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L shape domain model problem

Figure: The L-shape domain model problem. Plot of ‖∇u‖L2

∆u = 0 in Ω u = 0 on ΓD
∂u
∂n = g on ΓN

b(u, v) = l(v)∀v ∈ V b(u, v) =
∫

Ω
∇u∇vdx l(v) =

∫
ΓN

gvdS (∗)

V =
{
v ∈ L2(Ω) :

∫
Ω ||v ||2 + ||∇v ||2 <∞ : tr(v) = 0 on ΓD

}
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2D hp finite element (1/5)

Figure: The 2D reference rectangular hp-finite element

The basis functions are constructed as tensor products of 1D
hierarchical basis functions

χ̂1(ξ) = 1− ξ χ̂2(ξ) = ξ χ̂l (ξ) = (1− ξ)ξ(2ξ − 1)l−3 l = 3, 4, ..., p
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2D hp finite element (2/5)

The vertex shape functions are:

φ̂1(ξ1, ξ2) = χ̂1(ξ1)χ̂1(ξ2) φ̂2(ξ1, ξ2) = χ̂2(ξ1)χ̂1(ξ2)
φ̂3(ξ1, ξ2) = χ̂2(ξ1)χ̂2(ξ2) φ̂4(ξ1, ξ2) = χ̂1(ξ1)χ̂2(ξ2)
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2D hp finite element (3/5)

The edge shape functions are defined as:
φ̂5,j(ξ1, ξ2) = χ̂2+j(ξ̂1)χ̂1(ξ̂2), j = 1, . . . , p1 − 1
φ̂6,j(ξ1, ξ2) = χ̂2(ξ̂1)χ̂2+j(ξ̂2), j = 1, . . . , p2 − 1
φ̂7,j(ξ1, ξ2) = χ̂2+j(ξ̂1)χ̂2(ξ̂2), j = 1, . . . , p3 − 1
φ̂8,j(ξ1, ξ2) = χ̂1(ξ̂1)χ̂2+j(ξ̂2), j = 1, . . . , p4 − 1
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2D hp finite element (4/5)

The interior shape functoins are defined as

φ̂9,i ,j = ξ̂2+j(χ1)ξ̂2+j(χ2)i = 1, . . . , ph − 1, j = 1, . . . , pv − 1
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2D hp finite element (5/5)
Definition
The reference 2D hp finite element is a triple (K̂ ,X (K̂ ),Πp) defined

1 Geometry K̂ = [0, 1]2
2 Selection of nodes. There are four vertex nodes â1, â2, â3, â4,

four edge nodes â5, â6, â7, â8, and one edge node â9 selected
3 Definition of element shape functions X (K̂ )

X (K̂ ) = span
{
φ̂j ∈ Q(ph,pv )(K̂ ), j = 1, . . . , (ph + 1)(pv + 1)

}
where Q(ph,pv ) are polynomials of order ph with respect to ξ2
over K̂ = (0, 1)2. With each of the element edges, a possibly
different order of approximation pi , i = 1, . . . , 4 is associated,
under the assumption that p1, p3 ≤ ph and p2, p4 ≤ pv

4 Definition of the projection based interpolation operator
Πp : H1(0, 1)→ X (K̂ ), given a function u ∈ H1(K̂ ), it
computes its projection-based interpolant Πpu ∈ X (K̂ )
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Coarse mesh and approximation space

Figure: The coarse mesh and the solution from the coarse mesh
approximation space.

Definition

Coarse mesh problem: Find {ui
hp}

Nhp
i=1 coefficients (dofs) of

approximate solution V ⊃ Vhp 3 uhp =
∑Nhp

i=1 ui
hpei

hp fulfilling (*).
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Coarse mesh and approximation space
Definition
The initial coarse mesh is obtained by partitioning the domain Ω
into a finite set (K ,X (K ),Πp) ∈ Thp of hp finite elements and
selecting arbitrary polynomial orders of approximation.

Definition
The coarse mesh approximation space is defined as

Vhp = span{ej
hp : ∀K ∈ Thp|K , ∀φk ∈ X (K ),∃!ei

hp : ei
hp|K = φk}

where ei
hp is a global basis function (element basis of Vhp),

φk is a shape function and (k,K )→ i(k1,K ) is the mapping
over the coarse mesh assigning global number i(k,K ) of dofs (basis
functions) related with shape function k from element K

Remark

The approximation space Vhp ⊂ V with basis {ei
hp}

Nhp
i=1 is

constructed by gluing together element-local shape functions. 10 / 40



Fine mesh and approximation space

Figure: Fine mesh and solution from the fine mesh approximation space.

Definition

Fine mesh problem: Find {ui
h
2 ,p+1}

N h
2 ,p+1

i=1 coefficients (dofs) of

approximate solution V ⊃ V h
2 ,p+1 3 u h

2 ,p+1 =
∑N h

2 ,p+1
i=1 ui

h
2 ,p+1e

i
h
2 ,p+1

fulfilling (*).
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Fine mesh and approximation space
Definition
The fine mesh is obtained by breaking each element from the coarse
mesh (K ,X (K ),Πp) ∈ T h

2 ,p+1 into 4 elements (in 2D) and
increasing the polynomial orders of approximation by one.

Definition
The fine mesh approximation space is defined as

V h
2 ,p+1 = span

{ej
h
2 ,p+1 : ∀K ∈ T h

2 ,p+1|K , ∀φk ∈ X (K ),∃!ei
h
2 ,p+1 : ei

h
2 ,p+1|K = φk}

where ei
h
2 ,p+1 is a basis function (element basis of V h

2 ,p+1), φk is a
shape function, (k,K )→ i(k1,K ) is the mapping over the fine
mesh assigning global number i(k,K ) of dofs (basis function)
related to shape function k from element K .
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hp-adaptive finite element method

Figure: Self-adaptive hp finite element method algorithm
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hp-adaptive finite element method

Figure: Sequence of hp adaptive meshes generated by the self-adaptive hp
finite element method algorithm

14 / 40



hp-adaptive finite element method

Input: Initial mesh, PDE, boundary conditions, error
Output: Optimal mesh
coarse mesh = initial mesh
Solve the coarse mesh problem
Generate fine mesh
Solve the fine mesh problem
if maximum relative error < accuracy then

return fine mesh solution
end
Select optimal refinements for every hp finite element from the
coarse mesh (Call Algorithm 2)

Perform all required h refinements
Perform all required p refinements
coarse mesh = actual mesh
goto 2

Algorithm 1: Self-adaptive hp-FEM algorithm
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Optimal approximation space over an element
Definition
Let Vhp ⊂ V h

2 ,p+1 ⊂ V be the coarse and fine mesh approximation spaces.
Let Thp represents the coarse mesh elements. Let uhp ∈ Vhp and
u h

2 ,p+1 ∈ V h
2 ,p+1 be the coarse and fine mesh problem solutions,

respectively. The approximation space V K
opt is called the optimal

approximation space over an element K ∈ Thp, if the projection based
interpolant wopt of u h

2 ,p+1 ∈ V h
2 ,p+1 into V K

opt over element K realizes the
following maximum ∣∣∣u h

2 ,p+1 − uhp

∣∣∣
H1(K)

−
∣∣∣u h

2 ,p+1 − wopt

∣∣∣
H1(K)

∆nrdof(Vhp,V K
opt ,K )

=

= max
Vhp⊆Vw ⊆V h

2 ,p+1

∣∣∣u h
2 ,p+1 − uhp

∣∣∣
H1(K)

−
∣∣∣u h

2 ,p+1 − w
∣∣∣
H1(K)

∆nrdof(Vhp,V K
opt ,K )

where w is the projection-based interpolant of u h
2 ,p+1 ∈ V h

2 ,p+1 into Vw

over element K , and ∆nrdof (V ,X ,K ) = dimV
∣∣∣
K
− dimX

∣∣∣
K
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Selection of optimal refinements

Figure: Selection of optimal refinements
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Selection of the optimal refinements
Input: Element K , coarse mesh solution uhp ∈ Vhp, fine mesh solution

u h
2 ,p+1 ∈ V h

2 ,p+1
Output: Optimal refinement V K

opt for element K
for coarse mesh elements K ∈ Thp do

for approximation space Vopt ∈ K do
ratemax = 0
Compute the projection based interpolant w |K of u h

2 ,p+1|K
Compute the error decrease rate

rate(w) =

∣∣∣u h
2 ,p+1−uhp

∣∣∣
H1(K)

−
∣∣∣u h

2 ,p+1−w
∣∣∣

H1(K)
∆nrdof(Vhp ,V K

opt ,K)

if rate(w) > ratemax then
ratemax = rate(w)
Select V K

opt corresponding to ratemax as the optimal
refinement for element K

end
end

end
Select orders on edges = MIN (orders from neighboring interiors)

Algorithm 2: Selection of optimal refinements over K
Our goal is to replace this Algorithm 2 with a Deep Neural Network. 18 / 40



Solution to L-shape domain problem with 0.001 accuracy

Figure: Distribution of polynomial orders over the mesh generated by
self-adaptive hp-FEM delivering solution with 0.001 accuracy.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 10 X.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 100 X.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 1000 X.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 10,000 X.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 100,000 X.
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Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 1,000,000 X.
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Deterministic and DNN driven hp-FEM

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
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Deterministic and DNN driven hp-FEM

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 100 X
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Deterministic and DNN driven hp-FEM

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 10,000 X
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Deterministic and DNN driven hp-FEM

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 1,000,000 X
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DNN driven self-adaptive hp-FEM

Figure: The sizes (horizontal h1 / vertical h2 directions) from 10−2 (right)
down to 10−8 (left) of the elements where MPL network made incorrect
decisions during verification.
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Dataset

Input variables:
coarse mesh solution uhp ∈ Vhp for element K ,
the element sizes and coordinates,
the norm of the fine mesh solution over element K ,
the maximum norm of the fine mesh solution over elements

Output variables:
Optimal refinement VK

opt for element K
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Dataset

Construction of dataset:
Executing of Algorithm 1 + Algorithm 2 for the model
L-shape domain problem.
50 iteration of the hp-adaptivity generating over 10,000
deterministic element refinements, resulting in 10,000 samples.
Repeat this operation for rotated boundary Neuman conditions.
We obtain a total of 100,000 samples.
We randomly select 90% of the samples for training
and use the remaining 10% as a test set.
One-hot encoding the categorical variables
Supersampling of underrepresented nref classes.

32 / 40



Feed forward DNN with fully connected layers

Figure: Feed-forward DNN with fully connected layers
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Feed forward DNN with fully connected layers
Input coarse mesh solution, element data, norm, max norm
Layer 1 512 nodes
Layer 2 256 nodes
Layer 3 256 nodes
Layer 4 128 nodes
Layer 5 128 nodes
Layer 6 64 nodes

Branch 1 Branch 2 ... Branch 6
Layer 7 64 nodes Layer 7 64 nodes ... Layer 7 64 nodes
Layer 8 32 nodes Layer 8 32 nodes ... Layer 8 32 nodes
Layer 9 32 nodes Layer 9 32 nodes ... Layer 9 32 nodes
Output h-ref Output p-ref el.1 ... Output p-ref el.4

After 8 layers, the DNN splits into 6 branches, 4 layers each:
the first branch decides about the optimal nref parameter - h
refinement,
the remaining branches decide about modifying the polynomial
orders - p refinement - on 4 son elements.
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Feed-forward DNN with 12 fully-connected layers

Experiments have shown that further expanding of the network
makes it prone to overfitting.
Splitting the network into branches assures
sufficient parameter freedom for each variable.
This approach also simplifies the model:
there is no need to train a DNN for each variable.
ReLU as activation function,
softmax as double precision to integer converter (as final
activation function in h-ref branch)
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DNN driven self-adaptive hp-FEM

Figure: The comparison of deterministic and DNN hp-FEM on original
L-shape domain.

36 / 40



DNN driven hp-FEM with modified b.c. (1/3)

Figure: The deterministic and DNN hp-FEM algorithms for the L-shape
with modified boundary condition. Final mesh Zoom X1
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DNN driven hp-FEM with modified b.c. (2/3)

Figure: The deterministic and DNN hp-FEM algorithms for the L-shape
with modified boundary condition. Zoom X100,000
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DNN driven hp-FEM with modified b.c. (3/3)

Figure: The convergence for deterministic and DNN hp-FEM algorithms
for the L-shape with modified boundary condition.
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Conclusions

Deep Neural Networks can be employ to select optimal
refinements over coarse mesh elements
Self-adaptive hp-FEM algorithm still delivers exponential
convergence if 10 percent of the decisions are wrong
For a fixed singularity location, the element coarse mesh
solution, element parameters and norms of the fine mesh
solution over element are enough to teach DNN
For a future work we plan to perform training based on coarse
and fine mesh solution element data without providing element
location
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