120

Bauer A. C., Patra A. K., 2004: Robust and Efficient Domain Decomposition

Preconditioners for Adaptive hp Finite Element Approximations of Linear Elasticity with

and without Discontinuous Coefficients. International Journal of Numerical Methods in
Engineering, 59, 3, 337-364

 238

Bastian P., Birken K., Johannsen K., Lang S., Neuss N., Rentz-Reichart H., 1997: UG - a

flexible software toolbox for solving partial differential equations. Computing and
Visualization in Science, 1, 1, 27-40

Bastian P., 1998: Load Balancing For Adaptive Multigrid Methods. SIAM Journal on
Scientific Computing, 19, 4, 1303-1321

Beal M. W., Shephard M. S., 1997: A General Topology-Based Mesh Data Structure,
International Journal for Numerical Methods in Engineering, 40, 1573-1596

Booch G., Rumbaugh J., Jacobson I., 1998: The Unified Modeling Language User Guide.
Addison-Wesley Professional, 1st edition

Brezzi F., Fortin M., 1991: Mixed and Hybrid Finite Element Methods. Springer-Verlag

Burns R. L., Johnson S. C., Schmid G. M., Kim E. K.,. D. Dickey M. D., Meiring J., Burns
S. D., Stacey N. A., Willson C. G., 2004: Mesoscale modeling for SFIL simulating

polymerization kinetics and densification. Proceeding of SPIE

CHAMPION Cluster Users' Manual
http://www.tacc.utexas.edu/services/userguides/champion

Clos C., 1984: A Study of �on-Blocking Switch �etworks, Interconnection �etworks for

Parallel and Distributed Processing. Chuan-lin Wu and Tse-yun Feng (ed.), IEEE
Computer Society Press, 126-144

Colburn M. E., 2001: Step and Flash Imprint Lithograpy: A Low Pressure, Room

Temperature �onoimprint Lithography. PhD. Thesis, The University of Texas in Austin

Colburn M. E., Suez I., Choi B. J., Meissi M., Bailey T., Sreenivasan S. V., Ekerdt J. E.,
Willson C. G., 2001: Characterization and modeling of volumetric and mechanical

properties for SFIL photopolymers. Journal of Vacuum Science and Technology, B 19(6)

Demkowicz L., 2004: Projection-Based Interpolation, ICES Report 04-03

Demkowicz L., 2006: Computing with hp-Adaptive Finite Elements, Vol. I. One and Two

Dimensional Elliptic and Maxwell Problems. Chapman & Hall / CRC Applied Mathematics
& Nonlinear Science

Demkowicz L., Kurtz J., Pardo D., Paszyński M., Rachowicz W., Zdunek A., 2007:
Computing with hp-Adaptive Finite Elements, Vol. II. Frontiers: Three Dimensional

Elliptic and Maxwell Problems with Applications. Chapman & Hall / CRC Applied
Mathematics & Nonlinear Science

Demkowicz L., Rachowicz W., Devloo Ph., 2001: A Fully Automatic hp-Adaptivity. Journal
of Scientific Computing, 17, 1-3, 127-155

Devine K. D., Flaherty J. E., 1996: Parallel Adaptive hp-Refinement Techniques for

Conservation Laws. Applied Numerical Mathematics, 20, 367-386

Duff I. S., Reid J. K., 1983: The multifrontal solution of indefinite sparse symmetric linear

systems. ACM Transactions on Mathematical Software, 9, 302-325

 239

Duff I. S., Reid J. K., 1984: The multifrontal solution of unsymmetric sets of linear systems.
SIAM Journal on Scientific and Statistical Computing, 5, 633-641

Edwards H. C., 1997: A Parallel Infrastructure for Scalable Adaptive Finite Element

Methods and its application to Least Squares C-infinity Collocation. PhD. Dissertation,
The University of Texas at Austin

Edwards H. C., 2002: SIERRA Framework Version 3: Core Services Theory and Design.
SAND2002-3616, Albuquerque, NM: Sandia National Laboratories

Edwards H. C., Stewart J. R., 2001: SIERRA, A Software Environment for Developing

Complex Multiphysics Applications. Computational Fluid and Solid Mechanics, Proc. First
MIT Conf. Cambridge MA

Edwards H. C., Stewart J. R., Zepper J. D., 2002: Mathematical Abstractions of the

SIERRA Computational Mechanics Framework. Proceedings of the Fifth World Congress
on Computational Mechanics, Vienna Austria

Flasiński M., Schaefer R., 1996: Quasi context sensitive graph grammars as a formal

model of FE mesh generation, Computer-Assisted Mechanics and Engineering Science, 3,
191-203

Foster I., Desiging and Building Parallel Programs, http://www-unix.mcs.aml.gov/dbpp

Geng P., Oden T. J., van de Geijn R. A., 2006: A Parallel Multifrontal Algorithm and Its

Implementation. Computer Methods in Applied Mechanics and Engineering 149, 289-301

Giraud L., Marocco A., Rioual J.-C., 2005: Iterative versus direct parallel substructuring

methods in semiconductor device modeling. Numerical Linear Algebra with Applications,
12, 1, 33-55

Grabska E., 1993a: Theoretical Concepts of Graphical Modeling. Part One: Realization of

CP-Graphs. Machine Graphics and Vision 2, 1, 3-38

Grabska E., 1993b: Theoretical Concepts of Graphical Modeling. Part Two: CP-Graph

Grammars and Languages. Machine Graphics and Vision 2, 2, 149-178

Grabska E., Hliniak G., 1993: Structural Aspects of CP-Graph Languages. Schedae

Informaticae. 5, 81-100

Hughes T. J. R., Franca L. P., 1987: A �ew FEM for Computational Fluid Dynamics: VII.

The Stokes Problem with Various Well-Posed Boundary Conditions: Symmetric

Formulations that Converge for All Velocity/Pressure Spaces. Computer Methods in
Applied Mechanics and Engineering, 65, 85-96

Hughes T. J. R., Franca L. P., Balestra M., 1986: A �ew FEM for Computational Fluid

Dynamics: V. Circumventing The Babuška-Brezzi Condition: A Stable Petrov-Galerkin

Formulation of The Stokes Problem Accomodating Equal-Order Interpolations. Computer
Methods in Applied Mechanics and Engineering, 59, 85-99

Irons B., 1970: A frontal solution program for finite-element analysis. International Journal
of Numerical Methods in Engineering, 2, 5-32

 240

Karypis G., Kumar V., 1999: A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing, 20, 1, 359 – 392

Khaira M. S., Miller G. L., Sheffler T. J., 1992: �ested Dissection: A survey and

comparison of various nested dissection algorithms, CMU-CS-92-106R, Computer Science
Department, Carnegie Mellon University

Laszloffy A., Long J., Patra A. K., 2000: Simple data management, scheduling and solution

strategies for managing the irregularities in parallel adaptive hp finite element simulations.
Parallel Computing, 26, 1765-1788

LONESTAR Cluster Users' Manual
http://www.tacc.utexas.edu/services/userguides/lonestar

Matuszyk P., Paszyński M., 2007: Fully Automatic hp Finie Element Method for Stokes

Problem in Two Dimensions. CMM-2007 : 17th international conference on Computer
Methods in Mechanics, Łódź–Spała, Poland, June 19–22

Matuszyk P., Paszyński M., 2007b: Extensions of the 2D automatic hp-adaptive FEM for

Stokes and non-stationary heat transfer problems. 9th US National Congress on
Computational Mechanics, San Francisco, July 16-21

Matuszyk P., Paszyński M., 2007c: Fully automatic 2D hp-adaptive Finite Element Method

for �on-stationary Heat Transfer Problems. COMPLAS IX : COMputational PLASticity :
fundamentals and applications, Pt. 2, eds. Eugenio Oñate, Roger Owen, Benjamín Suárez,
Barcelona, Spain, September 5–7

Matuszyk P., Paszyński M., 2008: A Fully Automatic hp Finite Element Method for Stokes

Problem in Two Dimensions, Computer Methods in Applied Mechanics and Engineering,
197, 51-52, pp. 4549-4558

MUMPS: A MUltifrontal Massively Parallel sparse direct Solver.
http://www.enseeiht.fr/lima/apo/MUMPS

Pardo D., 2004: Integration of hp-Adaptivity with a Two-Grid Solver. PhD. Dissertation,
The University of Texas at Austin

Pardo D., Calo V. M., Torres-Verdin C., Nam M. J., 2008: Fourier Series Expansion in a

�on-Orthogonal System of Coordinates for Simulation of 3D DC Borehole Resistivity

Measurements. Computer Methods in Applied Mechanics and Engineering, 197, 1-3, 1906-
1925

Pardo D., Calo V., Torres-Verdin C., Paszyński M., Nam M. J., 2007: Self-adaptive hp

finite-element simulation of multi-component induction measurements acquired in dipping,

invaded and anisotropic formations. Seventh Annual Report of Joint Industry Research
Consortium on Formation Evaluation, The University of Texas at Austin, August 16-17

Pardo D., Demkowicz L., Torres-Verdin C., Paszyński M., 2006: Simulation of Resistivity

Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp-

Finite Element Method. SIAM Journal on Applied Mathematics, 66, 2085-2106

 241

Pardo D., Demkowicz L., Torres-Verdin C., Paszyński M., 2007a: A Three-Dimensional

Self-Adaptive, Goal-Oriented hp-Finite Element Method with a Multigrid Solver,
Applications to Electromagnetics. SIAM Conference in Computational Science and
Engineering, Costa Mesa, CA, USA, February 19-23

Pardo D., Demkowicz L., Torres-Verdin C., Paszyński M., 2007b: A Goal Oriented hp-

Adaptive Finite Element Strategy with Electromagnetic Applications. Part II:

Electrodynamics. Computer Methods in Applied Mechanics and Engineering, special issue
in honor of Prof. Ivo Babuška, 196, 3585-3597

Pardo D., Nam M. J., Torres-Verdin C., Paszyński M., 2008: A Parallel, Fourier Finite

Element Formulation with an Iterative Solver for the Simulation of 3D LWD measurements

Acquired in Deviated Wells. PIERS Online, 4, 5, 551-555

Pardo D., Paszyński M., Demkowicz L., Torres-Verdin C., 2005a: Self-Adaptive Goal-

Oriented hp-Finite Element Simulations of (1) Axisymmetric Borehole Accoustics and (2)

3D Resistivity Logging Instruments. Fifth Annual Report of Joint Industry Research
Consortium on Formation Evaluation, The University of Texas at Austin, August 17

Pardo D., Paszyński M., Demkowicz L.,. Torres-Verdin C., 2005b: Parallel Self-Adaptive

Goal-Oriented hp-Finite Element Simulations of 3D Resistivity Logging Instruments. Fifth
Annual Report of Joint Industry Research Consortium on Formation Evaluation, The
University of Texas at Austin, August 17

Pardo D., Paszyński M., Torres-Verdin C., Demkowicz L., 2006a: �umerical Simulations

of 3D DC Borehole Resistivity Measurements using an hp-Adaptive Goal-Oriented Finite

Element Formulation, Sixth Annual Report of Joint Industry Research Consortium on
Formation Evaluation, The University of Texas at Austin, August 16-18

Pardo D., Paszyński M., Torres-Verdin C., Demkowicz L., 2006b: High Accuracy

Simulations of 2D and 3D Resistivity Logging Instruments using a Self-Adaptive Goal-

Oriented hp-FEM. MAFELAP 2006 Conference on the Mathematics of Finite Elements
and Applications, Brunel Institute of Computational Mathematics, Brunel University,
Uxbridge, England, June 13-16

Pardo D., Paszyński M.,. Torres-Verdin C., Demkowicz L., 2007: Simulation of 3D DC

Borehole Resistivity Measurements with a Goal-Oriented hp Finite-Element Method. Part

I: Laterolog and LWD. Journal of the Serbian Society for Computational Mechanics, 1, 62-
73

Pardo D., Torres-Verdin C., Paszynski M., Michler C.,. Demkowicz L., 2006: A 2D and 3D

hp-Finite Element Method for Simulation of Through Casing Resistivity Logging

Instruments. Proceedings to the IEEE International Symposium on Antennas and
Propagation, Albuquerque, NM, USA, July 10-15

Pardo D., Torres-Verdin C., Nam M. J., Paszyński M.,. Calo V., 2008: Fourier Series

Expansion in a �on-Orthogonal System of Coordinates for the Simulation of 3D

Alternating Current Borehole Resistivity Measurements. Computer Methods in Applied
Mechanics and Engineering, 197, 45-48

 242

Pardo D., Torres-Verdin C., Paszyński M., 2008: Simulations of 3D DC Borehole

Resistivity Measurements with a Goal-Oriented hp-Finite-Element Method. Part II:

Through Casing Resistivity Instruments. Computational Geosciences, 12, 1, 83-89

Paszyńska A., Paszyński M., 2007: An Application of Hierarchical Chromosome Based

Genetic Algorithm to the Optmization of Platform Shape. Evolutionary computation and
global optimization, Będlewo, Poland, June 11–13

Paszyńska A., Paszyński M., 2008: An application of hierarchical chromosome based

genetic algorithm for finding optimal initial mesh for the self-adaptive hp FEM

calculations. ICMAM 2008 : European workshop on Intelligent Computational Methods
and Applied Mathematics, Kraków, Poland, March 28-31

Paszyńska A,, Paszyński M., Grabska E., 2008: Graph Transformations for Modeling hp-

Adaptive Finite Element Method with Triangular Elements. M. Bubak et al. (Eds.): ICCS
2008, Part III, Lecture Notes In Computer Science 5103, 604–614

Paszyński M., 2006: The aplication of agents to parallel mesh refinements in domain

decomposition based parallel fully automatic hp adaptive finite element codes. Lectures
Notes in Computer Science 3993/2006, 751-758

Paszyński M., 2007a: Performace of Multi Level Parallel Direct Solver for hp Finite

Element Method. Lecture Notes in Computer Science 4967, 1303-1312

Paszyński M., 2007b: Agents based hierarchical parallelization of complex algorithms on

the example of hp Finite Element Method, Y. Shi et al. (Eds.): ICCS 2007, Part II, Lecture
Notes in Computer Science 4488, 912–919

Paszyński M., 2007c: Parallelization Strategy for Self-Adaptive PDE Solvers. submitted to
Fundamenta Informaticae

Paszyński M., Barabasz B., Schaefer R., 2007: Efficient Adaptive Strategy for Solving

Inverse Problems, Y. Shi et al. (Eds.): ICCS 2007, Part I, Lecture Notes In Computer
Science 4487, 342–349

Paszyński M., Demkowicz L., 2006: Parallel Fully Automatic hp-Adaptive 3D Finite

Element Package, Engineering with Computers, 22, 3-4, 255-276

Paszyński M., Demkowicz L., Pardo D., 2005: Verification of goal-oriented HP-adaptivity,

Computers and Mathematics with Applications, 50, 1395–1404

Paszyński M., Kurtz J., Demkowicz L., 2003: Parallel Fully Automatic hp-Adaptive Codes

for Acoustics and Electromagnetics. Proceedings of Super-Computing 03, Phoenix,
Arizona

Paszyński M., Kurtz J., Demkowicz L., 2006: Parallel Fully Automatic hp-Adaptive 2D

Finite Element Package. Computer Methods in Applied Mechanics and Engineering, 195,
7-8, 25, 711-741

Paszyński M., Macioł P., 2006: Application of Fully Automatic 3D hp Adaptive Code to

Orthotropic Heat Transfer in Structurally Graded Materials. Journal of Materials
Processing Technology, 177, 1-3, 68-71

 243

Paszyński M., Pardo D., Demkowicz L., Torres-Verdin C., 2006: Parallel hp-Finite

Element Simulations of 3D Resistivity Logging Instruments. 13th ISPE International
Conference on Concurrent Engineering: Research and Applications, Antibes, France,
September 2006, in Leading the Web in Concurrent Engineering: Next Generation
Concurrent Engineering, P. Ghodous et al. (Eds.) IOS Press, 635-642

Paszyński M., Pardo D., Demkowicz L., Torres-Verdin C., 2007: An algorithm for

transferring 2D arbitrary hp-refined finite element axially symmetric meshes to three

dimensions, XIV Conference in Computer Methods in Material Science, Zakopane, Poland

Paszyński M., Pardo D., Torres-Verdin C., 2007a: Fast numerical simulation of 3D DC/AC

borehole resistivity measurements with a parallel hp-adaptive and goaloriented finite-

element formulation, Seventh Annual Report of Joint Industry Research Consortium on
Formation Evaluation, The University of Texas at Austin, August 16-17

Paszyński M., Pardo D., Torres-Verdín C., 2007b: Simulation of 3D Resistivity Logging

Measurements with a Parallel Implementation of 2D hp-Adaptive Goal-Oriented Finite

Element Method, International Conference of Numerical Analysis and Applied
Mathematics, Corfu, Greece, September 16-20

Paszyński M., Pardo D., Torres-Verdin C., 2007c: A nested dissection parallel direct solver

for simulations of 3D DC/AC resistivity measurements 9th U.S. National Congress on
Computational Mechanics, San Francisco , July 23-26

Paszyński M., Pardo D., Torres-Verdin C., Demkowicz L., 2006: Fast �umerical

Simulations of 3D DC Borehole Resistivity Measurements with a Parallel Self-Adaptive

Goal-Oriented Finite Element Formulation. Sixth Annual Report of Joint Industry
Research Consortium on Formation Evaluation, The University of Texas at Austin, August
16-18

Paszyński M., Pardo D., Torres-Verdin C., Demkowicz L., Calo V., 2007: A Multi-Level

Direct Substructuring Multi-Frontal Parallel Direct Solver for hp-Finite Element Method.
ICES-Report 07-33, The University of Texas in Austin, submitted to Parallel Computing

Paszyński M., Pardo D., Torres-Verdin C., Matuszyk P., 2007: Efficient sequential and

parallel solvers for hp Finite Element Method, APCOM'07 – EPMESC XI : third Asian-
Pacific Congress on Computational Mechanics in conjunction with eleventh international
conference on Enhancement and Promotion of Computational Methods in Engineering and
Science : December 3–6

Paszyński M., Paszyńska A., 2007: Graph transformations for modeling parallel hp-

adaptive FEM computations, Lecture Notes in Computer Science, 4967, 1313-1322

Paszyński M., Romkes A., Collister E., Meiring J., Demkowicz L., Willson C. G., 2005: On

the Modeling of Step-and-Flash Imprint Lithography using Molecular Statics Models. ICES
Report 05-38, The University of Texas in Austin

Paszyński M., Schaefer R., 2008: Reutilization of Partial LU Factorizations forSelf-

adaptive hp Finite Element Method solver. M. Bubak et al. (Eds.): ICCS 2008, Part I,
Lecture Notes in Computer Science 5101, 965–974

 244

Paszyński M., Szeliga D., Barabasz B., 2007: An Algorithm for Relating Convergence

Ratios of Inverse and Direct Problems Solutions by Means of the Self-Adaptive hp Finite

Element Method. CMM-2007 : 17th international conference on Computer Methods in
Mechanics, Łódź–Spała, Poland, June 19–22

Patra A. K., 1999: Parallel HP Adaptive Finite Element Analysis for Viscous

Incompressible Fluid Problems. PhD. Dissertation, University of Texas at Austin

Pike G., Semenzato L., Colella P., Hilfinger P. N., 1999: Parallel 3D Adaptive Mesh

Refinement in Titanium. Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, San Antonio, USA, March

Płażek J., 1999: Implementation Issues of Computational Fluid Dynamics Algorithms on

Parallel Computers. Lecture Notes in Computer Science, 1697, 349-355

Płażek J., 2000: Scalable CFD Computations Using Message-Passing and Distributed

Shared Memory Algorithms. Lecture Notes in Computer Science, 1908, 282-288

Płażek J., Banaś K., Kitowski J., 2001: Comparison of Message Passing and Shared

Memory Implementations of the GMRES method on MIMD computers. Scientific
Programming, 9, 195-209

Płażek J., Banaś K., Kitowski J., Boryczko K., 1997: Exploiting two-level parallelism in

FEM applications. Proceedings of the International Conference on High Performance
Computing and Networking, Vol. 1225, Lecture Notes in Computer Science, 878-880

Rachowicz W., Pardo D., Demkowicz L., Fully Automatic hp-Adaptivity in Three

Dimensions. Computer Methods in Applied Mechanics and Engineering (J.H. Argyris
Memorial Issue), 195, 37-40, 4816-4842

Remacle J. F., Xiangrong Li, Shephard M.S., Flaherty J.E., 2000: Anisotropic Adaptive

Simulations of Transient Flows using Discontinuous Galerkin Methods. Internation Journal
of Numerical Methods in Engineering, 00, 1-6

Sagan H., 1994: Space Filling Curve. Springer, Berlin

Schaefer R., Barabasz B., Paszyński M., 2007: Twin Adaptive Strategy for Solving Inverse

Problems. Evolutionary computation and global optimization, Będlewo, Poland, June 11–
13

Schaefer R., Barabasz B., Paszyński M., 2008: Asymptotic guarantee of success of the

Hp-HGS strategy. Evolutionary computation and global optimization, Szymbark, Poland,
June 02 - 04

Schwab Ch., 1998: P and hp Finite Element Methods. Oxford University Press

Scott J. A., 2003: Parallel Frontal Solvers for Large Sparse Linear Systems. ACM
Transactions on Mathematical Software, 29, 4, 395-417

Smith B. F., Bjőrstad P., Gropp W., 1996: Domain Decomposition, Parallel Multi-Level

Methods for Elliptic Partial Differential Equations Cambridge University Press, New York,
1st ed.

 245

Sołek W., 2004: �umeryczna Symulacja Tiksotropowego Wypełniania Formy Stopami

Glinu i Magnezu. PhD. Dissertation, AGH University of Science and Technology (in
Polish)

Stewart J. R., Edwards H. C., 2002: SIERRA Framework Version 3: h-Adaptivity Design

and Use. SAND2002-4016, Albuquerque, NM: Sandia National Laboratories

Walsh T., Demkowicz L., 1999: A Parallel Multifrontal Solver for hp-Adaptive Finite

Elements. TICAM Report 99-01

Wheat S., 1992: A fine grained data migration approach to application load balancing on

MP MIMP machines. PhD. Dissertation, University of New Mexico, Albuquerque

Woodward P., Colella P., 1984: The numerical simulation of two dimensional fluid flow

with strong shocks. Journal of Computational Physics, 54, 115-173

Zienkiewicz O. C., 1967: Finite Element Method, John Wiley, New York

ZOLTAN: Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan

 246

Appendix A – hp Finite Element

There are two ways to define 1D hp reference finite element. The classical way is to
use the Ciarlet definition (Ciarlet 1978) whereas a more familiar way for hp people is to use
the definition introduced by Demkowicz 2007.

Definition A.1. 1D reference hp finite element (Demkowicz 2007)

The reference 1D hp finite element is a triple

 ()()pKXK Π,ˆ,ˆ (A.1)

defined by the following four-step process:
1) geometry,

Fig.A_1. Nodes of the 1D hp finite element

2) selection of nodes – there are two vertex nodes 21 ˆ,ˆ aa and one edge node 3â

selected, presented in Figure A_1,
3) definition of element space shape functions

 () (){ }1,...,1,ˆˆspanˆ +=∈= pjKPKX
p

jχ (A.2)

where ()KP p ˆ are polynomials of order p over []1,0ˆ =K , and

 () ξξχ −=1ˆ1 (A.3)

 () ξξχ =2ˆ (A.4)

 () ()ξξξχ −= 1ˆ3 (A.5)

 () () () 3121ˆ −−−= l

l ξξξξχ for l=4,…,p+1 (A.6)

4) definition of the projection-based interpolation operator

 () ()KXKHp
ˆˆ: 1 →Π (A.7)

Given a function ()KHu ˆ1∈ , its projection-based interpolant ()KXup
ˆ∈Π is defined

by requesting the following conditions

 247

 () ()00 uup =Π (A.8)

 () ()11 uup =Π (A.9)

 ()
()

min
1,0

''
1

→−Π
H

p uu (A.10)

where ()
()

()()∫ −Π=−Π
1

0

2''

1,0

''
1

ξduuuu p
H

p is the H1 semi-norm.

Remark A.1.

The minimization problem (A.10) is equivalent to:

Find ()KXup
ˆ∈Π such that

 () ()00 uup =Π (A.11)

 () ()11 uup =Π (A.12)

 ()() ()KXvdvuup
ˆ0'

1

0

'' ∈∀=−Π∫ ξ (A.13)

which in turn is equivalent to solving the following system of equations

()
()



























=



















































+++++++

+

1

3

1

3

2

1

1,13,12,11,1

1,3333231

0

0

0010

0001

p
p
p

p

p

p

ppppp

p

b

b

u

u

u

u

u

u

aaaa

aaaa

MM

L

MMMM

L

L

L

 (A.14)

where

 ∑
+

=
=Π

1

1

p

i
i

p
i

p
uu χ (A.15)

 ∫=
1

0

'' ξχχ da jiij (A.16)

 ∫=
1

0

'' ξχ dub ii (A.17)

Definition A.2. 1D reference hp finite element (based on Ciarlet 1978)

The reference 1D hp finite element is a triple

 () ()()KXKVK ˆ,ˆ,ˆ * (A.18)

defined by the following four-step process:
1) geometry

 []1,0ˆ =K (A.19)

2) selection of nodes – there are two vertex nodes 21 ˆ,ˆ aa and one edge node 3â

selected, presented in Figure A_1,

 248

3) definition of space of degrees of freedom

 ()KV ˆ* (A.19)

where ()KV ˆ* is the dual space to a functional space ()KV ˆ , and { } 1
1
+
=
p
iiψ is the

basis of ()KV ˆ* .

There is one degree of freedom related to each vertex node, and p-1 degrees of
freedom related to edge node.

 () () RffKV ∈→∋ 0ˆ:1ψ (A.20)

 () () RffKV ∈→∋ 1ˆ:2ψ (A.21)

and e.g. for p=2

 () ()() RdffKV
K

∈−→∋ ∫
ˆ

3 21'3ˆ: ξξξψ (A.22)

4) construction of approximation space () ()KVKX ˆˆ ⊂

The elements of the basis of the approximation space ()KX ˆ are called the shape

functions and are selected as the dual basis
 () ijji δχψ = (A.23)

Remark A.2

Let 3,...,1, =jjχ denote shape functions defined in Definition A.1 in (A.3-5) for p=2, let

() ()1,01,0: 21
PHj →ψ defined in Definition A.2 in (A.19-21). Then () ijji δχψ = .

Remark A.3 (Demkowicz 2007)

Let () ()KPH
p

p
ˆ1,0: 1 →Π be the projection-based interpolation operator. Let 1χ and

2χ denote the linear shape functions, and let 1,...,3, += pjjχ denote any basis for the

space pP 1− of polynomials of order less or equal p, vanishing at endpoints. Then, there is a

unique set of linear and continuous functionals () ()1,01,0: 1 p
j PH →ψ such that

 ()∑
+

−
=Π

1

1

p

j
jjp uu χψ (A.24)

Definition A.4. 1D hp finite element (Demkowicz 2007)

A 1D hp finite element is a triple
 ()()pKXK Π,, (A.25)

defined by the following four-step process:
1) geometry

 []rl xxK ,= (A.26)

 249

Fig.A_2. Nodes of the 1D hp finite element

2) selection of nodes – there are two vertex nodes 21,aa and one edge node 3a

 selected, presented in Figure A_2,
3) definition of element space shape functions ()KX

 () (){ }:ˆˆ,ˆ 1 KXxKX K ∈== − χχχ o (A.27)

where KKxK →ˆ: is the map of the reference element []1,0ˆ =K into an

arbitrary element K

 () () KxxxxxK lrlK ∈=−+=→∋ ξξˆ (A.28)

4) definition of the projection-based interpolation operator

 () ()KXKHp
ˆˆ: 1 →Π (A.29)

defined by (A.8-10).

Remark A.4.

Note that the definition of the projection-based interpolation operator does not depend on
the element K .

Definition A.5. 2D reference hp finite element (Demkowicz 2007)

The reference 2D hp finite element is a triple

 ()()pKXK Π,ˆ,ˆ (A.30)

defined by the following four-step process:
1) geometry

 []21,0ˆ =K (A.31)

Fig.A.3 The 2D reference rectangular hp finite element

 250

2) selection of nodes – there are four vertex nodes 4321 ˆ,ˆ,ˆ,ˆ aaaa , four edge nodes

8765 ˆ,ˆ,ˆ,ˆ aaaa and one edge node 9â selected, presented in Figure A.3,

3) definition of element space shape functions ()KX ˆ

 () ()() ()(){ }11,...,1,ˆˆspanˆ , ++=∈= vh
pp

j ppjKQKX vhφ (A.32)

where ()vh pp
Q

, are polynomials that are of order hp with respect to 1ξ , and of

order vp with respect to 2ξ over ()21,0ˆ =K . Each element edge may have a

different order of approximation 4,...,1, =ipi . This allows us to match elements of

different orders to one mesh. We assume that
 hppp ≤31, and vppp ≤42 , (A.33)

where the vertex shape functions are defined as

 () () ()2111211 ˆˆ,ˆ ξχξχξξφ = (A.34)

 () () ()2112212 ˆˆ,ˆ ξχξχξξφ = (A.35)

 () () ()2212213 ˆˆ,ˆ ξχξχξξφ = (A.36)

 () () ()2211214 ˆˆ,ˆ ξχξχξξφ = (A.37)

the edge shape functions are defined as

 () () () 1,...,1ˆˆ,ˆ
1211221,5 −== + pjjj ξχξχξξφ (A.38)

 () () () 1,...,1ˆˆ,ˆ
2221221,6 −== + pjjj ξχξχξξφ (A.39)

 () () () 1,...,1ˆˆ,ˆ
3221221,7 −== + pjjj ξχξχξξφ (A.40)

 () () () 1,...,1ˆˆ,ˆ
4221121,8 −== + pjjj ξχξχξξφ (A.41)

and, finally, the interior shape functions are defined as

 () () () 1,...,1,1,...,1ˆˆ,ˆ
221221,,9 −=−== ++ vhjiji pjpiξχξχξξφ (A.42)

4) definition of the projection-based interpolation operator

 () ()KXHp
ˆ1,0: 1 →Π (A.43)

Given a function ()KHu ˆ1∈ , its projection-based interpolant ()KXup
ˆ∈Π is

defined by requesting the following conditions
 () ()0,00,0 uup =Π (A.44)

 () ()0,10,1 uup =Π (A.45)

 () ()1,01,0 uup =Π (A.46)

 () ()1,11,1 uup =Π (A.47)

 ()
()

min
1

'' →−Π
eH

p uu for each edge e of the element K̂ (A.48)

where ()
()

()()∫ −Π=−Π
e

p
eH

p dSuuuu
2''''

1
 is the first order seminorm.

 251

 () () min
ˆ

''
1

→−Π
KH

p uu (A.49)

where () () ()()∫ −Π=−Π
K

p
KH

p dduuuu
ˆ

21

2''

ˆ
''

1
ξξ is the first order seminorm.

Definition A.6. 2D hp finite element (Demkowicz 2007)
A 2D hp finite element is a triple
 ()()pKXK Π,, (A.50)

defined by the following four-step process:
1) geometry K

Fig.A.4 A 2D hp finite element

2) selection of nodes – there are four vertex nodes 4321 ,,, aaaa , four edge nodes

8765 ,,, aaaa and one edge node 9a selected, presented in Figure A.4,

3) definition of element space of shape functions ()KX

 () (){ }:ˆˆ,ˆ 1 KXxKX K ∈== − χχχ o (A.51)

where KKxK →ˆ: is the map of the reference element []21,0ˆ =K into an

arbitrary element K

 () KxxK K ∈=→∋ ξξˆ (A.52)

4) definition of the projection-based interpolation operator

 () ()KXKHp
ˆˆ: 1 →Π (A.53)

defined by (A.43-47).

 252

Appendix B – Self-adaptive hp-FEM

In this Appendix we introduce the mathematical details of the self-adaptive hp-FEM
algorithm for 2D elliptic boundary value problem.

The algorithm, originally introduced by Demkowicz 2006 can be summarized in the
following eight steps:

1) generate an initial mesh,
2) solve the coarse mesh problem,
3) generate the fine mesh,
4) solve the fine mesh problem,
5) select the optimal refinement,
6) execute all required h refinements,
7) execute all required p refinements,
8) if the maximum relative error of the solution is greater than the required accuracy,

then go to Step 2. The new optimal mesh becomes the coarse mesh for the next
iteration.

Definition B.1. Strong formulation of 2D elliptic boundary-value problem

Find () RxuxRu ∈→∋Ω⊃2: such that

 () () () ()xxxx fuc
x

u
b

x

u
a

x jj
j

i jj
ij

i

=+
∂

∂
+














∂

∂

∂

∂
− ∑∑ ∑

== =

2

1

2

1

2

1
 in Ω (B.1)

 ()xDuu = on DΓ (B.2)

 () ()∑ ∑
= =

=
∂

∂2

1

2

1i
i

jj
ij gn

x

u
a xx on �Γ (B.3)

where

 () () () RcbaRcba jijjij ∈→∋Ω⊃ xxxx ,,:,, 2 (B.4)

are given coefficients of the differential operator (called “material data” from engineering
point of view), and

 () RuRu DDD ∈→∋Γ⊃ xx2: (B.5)

 () RgRg C� ∈→∋Γ∪Γ⊃ xx2: (B.6)

 253

 () RR C ∈→∋Γ⊃ xx ββ 2: (B.7)

 (called “load data”) are given, defined on the corresponding parts of the
boundary C�D Γ∪Γ∪Γ=Γ=Ω∂ , presented in Figure B.1.

Fig.B.1. Computational domain Ω
with Dirichlet, Neumann and Cauchy boundaries C�D Γ∪Γ∪Γ=Γ=Ω∂

Definition B.2. Variational (weak) formulation of 2D elliptic boundary-value problem

Find Vuu D +∈ ~ such that

 () () Vvvlvub ∈∀=, (B.8)

where

()

∫∫ ∑∑ ∑
ΓΩ == =

+









+

∂
∂

+
∂
∂

∂
∂

=

=

C

sdvudvucv
x

u
b

x

v

x

u
a

vub

jj
j

i jjj
ij βx

2

1

2

1

2

1

,

 (B.9)

 () ∫∫
ΓΩ

+=
C

sdvgsdvfvul , (B.10)

where Du~ is a lift of the Dirichlet boundary condition

 () DD uu =~tr on DΓ (B.11)

and the VuD +~ is an affine space obtained by adding the lift to test functions

 { }VvvuVu DD ∈+=+ :~~ (B.12)

with

 () ()








Γ=∞<∇+Ω∈= ∫
Ω

DvdxvvLvV on0tr::
222 (B.13)

Remark B.1
Any solution of the variational (weak) problem (B.8-13) is also a solution of the strong
formulation (B.1-4).

Definition B.6. Coarse and fine meshes

 254

The initial coarse mesh is an arbitrary mesh obtained by partitioning the domain Ω into a
finite set ()() hpp TKXK ∈Π,, of hp finite elements





=

≠
=∩Ω=

∈ jiK

ji
KmeasKK

i
ji

TK h

0
,U (B.14)

and by selecting arbitrary polynomial orders of approximation on finite elements (under the
minimum rule (A.32) constrained).

The fine mesh is obtained by breaking each finite element from the coarse mesh
()()

1,2
,,

+
∈Π

php TKXK into four (in 2D) elements and increasing polynomial order of

approximation by one. This can be expressed by the following conditions

()()

() () () ()
()

() () 5dimdim,,,,

,:,,,

,,

4321

43214321

1,2

+=∈

∪∪∪=∈∃

∈Π∀
+

KKXTKXKXKXKX

KKKKKTKKKK

TKXK

i
KX

hp

K
hp

php

(B.15)

where
K

hpT and
()KX

hpT denote the projections onto the first and second component of

()()
1,2

,,
+

∈Π
php TKXK , respectively. Five new shape functions over ()iKX result from

increasing the polynomial order of approximation on four element edges and one interior
(adding four new shape functions on element edges and one new shape function on element
interior).

Definition B.6. Coarse and fine mesh approximation spaces
The coarse mesh approximation space is defined as

 () }:!,,:{span k
K

i
hp

i
hpk

K
hp

j
hphp eeKXTKeV φφ =∃∈∀∈∀= (B.16)

where i
hpe is a global shape function (element of basis of hpV), kφ is a local shape

function, () ()KkiKk ,, → is the function assigning global number ()Kki , of degrees of

freedom to the local shape function k from element K .
The fine mesh approximation space is defined in an analogous way as

() }:!,,:{span
1,21,21,21,2

1,2

k

K

i

ph
i

phk
K

ph
j

ph

ph

eeKXTKe

V

φφ =∃∈∀∈∀=

=

++++

+

 (B.17)

where i

phe
1,2 +

 is a global shape function (element of basis of
1,2 +phV) kφ is a local shape

function, () ()KkiKk ,, → is the function assigning global number ()Kki , of degrees of

freedom to the local shape function k from element K .

Definition B.7. Coarse mesh problem

 255

Find { } hp�

i
i
hpu 1= coefficients (called degrees of freedom) of the approximate solution

∑
=

=∋⊃
hp�

i

i
hp

i
hphphp euuVV

1
 such that

 () () hp
n
hp

�

m

n
hp

m
hp �neleeb

hp

,...,1,
1

==∑
=

 (B.18)

()

∫

∫ ∑∑ ∑

Γ

Ω == =

+

+













+

∂

∂
+

∂

∂

∂

∂
=

C

sdee

deece
x

e
b

x

e

x

e
aeeb

n
hp

m
hp

n
hp

m
hp

n
hp

j

m
hp

j
j

i j

n
hp

j

m
hp

j
ij

n
hp

m
hp

β

x
2

1

2

1

2

1
,

 (B.19)

 () ∫∫
Γ∪ΓΩ

+=
�C

sdegsdefel n
hp

n
hp

n
hp (B.20)

The approximation space VVhp ⊂ with basis { } hp�

i
i
hpe 1= of continuous functions is

constructed by joining the corresponding element local shape functions from the coarse
mesh.

Definition B.8. Fine mesh problem

Find
1,2

11,2

+

=+ 





 ph�

i
i

phu coefficients (called degrees of freedom) of the approximate solution

∑
+

=
++++

=∋⊃
1,2

1
1,21,21,21,2

ph�

i

i

ph
i

phphph euuVV such that

1,21,21,21,21
1,2

,...,1,
1,2

++++
=

+
=






=






∑

+

ph
n

ph
n

ph
m

ph

�

m

m

ph �neleebu
ph

 (B.21)

∫

∫ ∑∑ ∑

Γ
++

Ω
+++

+

==

++

=
++

+

+















+

∂

∂
+

∂

∂

∂

∂
=








C

sdee

deece
x

e

b
x

e

x

e

aeeb

n

ph
m

ph

n

ph
m

ph
n

ph
j

m

ph

j
j

i j

n

ph

j

m

ph

j
ij

n

ph
m

ph

1,21,2

1,21,21,2

1,2
2

1

2

1

1,21,2
2

1
1,21,2

,

β

x (B.22)

∫∫
Γ∪Γ

+
Ω

++
+=








�C

sdegdefel n

ph
n

ph
n

ph 1,21,21,2
x (B.23)

The approximation space VV
ph ⊂
+1,2

 with basis
1,2

11,2

+

=+ 





 ph�

i
i

phe of continuous

functions is constructed by joining the corresponding element local shape functions from
the fine mesh.

 256

Remark B.2

The solution of either coarse or fine mesh problem consists in generating the system of
linear equations and solving the generated system by employing a direct solver (e.g. multi-
frontal solver).

The generation of the system of linear equations can be obtained by executing the
following algorithm

0=B , 0=L

Loop with respect to elements K

 Loop with respect to element local shape functions
1kφ

 ()() ()
21

,,1 kklKkiL φφ=+

 Loop with respect to element local shape functions
2kφ

 () ()() ()
21

,,,, 21 kkbKkiKkiB φφ=+

where () ()KkiKk ,, 11 → is the function assigning global number ()Kki ,1 of degrees of

freedom to the local shape function 1k from element K , and B is the so-called global

stiffness matrix, and L is the so-called global load vector.

Remark B.2

The integrals involved in computing ()
21

, kkb φφ and ()
21

, kkl φφ are computed for the

reference element K
)

 after performing the following change of variables.

() ()
() ()

()
()

() () () ()

() () () () =+

+












+

∂

∂
+

∂

∂

∂

∂
=

∫

∫ ∑∑∑

∩Γ

== =

K

Kkk

K

kkk
j

k

j

j

i j

k

j

k

j

ijkk

C

sdx

dc
x

b
xx

ab

ˆ

2

1

2

1

2

1

Jac

,

21

212

121

21

xxx

xxxxx
x

x
xx

x

φφβ

φφφ
φφφ

φφ

()()
()() ()()

()

()()
()()

()() ()() ()() ()() ()

()() ()() ()()∫

∫ ∑

∫ ∑∑

∩Γ

=

= =

+












+

∂

∂

∂

∂

+
∂
∂

∂
∂

∂

∂

∂

∂

K

KkKkK

K

KKkKkK
j

n
Kk

n

Kk

K

j

j

K

K
j

n

i

m

i m

Kk

n

Kk

K

j

ij

C

sdxxx

dxJacxxxc
x

x
x

xb

dxJac
xx

xx
xa

ξφξφξβ

ξφξφξ
ξ

ξφ
ξ

ξφ
ξ

ξξ
ξ

ξφ

ξ

ξφ
ξ

21

212

1

21

2

1

2

1

2

1

)

)

x

x

 (B.24)
() () () () ()

()

()() ()() () ()() ()() ()
()

∫∫

∫∫

∩Γ∪Γ

∩Γ∪Γ

+=

=+=

K
KKkK

K

KKkK

K
k

K
kk

�C

�C

sdxxxgdxxxf

sdgdfl

)
JacJac

11

111

ˆ
ξφξξξφξ

φφφ xxxxx

 (B.25)

 257

Here, KKxK →ˆ: is the map (A.51). Thus, the geometry of an arbitrary element K is

coded in the Jacobian

 ()


















∂

∂

∂

∂
∂

∂

∂

∂

==

2

2

1

2

2

1

1

1

ξξ

ξξ
xx

xx

d

d
xJac K

ξ

x (B.26)

Note that partial derivatives involved in (B.23-24) can be obtained by computing the

inverse of
ξ

x

d

d matrix

1

2

2

1

2

2

1

1

1
1

2

2

1

2

2

1

1

1
−

−



















∂

∂

∂

∂
∂

∂

∂

∂

===



















∂

∂

∂

∂
∂

∂

∂

∂

ξξ

ξξ
ξξ

ξξ

xx

xx

d

d

d

d

xx

xx

ξ

x

x

ξ (B.27)

Definition B.9. Projection-based interpolant
Let VVV

phhp ⊂⊂
+1,2

 be the coarse and fine mesh approximation spaces. Let wV be any

intermediate approximation space such that
1,2 +

⊂⊂
phwhp VVV . Let hpTK ∈ be an hp

finite element from the coarse mesh. Let hphp Vu ∈ and
1,21,2 ++

∈
phph Vu be the coarse and

fine mesh solution, respectively.
The projection-based interpolant w of

1,21,2 ++
∈

phph Vu into wV over element K ,

namely
KwK

Vw ∈ , is obtained from the following three steps procedure:

1) interpolation at vertices
 () () 4,...,1

1,2
==

+
iauaw iphi (B.28)

where ia are vertex nodes of element K ,

2) projection on element edges

()

min''
11,2

→−
+

eH
huw for each edge e of the element K (B.29)

where
()

∫ 





 −=−

++
e

ph
eH

ph dSuwuw
2

1,21,2
''''

1
 is the first order semi-norm.

3) projection on element interior

()

min''
11,2

→−
+

KH
phww (B.30)

where
()

∫ 





 −=−

++
K

ph
KH

ph dduwuw 21

2

1,21,2
''''

1
ξξ is the first order semi-norm.

 258

Definition B.10. Optimal approximation space for an element
Let VVV

phhp ⊂⊂
+1,2

 be the coarse and fine mesh approximation spaces. Let hpT

represent the coarse mesh elements. Let hphp Vu ∈ and
1,21,2 ++

∈
phph Vu be the coarse and

fine mesh problem solutions, respectively.

The approximation space K
optV is called the optimal approximation space for an

element hpTK ∈ , if the projection-based interpolant optw of
1,21,2 ++

∈
phph Vu into K

optV

for element K realizes the following minimum

() ()

()

() ()

()K

wuuu

K

wuuu

K

KH
ph

KH
hpph

VVV

K

KH
optph

KH
hpph

phwhp ,V,Vnrdof
min

,V,Vnrdof

opthp

1,21,2

opthp

1,21,2

11

1,2

11

∆

−−−

=

=
∆

−−−

++

⊆⊆

++

+

 (B.31)

where w is the projection-based interpolant of
1,21,2 ++

∈
phph Vu into wV for element K ,

and ()
KK

XV dimdimKX,V,nrdof −=∆ .

Remark B.3

The simplest algorithm finding the optimal approximation space on the coarse mesh hpT is

the following

Loop through coarse mesh elements hpTK ∈

 Loop through approximation spaces
K

optV for element K

 ∞=minrate

 Compute the projection-based interpolant
K

w of
K

phu
1,2 +

 into
K

optV

 Compute the error decrease rate

 () () ()

()K

wuuu

w
K

KH
ph

KH
phph

,V,Vnrdof
rate

opthp

1,2
,1,2 11

∆

−−−

=
++

 If () minraterate <w then ()wrateratemin =

K

optV corresponding to minrate is the optimal approximation

 space for K

 259

Remark B.5
The construction of a new global optimal approximation space optV consists in executing

the mesh refinements corresponding to the upgrade of the element coarse mesh

approximation space
KhpV into the selected element optimal approximation space K

optV .

 260

Appendix C – Technical details on

implementation

Appendix C includes some technical details on the implementation of the parallel self-
adaptive hp-FEM algorithms.

Sections C.1 and C.2 explain how the implementation of parallel, two and
three-dimensional fully automatic hp-adaptive Finite Element Method codes par2Dhp90

and par3Dhp90 are related to the CP-graph grammar model presented in the dissertation.
The parallel codes are the extensions of the sequential codes 2Dhp90 (Demkowicz 2006)
and 3Dhp90 (Demkowicz, Kurtz, Pardo, Paszyński, Rachowicz, Zdunek 2007), which
implement the self-adaptive hp-FEM algorithm. The codes have been written in Fortran 90
with Message Passing Interface (MPI) and the load balancing is done through an interface
with the Zoltan library. The selection of Fortran 90 language is motivated by two facts.
First, the parallel codes are the extensions of the serial codes already implemented in
Fortran 90. Second, the Fortran implementation provides extremely efficient numerical
computations, as it is a low-level programming language.

We use here the Unified Modeling Language (UML) introduced by Booch,
Rumbaugh, Jacobson, 1998.

C.1 Parallel two-dimensional self-adaptive hp-FE code

par2Dhp90

In this section, the correspondence between the parallel two-dimensional self-adaptive
hp-Finite Element Method code par2Dhp90 and the CP-graph grammar model is discussed.
The parallel code does not support directly the CP-graph grammar model for mesh
transformations occurring during the self-adaptive hp-FEM algorithm, however, the data
structure and mesh transformations follow exactly the patterns expressed by the CP-graph
grammar.

In the next part of the section, the element, node and vertex classes will be
introduced and related to CP-graph vertices. In the par2Dhp90 applications, the graph
vertices are identified by element, node and vertex classes. The class declarations
are introduced below.

 261

Class:
Element
Attributes:
character(5) : type

'quadr’, 'trian' the information about type
 of the element (currently, the code supports only

quadrilateral elements)
integer(4) : neighbors

pointers to 4 adjacent elements stored in ELEMS table
integer(4) : vertices

pointers to 4 vertices stored in VERTS table
integer(5) : nodes

pointers to 4 edge nodes and 1 middle node
 stored in NODES table
integer(4) : bcond
 boundary conditions for 4 element edges
 (0 non / 1 Drichlet / 2 Cauchy)
integer : ghost

flag indicating if the element is a ghost element
(0 no / 1 yes)

Class:
Vertex
Attributes:
double(2) : geom_coord

geometrical coordinates of the node
integer : father

pointer to father node in NODES table
integer : father_iel

pointer to father initial mesh element in ELEMS table
(if any)

integer : sbs
0 if the vertex is not located on the interface,
non zero if located on the interface
(if a vertex belongs to more then one sub-domain)
= index of interface node, used by parallel solver

Class:
Node
Attributes:
character(4) : type

type of the node:
'medg' for edge node,
'mdlq' for middle node

integer : order
order of approximation

 262

integer : father
pointer to father node in NODES table

integer : ref_kind
flag coding refinement type of the node

integer, dimension(:) : vertex_sons
dynamically allocated table storing pointers
to all son vertices for broken edge or interior nodes

integer, dimension(:) : edge_sons
dynamically allocated table storing pointers
to all edge son nodes for broken edge or interior nodes

integer, dimension(:) : interior_sons
dynamically allocated table storing pointers
to all interior son nodes for broken interior nodes

double, dimension(:,:) : geom_coord
geometrical degrees of freedom used
to express geometry of curvilinear edges,
expressed as a combination of node shape functions

double, dimension(:,:) : zdofs
degrees of freedom
(coefficients of local shape functions)
used for local approximation of the solution

integer : sbs
0 if the vertex is not located on the interface,
non zero if located on the interface
(if a vertex belongs to more then one sub-domain)
= index of interface node, used by parallel solver

integer : kref
required refinement for the node,
used during the virtual refinements

The classes are stored in the following ELEMS, VERTS and NODES collections

Collections of objects:
type(Element), pointer, dimension(:) :: ELEMS

dynamically allocated table of Element class objects
type(Node), pointer, dimension(:) :: NODES

dynamically allocated table of Node class objects
type(Vertex), pointer , dimension(:) :: VERTS

dynamically allocated table of Vertex class objects

Let us focus on an exemplary CP-graph from Figure 2.38, representing two initial
mesh elements, each of them broken into 4 son elements. The initial mesh elements,
represented by iel graph vertices, correspond to Element class objects. In other words,
the Element class objects are created for initial mesh elements only. Each initial mesh
element may have up to four adjacent initial mesh elements. In the presented CP-graph
example, each initial mesh element has one neighbor. In the hp2d code, the pointers to
neighbors (actually indices of neighbors in ELEMS collection) are stored in bcond array.

 263

Fig.C.1. Relations between Element, Node and Vertex

Let us discuss the relations between Element, Node and Vertex classes
presented in Figure C.1. The graph transformation introduced in Figure 2.4 generates a
structure of each initial mesh element. Each element consists of four vertices, four edges
and one interior. The element vertices represented by v graph vertices, correspond to
Vertex class objects. Each Element class object aggregates the vertices list of
four Vertex objects, so iel graph vertex is connected to four graph vertices labeled with
v. The element edges are represented by F graph vertices, as presented in Figure 2.3
(broken edges are represented by graph vertices labeled with e). These graph vertices are
related to Node class objects with type=’medg’. The element interiors are represented
by capital I graph vertices, as presented in Figure 2.3 (broken interiors are represented by
graph vertices labeled with small i). These graph vertices are related to Node class object
with type=’mdle’. Each Element class object aggregates the nodes list of four
Node objects of ‘medg’ type and one Node object of ‘mdle’ type, so iel graph vertex
is connected to four graph vertices labeled with v. The links from element vertices, edges
and interiors to father initial mesh element are stored in father_iel attribute.

Fig.C.2. Links stored by Vertex class object

 264

Fig.C.3. Relations between Element, Node and Vertex class objects for broken element edge

Fig.C.4. Relations between Element, Node and Vertex class objects for element interior

broken in horizontal and vertical directions

The element vertices are never broken. However, Vertex class objects are created
as a result of breaking element edges or interiors. Thus, Vertex class object created as a
result of mesh refinements keeps father link to father Node objects, while initial mesh

 265

elements vertices keep father_iel link to the initial mesh element, which is illustrated
in Figure C.2.

When an element edge is broken, one new graph vertex representing element vertex
and two new graph vertices representing element edges are created (compare Figure 2.27).
These newly created graph vertices are again represented by one Vertex class object and
two Node class objects, with type=’medg’. The Node class object with
type=’medg’ representing element edge aggregates a list of vertex_sons and
edge_sons. When the edge is broken, the ref_kind attribute of the Node class
object is set to 1, and the references to newly created Vertex class and Node class
objects are stored on these lists. This is illustrated in Figure C.3.

Fig.C.5. Relations between Element, Node and Vertex class objects for element interior
broken in one direction

When an element interior is broken in both, horizontal and vertical directions, one new
graph vertex representing element vertex, four new graph vertices representing element
edges, and four new graph vertices representing element interiors are created (compare
Figure 2.26). These newly created graph vertices are again represented by one Vertex
class object, four Node class objects with type=’medg’, and four Node class objects
with type=’mdle’. The Node class object with type=’mdle’ representing element
interior aggregates a list of vertex_sons, edge_sons and interior_sons.
When the interior is broken in both directions, the ref_kind attribute of the Node class
object is set to 11, and the references to newly created Vertex class and Node class
objects are stored on these lists. This is illustrated in Figure C.4.

The hp2dpar application supports also anisotropic mesh refinements, thus, the element
interior can be broken in one direction. When an element interior is broken in one direction,
one new graph vertex representing element edge, and two new graph vertices representing
element interiors are created. These newly created graph vertices are again represented by
one Node class objects with type=’medg’, and two Node class objects with

 266

type=’mdle’. The Node class object with type=’mdle’ representing element
interior aggregates a list of vertex_sons, edge_sons and interior_sons.
When the interior is broken in one direction, the ref_kind attribute of the Node class
object is set to 1 or 10, depending on the direction, and the references to newly created
Node class objects are stored on these lists. This is illustrated in Figure C.5.

The mesh transformations algorithms implemented in par2Dhp90 correspond to graph
transformations defined by the graph grammar. For more technical details on
the two-dimensional implementation parhp2D90, see Paszyński, Kurtz, Demkowicz 2006.

C.2 Parallel three-dimensional self-adaptive hp-FE code

par3Dhp90

In this section, we discuss the correspondence between the parallel three-dimensional
self-adaptive hp-Finite Element Method code par3Dhp90 and the CP-graph grammar
model. The graph grammar model has been designed to support two-dimensional mesh
transformations. However, it is possible to extend the graph grammar for three dimensions.
The three-dimensional code par3Dhp90 employs the extension of the two-dimensional data
structure designed for the two-dimensional code par2Dhp90.

In the following part of this appendix, the element, node and vertex classes
are extended to support three-dimensional mesh computations. The extended class
declarations are introduced below.

Class:
Element
Attributes:
character(5) : type

'prism','brick','tetra' the information about
type of the element
(currently, the code supports only brick elements)

integer(6) : neighbors
pointers to 6 neighboring elements stored
in ELEMS table

integer(8) : vertices
pointers to 8 vertices stored in VERTS table

integer(19) : nodes
pointers to 12 edge nodes,
6 face nodes and 1 middle node stored in NODES table

integer(6) : bcond
 boundary conditions for 6 element faces

(0 non / 1 Drichlet / 2 Cauchy)
integer : ghost

flag indicating if the element is a ghost element
(0 no / 1 yes)

 267

Class:
Vertex
Attributes:
double(3) : geom_coord

geometrical coordinates of the node
integer : father

pointer to father node in NODES table
integer : father_iel

pointer to father initial mesh element in ELEMS table
(if any)

integer : sbs
0 if the vertex is not located on the interface,
non zero if located on the interface
(if a vertex belongs to more then one sub-domain)
= index of interface node, used by parallel solver

Class:
Node
Attributes:
character(4) : type

type of the node: 'medg' for edge node,
'mfac' for face node,
'mdlb' for middle node of element interior node

integer : order
order of approximation

integer : father
pointer to father node in NODES table

integer : ref_kind
flag coding refinement type of the node

integer, dimension(:) : vertex_sons
dynamically allocated table storing pointers to all
son vertices for broken edge, face or interior nodes

integer, dimension(:) : edge_sons
dynamically allocated table storing pointers to all
edge son nodes for broken edge, face or interior nodes

integer, dimension(:) : face_sons
dynamically allocated table storing pointers to all
face son nodes for broken face or interior nodes

integer, dimension(:) : interior_sons
dynamically allocated table storing pointers to all
interior son nodes for broken interior nodes

double, dimension(:,:) : geom_coord
geometrical degrees of freedom used to express geometry
of curvilinear edges,
expressed as a combination of node shape functions

double, dimension(:,:) : zdofs
degrees of freedom

 268

(coefficients of local shape functions)
used for local approximation of the solution

integer : sbs
0 if the vertex is not located on the interface,
non zero if located on the interface
(if a vertex belongs to more then one sub-domain)
= index of interface node, used by parallel solver

integer : kref
required refinement for the node,
used during the virtual refinements

The classes are stored in the following ELEMS, VERTS and NODES collections

Collections of objects:
type(Element), pointer, dimension(:) :: ELEMS

dynamically allocated table of Element class objects
type(Node), pointer, dimension(:) :: NODES

dynamically allocated table of Node class objects
type(Vertex), pointer , dimension(:) :: VERTS

dynamically allocated table of Vertex class objects

Fig.C.6. Relations between Element, Node and Vertex classes on the level of initial mesh

The relations between classes on the level of initial mesh elements are illustrated in
Figure C.6. In three dimensions, each brick element consists of eight vertices, twelve edges,
six faces and one interior. The element vertices are represented by Vertex class objects,
stored on the vertices list aggregated by Element class. The element edges are
represented by Node class objects with type=’mdle’, element faces by Node class
objects with type=’mfac’ and element interiors by Node class object with
type=’mdlb’. The edges, faces and interior Node class objects are stored on the
nodes list aggregated by Element class.

 269

Fig.C.7. Father / son relations of element vertices

As in case of the two-dimensional implementation, the element vertices represented by
Vertex class object are never broken. However, new Vertex class objects may be
created as a result of Node class objects refinement. Such Vertex class objects have
father pointer set. Vertex class objects that belong to initial mesh element has
father_iel pointer set to Element class object representing initial mesh element. The
relations are presented in Figure C.7.

There are many possibilities of breaking a three-dimensional brick element:
a) An element can be broken into two new son elements, with the cutting plane

orthogonal to either x, y or z direction.
b) An element can be broken into four new son elements, with two cutting planes

parallel to either x, y or z direction.
c) An element can be broken into eight new son elements.
Each refinement consists in suitable breaking of selected element edges, faces and

interior.

Fig.C.8. Relations for an element edge broken into two new edges

 270

Fig.C.9. Relations for an element face broken into two new faces

Fig.C.10. Relations for an element face broken into four new faces

When an element edge, represented by Node class object with type=’medg’, is
broken, one new element vertex, represented by Vertex class object, and two new
element edges, represented by Node class objects with type=’medg’ are created. The
refined Node class object stores pointers to newly created objects on vertex_sons
and edge_sons lists. This is illustrated in Figure C.8.

 271

Fig. C.11. Relations for an element interior broken into two new interiors

Fig. C.12. Relations for an element interior broken into four new interiors

When an element face, represented by Node class object with type=’mfac’, is
broken into two new faces, one new element edge, represented by Node class objects with
type=’medg’, and two new element faces, represented by Node class objects with
type=’mfac’, are created. The refined Node class object stores pointers to newly
created objects on edge_sons and face_sons lists. This is illustrated in Figure C.9.

When an element face, represented by Node class object with type=’mfac’, is
broken into four new faces, one new element vertex, represented by Vertex class object,
four new element edges, represented by Node class objects with type=’medg’, and
four new element faces, represented by Node class objects with type=’mfac’, are

 272

created. The refined Node class object stores pointers to newly created objects on
vertex_sons, edge_sons and face_sons lists. This is illustrated in Figure C.10.

Fig.C.13. Relations for an element interior broken into eight new interiors

When an element interior, represented by Node class object with type=’mdlb’, is
broken into two new interiors, one new element face, represented by Node class objects
with type=’mfac’, and two new element interiors, represented by Node class objects
with type=’mdlb’, are created. The refined Node class object stores pointers to newly
created objects on face_sons and interior_sons lists, as presented in Figure
C.11.

When an element interior, represented by Node class object with type=’mdlb’, is
broken into four new interiors, one new element edge, represented by Node class objects
with type=’medg’, four new element faces, represented by Node class objects with
type=’mfac’, and four new element interiors, represented by Node class objects with
type=’mdlb’ ,are created. The refined Node class object stores pointers to newly
created objects on edge_sons, face_sons and interior_sons lists. This is
illustrated in Figure C.12.

When an element interior, represented by Node class object with type=’mdlb’, is
broken into eight new interiors, one new element vertex, represented by Vertex class
object, six new element edge, represented by Node class objects with type=’medg’,
twelve new element faces, represented by Node class objects with type=’mfac’, and
eight new element interiors, represented by Node class objects with type=’mdlb’, are
created. The refined Node class object stores pointers to newly created objects on
vertex_sons, face edge_sons, _sons and interior_sons lists. This is
illustrated in Figure C.13.

For more technical details on the three-dimensional implementation parhp3D90, see
Paszyński, Demkowicz 2006.

 273

Appendix D – Direct solver algorithms

In this section we present the algorithms for three parallel solvers. The first two
parallel solvers have been implemented without the graph grammar model presented in this
work. The third parallel solver algorithm has been created on the basis of the presented
graph grammar model. The parallel algorithms have been interfaced with the developed
self-adaptive hp-FEM in order to test the scalability of the parallel algorithms.

D.1 Multiple front algorithm

The multiple front solver has been created and implemented by Walsh, Demkowicz
1999. The multiple front solver algorithm is an extension of the Gaussian elimination
algorithm, where assembly and elimination are performed together on the so-called frontal
sub-matrix of the global matrix (Geng, Oden 2006). The algorithm first performs forward
elimination, and then backward substitution (just like the standard Gaussian elimination
scheme). It visits each active element, assembles the element contribution into the frontal
matrix, and performs elimination of those degrees of freedom that won't be visited in the
future (whose final contribution comes from the current element).

The parallel version of the multiple front solver algorithm implemented by Walsh,
Demkowicz 1999 is based on the domain decomposition paradigm. The computational
domain is subdivided into p sub-domains, as illustrated in Figure D.1. Note that each sub-
domain corresponds to a graph of of a single super-task, introduced in Section 2.4. The
multiple front solver algorithm starts with the aggregation of element local matrices into a
single sub-domain matrix. It is done by browsing elements one by one, and aggregating
element local matrices into one sub-domain matrix. The resulting sub-domain local
matrices









=
















i

s

i
i

s

i
i

si

ii

b

b

x

x

AC

BA
 (D.1)

are generated on each sub-domain, as it is presented on panel (a) in Figure D.1.

 274

Fig.D.1. Execution of the multiple front solver algorithm on the Fichera problem

The fully assembled degrees of freedom, related to interiors and external boundaries of
sub-domains, are eliminated by executing partial forward elimination,













=



















→









=
















*

*

*

*

i
s

i
i

s

i

i
s

ii
i

s

i
i

s

i
i

si

ii

b

b

x

x

A0

BU

b

b

x

x

AC

BA
 (D.2)

which is also illustrated on panel (b) in Figure D.1. Next, the Schur complement

contributions
*i

sA are sent into a separate master processors and collected into a global

interface problem

 bxA ˆˆ =s (D.3)

 ∑
=

=
p

i

T
i

i
si

1

*ˆ PAPA (D.4)

 ∑
=

=
p

i

T
i

i
si

1

*ˆ PbPb (D.5)

where iP stands for the permutation matrices, transforming sub-domain’s local ordering of

degrees of freedom located on the interface into a global ordering on the interface

 275

 () ()iiii
i nnnn interfaceinterfaceinterfaceinterface: ×→× MMP (D.6)

This is also illustrated on panel (c) in Figure D.1. Note that the system of equations (2.20)
corresponds to the so-called Schur complement

 II
T

Is BACAA
1ˆ −−= (D.7)

 II
T

Is bACbb
1ˆ −−= (D.8)

of the global system





















=









































s

p

s

p

sp

pp

b

b

b

x

x

x

ACC

BA

BA

......

...

......
11

1

11

 (D.9)

which can be expressed in a concise form









=

















s

I

s

I

s
T

I

II

b

b

x

x

AC

BA
 (D.10)

In other words, the Schur complement matrix (D.7) and the corresponding
right-hand-side vector (D.8) can be easily obtained by executing partial forward

eliminations on sub-domains and summing up renumbered sub-matrices
*i

sA and sub-

vectors
*i

sb , which is expressed in (D.4) and (D.5).

The next step is to solve the global interface problem (D.3) (see panel (d) in Figure
D.1). The interface problem solution is broadcasted into sub-domains, and substituted to the
right-hand side of the equation, with the Schur complement sub-matrix replaced by the
identity matrix













=



















→













=



















−− 1

**

*

*

*

*

1 is
T

i

i
i

s

iii

i
s

i
i

s

i

i
s

ii

PxP

b

x

x

0

BU

b

b

x

x

A0

BU
 (D.11)

The system (D.11) is solved by executing backward substitution on each sub-domain,
which is illustrated on panel (e) in Figure D.1.

The multiple front solver has the following disadvantages. To solve the problem
distributed into sub-domains, first we need to formulate and solve the interface problem.
For multiple sub-domains the interface problem is large, its matrix is dense, and the
interface problem solution time may be over 90% of the total solver execution time.
Besides, the formulation of the global interface problem is very expensive, since each sub-
domain must send its Schur complement to a single master processor. This is a bottleneck
for the parallel solver algorithm.

D.2 Multi-level parallel direct solver algorithm

This section describes the multi-level parallel direct solver algorithm designed in order
to overcome some disadvantages of the multiple front solver algorithm. The solver works
with several sub-domains (corresponding to super-tasks defined in Section 2.4). It is
assumed that each sub-domain is assigned to a single processor. The solver follows the
following algorithmic steps (see Figures D.2 and D.3):

 276

Fig.D.2. Schematic description of multiple partial forward eliminations

a) first, the degrees of freedom from the interior of each sub-domain are eliminated

with respect to the degrees of freedom on the interface. This is done using a
instance of sequential MUMPS solver on each sub-domain. The MUMPS performs
partial forward elimination on each sub-domain to calculate a local contribution to
the global interface problem,

b) the sub-domains are joined into pairs, and local contributions to the global
interface problem are assembled within these pairs. Note that this procedure
requires a new numbering of the interface degrees of freedom within each pair of
processors. This is the main technical difficulty in implementing the multi-level
scheme. Some interface degrees of freedom are fully assembled and can be
eliminated now. Some other interface degrees of freedom are not fully assembled
yet and cannot be eliminated,

c) the processors are joined into sets of 4 processors (two pairs of the previous step in
each set). All local contributions to the global interface problem are assembled.
The degrees of freedom that belong to both pairs are eliminated. Note that the
degrees of freedom which belong to other processors, not included in this set, are
not eliminated yet,

d) the procedure is repeated recursively until there is only one common interface
problem matrix, with all remaining interface degrees of freedom aggregated,

e) this common interface problem matrix is much smaller than the global interface
problem matrix, since it corresponds to a common part of the interface shared
between two groups of processors. In general, this part of interface is assigned to a
cross-section of the domain.

 277

f) the solution of the common interface is broadcast back into two groups of
processors. The local solutions are extracted using built maps and are substituted to
Schur complement matrices from the corresponding step. The backward
substitution is executed to obtain further contributions to the global interface
problem solution,

g) the procedure is repeated until we complete the solution of the global interface
problem,

h) the last step is to execute the backward substitution on sub-domains, and in this
way the global problem is finally solved.

This algorithm works on the sub-domains with an arbitrary shape. First, the solver
eliminates the nodes common to both sub-domains in a pair, leaving other interface nodes
untouched. After joining two pairs into a new set of four sub-domains, the nodes that
belong to both pairs are eliminated, while the nodes that belong to some other sub-domains
remain uneliminated. The process is repeated until we reach the root of the elimination tree.

Fig.D.3. Schematic description of multiple partial backward substitutions

The main improvement of the multi-level parallel direct solver algorithm, with respect

to the multiple front solver algorithm, is the partition of the interface problem solution into
multiple levels, where partial forward eliminations are recursively computed.

 278

D.3 Multi-level multi-frontal direct sub-structuring

parallel solver algorithm

The multi-level multi-frontal direct substructuring parallel solver algorithm will be
called shortly the recursive solver. The recursive solver algorithm follows the graph
grammar model of the parallel direct solver introduced in Section 2.1.4.

The parallel recursive solver algorithm has been implemented on the distributed
memory architecture. The computational tasks have been defined on the level of initial
mesh elements. The groups of initial mesh elements have been agglomerated together to
create a single super-task. Each super-task has been assigned (mapped) into a single
processor. Thus, the parallel recursive solver algorithm works on three-level elimination
trees: the refinement trees that grow from initial mesh elements every time an element is h
refined; the tree of connectivities of the initial mesh elements; and the tree of connectivities
of super-tasks, resulting from the distribution of the computational mesh into multiple sub-
domains. An example of the three-level elimination tree is presented in Figure D.4.

The leaves of refinement trees act as the active finite elements. A root of each
refinement tree (that is, an initial mesh element) is also a leaf of the connectivity tree for
initial mesh elements. The root of this tree (that is an entire super-task) is also a leaf of the
connectivity tree for super-tasks. The parallel recursive solver algorithm browses the
elimination trees, starting from the level of active elements, through the level of refinement,
then through the level of initial mesh elements, and finally through the level of super-tasks.
For each tree node, the partial contributions from children nodes are aggregated, the fully
assembled degrees of freedom are localized, and the Schur complement of the fully
assembled degrees of freedom is computed, with respect to the unassembled (or only
partially assembled) degrees of freedom. The procedure is recursively repeated until we
reach the root of the connectivity tree for the super-tasks. Finally, the backward
substitutions are recursively executed from the root node down to the refinement tree
leaves.

Fig.D.4. Example of three-level elimination tree

We employ the following version of the parallel recursive solver algorithm, with
emphasis on the three-level elimination tree.

 279

matrix function recursive_solver(tree_node,level)
if level = super-tasks tree and
 only one processor is assigned to tree_node then
 get root_node of initial mesh elements tree assigned
 to current processor
 new_level = initial mesh elements tree
 return recursive_solver(root_node,new_level)
else if level = initial mesh elements tree and
 only one initial mesh element is assigned to tree_node
then
 get root_node of refinement tree assigned
 to initial mesh element
 new_level = refinement tree
 return recursive_solver(root_node,new_level)
else if level = refinement tree and
 this is an active element, a leaf of refinement tree then
 new_matrix = the active element local stiffness matrix
else
 new_matrix = 0
 do for each son_node of tree_node
 if current processor is assigned to son_node then
 matrix_contribution = recursive_solver(son_node,level)

 if current processor is 1
2

+




n
 on the list of n processors

 assigned to tree_node then
 send matrix_contribution to 1st processor
 from the list of processors assigned to tree_node
 endif
 if current processor is 1st processor
 assigned to tree_node then
 merge matrix_contribution into new_matrix
 if there are more than one processor
 assigned to tree_node then

 receive matrix_contribution from 1
2

+




n
 processor

 from the list of n processors
 assigned to tree_node
 merge matrix_contribution into new_matrix
 endif
 endif
 enddo
 decide which degrees of freedom can be eliminated
 from new_matrix
 compute Schur complement
 return Schur complement sub-matrix
end

 280

Each node from the elimination tree of super-tasks belongs to several processors. The
list of these processors is stored at the node. The leaves of elimination tree of super-tasks
are assigned to a single processor. The processor assigned to a leaf of super-tasks tree is
also assigned to a branch of the tree growing from the super-task node. This branch
includes an initial mesh element tree as well as the refinement trees related to a super-task.

Each tree node has to sone nodes. The algorithm recursively browses the tree nodes
assigned to the current processor. If the current processor is not included in the list of
processors assigned to a son node, the entire branch is omitted on that processor. When
more than one processor (for instance, n processors) are assigned to a tree node, the

processors from the first one up to the processor 1
2

+




n
 from that list process the first

branch, and the first processor keeps the matrix contribution resulting from the first branch.

The processors from 1
2

+




n
 up to the last processor from that list of n processors,

process the second branch, and processor 1
2

+




n
 from that list keeps the matrix

contribution resulting from the second branch. In such case, the processor 1
2

+




n
 from

that list sends its matrix contribution to the first processor from the list, and the first
processor merges its own matrix and the received matrix.

When the algorithm reaches a tree node representing a single super-task, a tree of
initial mesh elements related to the super-task is recovered, and the sequential algorithm is
executed on the processor assigned to this super-task. Besides, when the algorithm reaches
a single initial mesh element, the refinement tree assigned to the initial mesh element is
recovered, and the algorithm follows the refinement tree.

The multi-level multi-frontal direct sub-structuring parallel solver requires BLAS3
routines providing partial forward elimination and backward substitution on dense matrices.
The BLAS3 routines need to be executed at each node of the elimination tree. The
sequential MUMPS solver is used to compute Schur complements at tree nodes.

The MUMPS solver returns to the user the Schur complement sub-matrix, but it does
not return the right-hand-side vector. Thus, in the current version of the parallel recursive
solver, the right-hand side is stored as an additional column of the matrix, to enforce the
inclusion of the right-hand side into the Schur complement procedure, so we assume that
the matrix is non-symmetric. The Schur complement procedure can be understood as partial
forward elimination that is stopped before processing unassembled degrees of freedom.

















→
















1

ˆˆ

ˆ

1
222

11211

22221

11211

00

bA0

bUU

00

bAA

bAA

 (D.12)

The MUMPS solver returns to the user the 22Â and 22b̂ parts of (D.12), together with

the last row of the matrix. The obtained Schur complement, 22Â and 22b̂ , is employed to

build the system of equations for the father element node. Every time the Schur
complement at any tree node is obtained, the current sequential instance of the solver

 281

MUMPS is turned off to reduce the memory usage. The forward elimination is followed by
the recursive backward substitution which follows the reversed pattern - it starts from the
root of the elimination tree, and goes down to the leaves of the tree. In order to perform
partial backward substitution, the following system of equations must be reconstructed:













=
















2

1

2

11211

ˆ

ˆ

x

b

x

x

I0

UU
 (D.13)

Since the MUMPS does not return 11U , 12U and 1b̂ , they are recomputed during

backward substitution, by performing full forward elimination on the tree node sub-matrix.
It is done by executing the full forward elimination on the original matrix, with 22A sub-

matrix replaced by the identity matrix, and the bottom part of the right-hand-side 2b

replaced by the solution 2x̂ obtained from the father node:













=















→









=
















2

1

2

11211

2

1

2

11211

ˆ

ˆ

ˆ x

b

x

x

I0

UU

x

b

x

x

I0

AA
 (D.14)

This corresponds to the definition of the Dirichlet boundary conditions for the local
interface. Note that this full forward elimination is much faster than obtaining Schur
complement, since the new system is sparser. Finally, the backward substitution is executed
on (D.14), and a new contribution to the solution 1x is obtained. This trick allows us to

minimize the memory usage, since the partial Schur complements are not stored in the
memory, but recomputed.

D.4 Multi-level multi-frontal direct sub-structuring

parallel solver algorithm with reutilization of partial

LU factorizations

The LU factorizations computed by the parallel recursive solver algorithm at each node
of the elimination tree can be stored at tree nodes for further reutilization. Every time the
mesh is refined, the LU factorizations from the unrefined parts of the mesh can be
reutilized. There is a need to recompute LU factorization for the refined elements, as well
as for the whole path from any refined leaf up to the root of the elimination tree. An
example of the reutilization of partial LU factorizations after performing two local
refinements is presented in Figure D.5.

The extension of the parallel recursive solver algorithm using the reutilization of
partial LU factorization can be expressed by the following recursive procedure. The
modification of the original procedure is denoted by grey colour.

matrix function recursive_solver(tree_node,level)
if tree_node has been refined then
 if tree_node has no son nodes then
 eliminate leaf element stiffness matrix internal nodes
 return Schur complement sub-matrix
 else if tree_node has son nodes then

 282

 new_matrix = zero
 do for each son_node of tree_node
 if current processor is assigned to son_node then
 matrix_contribution=recursive_solver(son_node,level)

 if current processor is 1
2

+




n
 on the list of

 n processors assigned to tree_node then
 send matrix_contribution to 1st processor
 from the list of processors assigned to tree_node
 else if current processor is 1stprocessor
 assigned to tree_node then
 merge matrix_contribution into new_matrix
 if there are more than one processor
 assigned to tree_node then

 receive matrix_contribution from 1
2

+




n
 processor

 from the list of n processors
 assigned to tree_node
 merge matrix_contribution into new_matrix
 endif
 else
 return zero
 endif
 enddo
 decide which degrees of freedom can be eliminated from
new_matrix
 compute Schur complement
 store Schur complement sub-matrix at tree_node
 return Schur complement sub-matrix
 endif
else
 get the Schur complement sub-matrix from tree_node
endif

 283

Fig.D.5. The problem is solved for the first mesh. All LU factorizations (black and red) are

computed. Then, the mesh is refined, and the problem is solved again. Red LU factorizations are
reutilized from the previous mesh, but all brown LU factorizations must be recomputed. Black LU

factorizations from the previous mesh are deleted

