
Graph grammar based unstructured mesh
refinements

Maciej Paszyński

Anna Paszyńska, Krzysztof Podsiadło,

Department of Computer Science
AGH University of Science and Technology, Kraków, Poland

Oden Institute, The University of Texas at Austin
August 8, 2019

1 / 32



Outline

Unstructured mesh refinements
Rivara algorithm in 2D
Graph grammar model
Rivara algorithm in 3D
Conclusions

Krzysztof Podsiadło, Albert Oliver Serra, Anna Paszyńska,
Rafael Montenegro Armas, Maciej Paszyński, Graph-grammar mesh
refinements and pollution simulations in Kraków area, to be
submitted to Engineering with Computers (2019)

2 / 32



Motivation

Terrain mesh generator (implemented by Krzysztof Podsiadło)
https://github.com/Sambard/meshgen
The installation requires CMake in version 3.1 or higher and C
compiler.
It generates the mesh with prescribed accuracy, using the Rivara
algorithm
For a given set of coordinates it reads data from NASA database
-N <coordinate> North border of domain.
-S <coordinate> South border of domain.
-E <coordinate> East border of domain.
-W <coordinate> West border of domain.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley,
S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D.,
Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M.,
Burbank, D., Alsdorf, D. The Shuttle Radar Topography Mission,
Reviews of Geophysics 45, 2 (2005)

3 / 32



Terrain mesh generator parameters

-t <tolerance> Sets the refinement tolerance in meters. Defaut
option is 5.
-s <requsted_size> Sets the lenght of initial triangles. It should be
lower or equal than the shorter side of the domain.
-i <data_file> Indicates the input file in ASCII format.
-o <output_file> Base of filename in which results should be saved.
The extension will be added depending on chosen output format.
-d <data_dir> Sets a location of directory with data files in SRTM
format.
-p Write results into AVS UCP ASCII (.inp) format.
-m Write results into .smesh format.
-g Skip conversion into UTM coordinates.
-u Convert to UTM coordinates before refinement
-U Convert to UTM coordinates after refinement (default).
-h Use 3D version of algorithm (2D is default).

4 / 32



PART I

Unstructured mesh refinements

5 / 32



Unstructured mesh refinements

6 / 32



Unstructured mesh refinements
The obtained 2D mesh is then fit into the TETGEN that generates
around 5 layers of three-dimensional tetrahedral elements, with a
total of 491,843 tetrahedrals and 976 triangular elements on a
”roof”.

7 / 32



Pollution simulations

We focus on the advection-diffusion-reaction equations problem

∂ci
∂t + u · ∇ci −∇ · (K∇ci) = s(ci) (1)

where c(x , t) is the unknown concentration of pollution in the area,
namely the vector of four unknowns, representing the chemical
components c1 = [SO2], c2 = [SO4], c3 = [NO4], c4 = [NO3],
u(x , t) = [1, 0, 0] is a given wind velocity vector , reprsenting the
west wind, s(c) is chemical reactions part, where we assume linear
model s(c) = Ac where A is the chemical reactions matrix,

A =


−0.15 0 0 0
0.15 0 0 0
0 0 −0.3 0
0 0 0.3 0

 (2)

8 / 32



Pollution simulations

∂ci
∂t + u · ∇ci −∇ · (K∇ci) = s(ci) (3)

Here K is the diagonal diffusion matrix

K =

8 ∗ 10−6 0 0
0 8 ∗ 10−6 0
0 0 4 ∗ 10−6

 m2/s (4)

where the horizontal diffusion coefficient is eqaul to 8 ∗ 10−6m2/s,
and the vertical diffusion coefficient 4 ∗ 10−6m2/s. The diffusion
matrix is assumed to be identical for all the four species of the
concentration field c . We assume that the pollutant comes from the
western boundary, and it is blown inside the domain from the
western boundary where we have the inflow of the western wind.
Moreover, we have

n · (K∇c) = −V dc (5)
at the terrain level, where V d = 1.3 ∗ 10−3 m/s (so-called diagonal
term of the deposition matrix).

9 / 32



Pollution simulations

Figure: Simulations of the pollution propagated by the western wind over
the Kraków area.

10 / 32



PART II

Rivara algorithm 2D

M.-C. Rivara, New longest-edge algorithms for the refinement
and/or improvement of unstructured triangulations, International
Journal for Numerical Methods in Engineering, 40 (1997)
3313-3324

11 / 32



Rivara algorithm

1 function refine_mesh(T, tolerance)
2 T <- generate initial triangles
3 repeat
4 for each triangle t in T
5 if refinement condition in t is met

(check_refinement(t, tolerance)==true) then
6 T’ <- refine triangle t

(call refine(t))
7 T <- T+T’
8 endif
9 endfor
10 until no refinements done
11 return T

12 / 32



Rivara algorithm
1 function refine (t)
2 t <- given triangle
3 t0 <- triangle lying by the longest edge of t
4 if t0 does not exists then
5 Split t by its median
6 return
7 endif
8 t00 <- triangle lying by the longest edge of t0
9 if t00 = t then
10 Split t by its median
11 Split t0 by its median
12 return
13 end if
14 call refine(t0)
15 t0 <- triangle lying by the longest edge of t
16 Split t by its median
17 Split t0 by its median

13 / 32



Rivara algorithm

Intend to break t0 -> go to longest edge neighbor t1
-> go to longest edge neighbor t2 -> go to longest edge neighbor t3
-> the longest edge neighbor of t3 is t2 -> we will break both t2, t3

14 / 32



Rivara algorithm

The longest edge neigbor of t2’ is t1 -> we will break t1,t2’

15 / 32



Rivara algorithm

The longest edge neigbor of t1’ is t0 -> we will break t0,t1’

16 / 32



Rivara algorithm

17 / 32



PART III

Graph grammar for 2D

18 / 32



Graph grammar for mesh refinements

We want to refine top left corner element. We setup refinement flag
R=T.

Production (P2) breaks the element towards the longest edge, the
edge is labeled as having a hanging node.

19 / 32



Graph grammar for mesh refinements

Production (P5) breaks the element with an edge having a hanging
node, and it generates another edge with hanging node.

Production (P3) breaks the element with an edge having a hanging
node, and it does not produce new hanging nodes.

20 / 32



Graph grammar for mesh refinements

Production (P3) breaks the element with an edge having a hanging
node, and it does not produce new hanging nodes.
Production (P5) breaks the element with an edge having a hanging
node, and it generates another edge with hanging node.

21 / 32



Graph grammar for mesh refinements

Production (P5) breaks the element with an edge having a hanging
node, and it generates another edge with hanging node.
Production (P3) breaks the element with an edge having a hanging
node, and it does not produce new hanging nodes.

22 / 32



Graph grammar for mesh refinements

Production (P3) breaks the element with an edge having a hanging
node, and it does not produce new hanging nodes.

23 / 32



Graph grammar for mesh refinements

Figure: Production (P1) for the refinement of the element with the
longest edge located on the boundary of the mesh.

24 / 32



Graph grammar for mesh refinements

Figure: Production (P2) for the refinement of the element with longest
edge located in the interior of the mesh.

25 / 32



Graph grammar for mesh refinements

Figure: Production (P3) for the additional refinement of the element with
the longest edge already broken with the hanging node, replacing the
hanging node with the regular node.

26 / 32



Graph grammar for mesh refinements

Figure: Production (P4) for the additional refinements of the element with
the longest edge located on the boundary, hopefully making the edge with
the hanging node the longest edge. 27 / 32



Graph grammar for mesh refinements

Figure: Production (P5) for the additional breaking of an element with
hanging node, when its longest edge is unbroken and located inside the
mesh. 28 / 32



Graph grammar for mesh refinements

Figure: Production (P6) for an additional refinement of an element with
two hanging nodes, intended to remove the hanging node located on the
longest edge.

29 / 32



Graph grammar for mesh refinements

Figure: Production (P7) for an additional refinement of the element with
two hanging nodes, and the unbroken longest edge located on the
boundary.

30 / 32



Graph grammar for mesh refinements

Figure: Production (P8) for an additional refinement of the element with
two hanging nodes, and the unbroken longest edge located in the interior
of the domain.

31 / 32



Conclusions

Parallel implementation in GALOIS and / or GLUON and /or
GPU version is needed
Parallel mesh generator is promised as Krzysztof Podsiadło
PhD thesis
At this point we have 2D graph grammar model
We will work on developing a 3D graph grammar model

32 / 32


