Deep learning driven
self-adaptive hp finite element method

Maciej Paszynski

Department of Computer Science
AGH University of Science and Technology, Krakéw, Poland
home.agh.edu.pl/paszynsk

R. Grzeszczuk (AGH) D. Pardo (BCAM) L. Demkowicz (UT)

T ‘

1/40

o Self-adaptive hp-FEM algorithm
@ Deep Neural Network Driven hp-FEM algorithm

@ Numerical results

2/40

r
1N1|

Figure: The L-shape domain model problem. Plot of ||Vul|,2

Au=0inQ u=0onTp @zgonl',v
on

b(u,v) =I(v)Vve V bu,v)= /QVqudx I(v) = /FN gvdS (%)

V= {v € L2(Q): [olIvI?+|IVV]|> <oo:tr(v)=0on FD}

3/40

2D hp finite element (1/5)

a ag /a:)
(0,1) (1,1)
(0,0) (1,0)
A s L

Figure: The 2D reference rectangular hp-finite element

The basis functions are constructed as tensor products of 1D
hierarchical basis functions

A

X

1) =1-¢ %0 =¢ UEO=0-9et-1)"3 1|

3,4, ...

4/40

@’4(‘51’ {z)z)Ah (61) bes (52)

The vertex shape functions are:

b1(61,6) = () R1(&2) da(é1, &) = Xa(&1)X1(E2)
$3(&1, &) = R2(&)%2(&2) da(, &) = Xa(&)X2(&2)

5/40

2D hp finite element (3/5)

bs2(80 &J=0 (&) 1 (&)
RN AP

br2lE0 &)= () 1 (8)
0o &0 &)= 0 (&) 3 (&)

The edge shape functions are defined as:
$5(61,&) = Xori(é)Xa(&).j=1,...,pp — 1
o1, &2) = R2(&)R24j(&) =1, ., — 1
$7(61,&) = Xori(é)X2(&).j=1,...,p3 — 1
de(€1&2) = Ru(é)R2ws(é2) = 1, pa — 1

6/40

The interior shape functoins are defined as

<1A>9,iJ = éz+j(X1)£2+j(X2)i =1,....,;pn—Lj=1,...,pp—1

7/40

2D hp finite element (5/5)
Definition |
The reference 2D hp finite element is a triple (K, X(K), M) defined
Q@ Geometry K = [0, 1]?

@ Seclection of nodes. There are four vertex nodes 31, 3o, 33, 34,
four edge nodes 35, 36, 37, 3g, and one edge node a9 selected

IS

© Definition of element shape functions X(K)
X(K) = span{d; € Q®P)(R),j=1,...,(p» + 1)(p, + 1)}

where Q(Pn-Pv) are polynomials of order p, with respect to &
over K = (0,1)2. With each of the element edges, a possibly
different order of approximation p;,i =1,...,4 is associated,
under the assumption that p1, p3 < pp and po, pa < py

@ Definition of the projection based interpolation operator
N, : HY(0,1) — X(K), given a function u € H}(K), it

A

computes its projection-based interpolant Myu € X(K)

8/40

. m |

Figure: The coarse mesh and the solution from the coarse mesh
approximation space.

Coarse mesh problem: Find {uj, ,{V:"‘l’ coefficients (dofs) of

: . Nop 0 i eten:
approximate solution V' O Vi, 3 upp = 30,25 uj €, fulfilling ().

9/40

Coarse mesh and approximation space

Definition |
The initial coarse mesh is obtained by partitioning the domain
into a finite set (K, X(K),Mp) € Tpp of hp finite elements and
selecting arbitrary polynomial orders of approximation.

Definition |
The coarse mesh approximation space is defined as

Vip = span{e},, : VK € Tiplk,¥ou € X(K), Tlefy, : ehylic = o}

where e,’w is a global basis function (element basis of V),

¢k is a shape function and (k, K) — i(ki, K) is the mapping

over the coarse mesh assigning global number i(k, K) of dofs (basis
functions) related with shape function k from element K

Remark |

N : i N
The approximation space Vi, C V with basis {e},,}; is

constructed bv cluing tocether element-local shape functions. 10/40

Fine mesh and apprOX|ma

e oY

Figure: Fine mesh and solution from the fine mesh approximation space.

Nip .
p+1

Fine mesh problem: Find {u,, coefficients (dofs) of

i

. 5 +1 -
approximate solution V D V. Un 2 Py e
PP > h +1 2 -P+1 §: gp+ %p+1

fulfilling (*).

1/40

Fine mesh and approximation space

Definition

The fine mesh is obtained by breaking each element from the coarse
mesh (K, X(K),M,) € Tg,p+1 into 4 elements (in 2D) and
increasing the polynomial orders of approximation by one.

Definition
The fine mesh approximation space is defined as

Vh 41 = span

{ey 1 1YK€ Th il Vo € X(K),H!e%pH : e%7p+1|,< = ¢i}

where e}, "
21

shape function, (k, K) — i(ki, K) is the mapping over the fine
mesh assigning global number i(k, K) of dofs (basis function)
related to shape function k from element K.

is a basis function (element basis of V erl) ¢k is a

12/40

p=8
p=7
p=6
p=5
p=4
p=3
p=2
p=1

m
2

Figure: Self-adaptive hp finite element method algorithm

13/40

Figure: Sequence of hp adaptive meshes generated by the self-adaptive hp
finite element method algorithm

14 / 40

hp-adaptive finite element method

Input: Initial mesh, PDE, boundary conditions, error
Output: Optimal mesh

coarse mesh = initial mesh

Solve the coarse mesh problem

Generate fine mesh

Solve the fine mesh problem

if maximum relative error < accuracy then
| return fine mesh solution

end

Select optimal refinements for every hp finite element from the
coarse mesh (Call Algorithm 2)

Perform all required h refinements

Perform all required p refinements

coarse mesh = actual mesh

goto 2
Algorithm 1: Self-adaptive hp-FEM algorithm

15/40

Optimal approximation space over an element

Definition
Let Vi, C Vs C V be the coarse and fine mesh approximation spaces.
3,p+1
Let Ty, represents the coarse mesh elements. Let up, € V4, and
Un € Vi be the coarse and fine mesh problem solutions,
3,P+1 3,p+1

respectively. The approximation space VO';t is called the optimal
approximation space over an element K € Tp,, if the projection based
interpolant wopt of up g € Vi . into VL, over element K realizes the
following maximum

‘ug,p+1 — Unp -)”g,pﬂ — Wopt

HY(K) HY(K) _
Anrdof(Vi, VE,, K)
‘ugvl’"’l — Unp HL(K) o ‘Ug,p+1 -w H(K)

Anrdof(Vi, VE,, K)

where w is the projection-based interpolant of Us py1 € Vg7p+1 into V,,

over element K, and Anrdof(V, X, K) = dimV’K — dimX‘K

16 /40

p+1 PP P | P |[p+1]| p
p |p+1
P p+1 | pt|| P | p p [p+1
?77?
T p p|P P |p+1 || p |p+1
— |p#1|p
p+1 p+1 | p+1|[P [Pt |[p+1| P
p+1 p | P ||p+1|p+1 [|P¥1]| p+1
p+1 |p+1
p+1 pop+t|[p | P |lp+1]| P+

Figure: Selection of optimal refinements

17 /40

Selection of the optimal refinements

Input: Element K, coarse mesh solution up, € Vjp, fine mesh solution
Ug,p+1 S Vh 1

Output: Optimal refmement opt for element K

for coarse mesh elements K € Ty, do

for approximation space Vo € K do
ratemax = 0

Compute the projection based interpolant w|x of s ol
Compute the error decrease rate

—w

—Upp

2.pt1 - u% pt+l

HL(K)
Anrdof(Vpy, apsz)
if rate(w) > ratemax then

ratemax = rate(w)

Select V ot corresponding to rateyax as the optimal

reflnement for element K

rate(w) = HL(K)

end

end

end

Select orders on edges = MIN (orders from neighboring interiors)
Algorithm 2: Selection of optimal refinements over K

Our goal is to replace this Algorithm 2 with a Deep Neural Network.

18/40

Solution to L-shape domain problem with 0.001 accuracy

1

Figure: Distribution of polynomial orders over the mesh generated by
self-adaptive hp-FEM delivering solution with 0.001 accuracy.

19/40

Solution to L-shape domain problem with 0.001 accuracy

Figure: Zoom 10 X.

20/40

Figure: Zoom 100 X.

21/40

Figure: Zoom 1000 X.

22/40

Solution

4

4

Figure: Zoom 10,000 X.

23/40

Figure: Zoom 100,000 X.

24/40

Figure: Zoom 1,000,000 X.

25 /40

Deterministic and DNN driven hp-FEM

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.

26 /40

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 100 X

27 /40

Deterministic an

4 4

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 10,000 X

28/40

Figure: The mesh provided by the deterministic hp-FEM (left panel)
and by the deep learning-driven hp-FEM (right panel) algorithms.
Zoom 1,000,000 X

29/40

DNN driven self-adaptive hp-FEM

percentage of incorrect decisions
501 —h1

“h2
40

h1 h2

301 / /
20+
101 h1h2 1y po
o | [- Element size

10-8 10-7 10-6 10-5 10-4 10-3 10-2

Figure: The sizes (horizontal h1 / vertical h2 directions) from 10~2 (right)
down to 1078 (left) of the elements where MPL network made incorrect
decisions during verification.

30/40

Dataset

Input variables:
@ coarse mesh solution up, € Vj, for element K,
@ the element sizes and coordinates,
@ the norm of the fine mesh solution over element K,
@ the maximum norm of the fine mesh solution over elements

Output variables:
Optimal refinement Vo};t for element K

31/40

Dataset

Construction of dataset:

@ Executing of Algorithm 1 + Algorithm 2 for the model
L-shape domain problem.

@ 50 iteration of the hp-adaptivity generating over 10,000
deterministic element refinements, resulting in 10,000 samples.

@ Repeat this operation for rotated boundary Neuman conditions.
We obtain a total of 100,000 samples.

e We randomly select 90% of the samples for training
and use the remaining 10% as a test set.

@ One-hot encoding the categorical variables

@ Supersampling of underrepresented nref classes.

32/40

Feed forward DNN with fully connected layers

coarse mesh
solution]
element O A\
sizes and \

coordinates ...

fine mesh
solution norm

maximum
norm

Figure: Feed-forward DNN with fully connected layers

33/40

Feed forward DNN with fully connected layers

Input coarse mesh solution, element data, norm, max norm

Layer 1 512 nodes

Layer 2 256 nodes

Layer 3 256 nodes

Layer 4 128 nodes

Layer 5 128 nodes

Layer 6 64 nodes

Branch 1 Branch 2 Branch 6

Layer 7 64 nodes | Layer 7 64 nodes Layer 7 64 nodes
Layer 8 32 nodes | Layer 8 32 nodes Layer 8 32 nodes
Layer 9 32 nodes | Layer 9 32 nodes Layer 9 32 nodes
Output h-ref Output p-ref el.1 Output p-ref el.4

o After 8 layers, the DNN splits into 6 branches, 4 layers each:

@ the first branch decides about the optimal nref parameter - h

34/40

Feed-forward DNN with 12 fully-connected layers

@ Experiments have shown that further expanding of the network
makes it prone to overfitting.

@ Splitting the network into branches assures
sufficient parameter freedom for each variable.

@ This approach also simplifies the model:
there is no need to train a DNN for each variable.

@ RelU as activation function,

@ softmax as double precision to integer converter (as final
activation function in h-ref branch)

35/40

DNN driven self-adaptive hp-FEM

72.63

23.28
7.46
2.39
0.77
0.25
0.08
0.03
0.01
0.004
0.0009

Figure: The comparison of deterministic and DNN hp-FEM on original

L-shape domain.

SCALES: log(nrdof), log(error)
'''' - / deep learning
driven hp-FEM
deterministic hp-FEM

nrdof

21 40 76 146 279 532 1017 1942 3709

36,40

DNN driven hp-FEM with modified b.c. (1/3)

Figure: The deterministic and DNN hp-FEM algorithms for the L-shape
with modified boundary condition. Final mesh Zoom X1

37/40

Figure: The deterministic and DNN hp-FEM algorithms for the L-shape
with modified boundary condition. Zoom X100,000

38/40

DNN driven hp-FEM with modified b.c. (3/3)

10.29
4.00
1.56
0.61
0.24
0.09
0.04
0.01
0.004
0.0009

error SCALES: log(nrdof), log(error)

determinstic hp-FEM

deep learning
driven hp-FEM

nrdof

21 40 76 146 280 535 1023 1956 3739

Figure: The convergence for deterministic and DNN hp-FEM algorithms
for the L-shape with modified boundary condition.

39/40

Conclusions

@ Deep Neural Networks can be employ to select optimal
refinements over coarse mesh elements

o Self-adaptive hp-FEM algorithm still delivers exponential
convergence if 10 percent of the decisions are wrong
@ For a fixed singularity location, the element coarse mesh

solution, element parameters and norms of the fine mesh
solution over element are enough to teach DNN

@ For a future work we plan to perform training based on coarse
and fine mesh solution element data without providing element
location

40 /40

