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VPINNs: Variational Physics-Informed Neural Networks

VPINNs: Original approach1

Given:

A (possibly non-linear) well-posed variational formulation:

Find u ∈ U, such that r(u, v) := a(u, v) − l(v) = 0,∀ v ∈ V .

A discrete test space VM := span{φm}Mm=1 ⊆ V .

Idea: Obtain a DNN approximation of u by solving the minimization problem:

Find uθ∗ , s.t. θ∗ = arg min
θ

Lr (uθ) :=
M∑

m=1

r(uθ, φm)2 + C (uθ),

where uθ denotes a DNN output with trainable parameters θ, and C (·) a quadratic functional to impose
BC’s for the DNN output.

Problem: This approach is generally not robust and strongly depends upon the selection of the basis.

1 As presented in: Kharazmi, E., et al. (2019). Variational physics-informed neural networks for solving partial
differential equations. arXiv:1912.00873
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VPINNs: Variational Physics-Informed Neural Networks

A wrong discrete test space example

As an illustrative example, authors1 consider the following variational problem:

Find u ∈ H1(−1, 1), such that u(−1) = u(1) = 0, and

a(u, v) :=

∫ 1

−1

u′v ′dx = l(v) :=

∫ 1

−1

f v dx , ∀ v ∈ H1
0 (−1, 1).

Setting VM = span {φm := sin(mπx)}Mm=1 ⊆ H1
0 (−1, 1), they propose the following loss function:

Lr (uθ) =
M∑

m=1

r(uθ, φm)2 + uθ(−1)2 + uθ(1)2.

1Kharazmi, E., et al. (2019). Variational physics-informed neural networks for solving partial differential equations.
arXiv:1912.00873
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VPINNs: Variational Physics-Informed Neural Networks

Wrong test example: Poisson’s equation with delta source

Variational problem:

Find u ∈ H1
0 (−1, 1), such that:∫ 1

−1

u′v ′dx = v(0.5), ∀v ∈ H1
0 (−1, 1)

DNN Setting:

Activation function: tanh

Neurons: 25

Hidden layers: 5

N◦ test functions = 50

Integration: Trapezoidal rule

Integration nodes: 501

Iterations: 10,000

Optimizer: Adam

Learning rate: 0.01

Best approximation (loss sense)
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VPINNs: Variational Physics-Informed Neural Networks

How can we define adequate loss functions?

We propose a general framework (RVPINNs) to define robust loss
functions based on the computation of a discrete residual representative
with respect to an adequate discrete norm.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Construction

RVPINNs assumptions

In the following, we assume a linear problem of the form:

Find u ∈ U, such that r(u, v) := a(u, v) − l(v) = 0,∀ v ∈ V ,

satisfying:
Boundedness: There exists a constant µ > 0, such that

a(w , v) ≤ µ∥w∥U∥v∥V , ∀w ∈ U, v ∈ V ,

Inf-sup stability: There exists a constant α > 0, such that

sup
0̸=v∈V

a(w , v)

∥v∥V
≥ α∥w∥U , ∀w ∈ U.

Adjoint injectivity: For all v ∈ V ,

a(w , v) = 0, ∀w ∈ U =⇒ v = 0.

Under previous assumptions, the problem is well-posed, and it holds:

sup
0̸=w∈U

a(w , v)

∥w∥U
≥ α∥v∥V , ∀ v ∈ V .
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RVPINNs: Robust Variational Physics-Informed Neural Networks Construction

VPINNs: An alternative definition

Given VM = span{φm}Mm=1 and the original loss functional from VPINNs

Lr (uθ) =
M∑

m=1

r(uθ , φm)2 + C (uθ),

if we define the following function in VM

φ̃ =
M∑

m=1

r(uθ , φm)φm,

as a consequence of the linearity of the weak residual, it holds

Lr (uθ) =
M∑

m=1

r(uθ , φm)2 + C (uθ) = r(uθ , φ̃) + C (uθ).

Our goal is to define the loss functional in terms of a particular discrete test function φ̃ ∈ VM such that
VPINNs becomes robust.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Construction

RVPINNs: Robust Variational Physics-Informed Neural Networks

Main idea: For a given trainable parameter θ, we compute the Riesz representation of the residual
ϕ := ϕ(θ) ∈ VM as olution of the following Galerkin problem:

(ϕ, vM)V = r(uθ, vM), ∀ vM ∈ VM , (1)

and define the loss function as:
Lϕ
r (uθ) := r(uθ, ϕ) + C (uθ), (2)

Key observations:
Defining: ϕ :=

∑M
m=1 ηm(θ)φm, problem (1) leads to the resolution of:

Gη(θ) = R(θ), with Gnm = (φm, φn)V , and Rn(θ) = r(uθ, φn).

Thus,
Lϕ
r (uθ) = R(θ)TG−1R(θ) + C (uθ).

To minimize the loss functional (2) is equivalent, up to the constraint C (uθ), to minimize the
quantity ∥ϕ∥2V . Indeed, evaluating (1) with vM = ϕ, gives

∥ϕ∥2V = (ϕ, ϕ)V = r(uθ, ϕ).

∥ϕ∥2V is an aposteriori error estimator for ∥u − uθ∥2U .
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RVPINNs: Robust Variational Physics-Informed Neural Networks Construction

Orthonormal discrete basis and relation with other VPINNs

When a test space VM is the span of an orthonormal set {φm}Mm=1 with respect to the ∥ · ∥V -norm,
the Gram matrix G coincides with the identity matrix; therefore, the corresponding residual
representative has the form:

ϕ =
M∑

m=1

r(uθ, φm)φm,

and the loss function is explicitly written as (coinciding with the classical approach):

Lϕ
r (uθ) =

M∑
m=1

r(uθ, φm)2 + C (uθ).

The Deep Fourier Residual method2 is a particular case of RVPINNs.

2 Taylor, J. M., Pardo, D., & Muga, I. (2023). A Deep Fourier Residual method for solving PDEs using Neural
Networks. Computer Methods in Applied Mechanics and Engineering, 405, 115850.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Error estimates

A posteriori error estimates for linear problems

Main complexities for proving the robustness of ∥ϕ∥V :
The solution of the Petrov-Galerkin problem may not have a solution or, if there exists, it may
be non-unique since the space of all possible realizations for the NN structure defines a manifold
instead of a finite-dimensional space3.

Standard FEM arguments based on a discrete inf-sup condition cannot be applied in this context.

Approach:

We introduce an equivalence class that allows us to neglect the part of the error that is
a-orthogonal to VM . For that equivalence class, we prove that the residual representative is a
reliable and efficient a posteriori estimator for the error.

For the full error, we demonstrate its equivalence to the residual error estimator up to an oscillation
term and under the assumption of the existence of a local Fortin operator.

3 See, e.g., Section 6.3 in Berrone, S., Canuto, C., & Pintore, M. (2022). Variational physics informed neural
networks: the role of quadratures and test functions. Journal of Scientific Computing, 92(3), 100.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Error estimates

A posteriori error estimates for RVPINNs in an equivalence class sense

Let us define the following Null space of the operator A : U 7→ V ′
M :

U0
M := {w ∈ U : ⟨A(w) , vM⟩ := a(w , vM) = 0, ∀ vM ∈ VM} ,

and the following norm for the quotient space U/U0
M :

∥[w ]∥U/U0
M

:= inf
w0∈U0

M

∥w + w0∥U .

We extend the definition of the bilinear form a(· , ·) to the product space U/U0
M × VM as:

a([w ] , vM) := a(w , vM), with w ∈ [w ] being any arbitrary representative of [w ].
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RVPINNs: Robust Variational Physics-Informed Neural Networks Error estimates

A posteriori error estimates for RVPINNs in an equivalence class sense

Proposition

The following boundedness and semi-discrete inf-sup conditions are satisfied

a([w ], vM) ≤ µ∥[w ]∥U/U0
M
∥vM∥V , ∀ [w ] ∈ U/U0

M , vM ∈ VM ,

sup
0̸=vM∈VM

a([w ], vM)

∥vM∥V
≥ α∥[w ]∥U/U0

M
, ∀ [w ] ∈ U/U0

M .

Theorem (Lower and upper bounds in terms of the residual representative)

Let u ∈ U be the solution of the continuous problem; uθ ∈ UNN denote a DNN structure with trainable
parameters θ ∈ RS ; VM ⊆ V denote a finite-dimensional space, equiped with norm ∥ · ∥V ; and ϕ ∈ VM

be the Riesz representative of the weak residual. It holds:

1

µ
∥ϕ∥V ≤ ∥[u − uθ]∥U/U0

M
≤ 1

α
∥ϕ∥V .
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RVPINNs: Robust Variational Physics-Informed Neural Networks Error estimates

Energy norm error estimates

Corollary (Lower bound for the true error)

Under the same hypothesis of the previous Theorem, it holds:

1

µ
∥ϕ∥V ≤ ∥u − uθ∥U .

Proposition (Upper bound for the true error)

Under the same hypothesis as before, if there exists R > 0 such that, for all θ ∈ B(θ∗,R), there is a
local Fortin operator Πθ : V 7→ VM with a θ-independent constant CΠ > 0, it holds:

∥u − uθ∥U ≤ 1

α
osc(u) +

1

CΠα
∥ϕ∥V , ∀ θ ∈ B(θ∗,R),

with

osc(u) := sup
0̸=v∈V

a(u, v − Πθv)

∥v∥V
.

where B(θ∗,R) denotes an open ball of center θ∗ and radius R, with respect to a given norm of RS .
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Model problem: 1D advection-diffusion problem

We consider the model problem:

−εu′′ + βu′ = f , in Ω = (−1, 1),

u = 0, on ∂Ω.

We then set U = V = H1
0 (Ω) and consider the following continuous variational formulation:

Find u ∈ U : r(u, v) := l(v) − a(u, v), ∀ v ∈ V ,

with
a(u , v) := (εu′ − βu , v ′) , and l(v) = ⟨f , v⟩,

where (· , ·) denotes the L2-inner product, and ⟨· , ·⟩ denotes the duality map between V ′ and V .

We finally equip the Hilbert spaces U,V with the norms

∥w∥2U := ∥w∥2V := ε (w ′,w ′).
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Discrete setting

We consider two discrete test spaces:

VM = span{φm}Mm=1 where φm being the standard globally continuous and piece-wise linear
functions defined over a uniform mesh partition of Ω. The loss function in this case is

Lϕ
r (uθ) = R(θ)TG−1R(θ) + C (uθ).

where Gnm = (φm, φn)V , and Rn(θ) = r(uθ, φn).

VM = span{φm =
2sm√
επm

}Mm=1 where sm = sin

(
mπ

x + 1

2

)
, so the function φm are orthonormal

with respect to (·, ·)V . The loss function in this case is

Lϕ
r (uθ) =

4

επ2

M∑
m=1

1

m2
r (uθ , sm)2 + C (uθ).
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: A smooth diffusion problem (ε = 1, β = 0, and u(x) = x sin(π(x + 1)))

Figure: RVPINNs approximation with strong BCs imposition and 50 spectral test functions.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: A smooth diffusion problem (ε = 1, β = 0, and u(x) = x sin(π(x + 1)))

Figure: RVPINNs approximation with strong BCs imposition and 100 FE test functions.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: Delta source problem (ε = 1, β = 0, and l(v) = ⟨δ1/2, v⟩)

Figure: RVPINNs approximation with strong BCs imposition and 100 FE test functions.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: Advection-dominated-difussion problem

(β = 1, ϵ = 0.1, f = 1, and u(x) =
2(1− e

x−1
ε )

1− e−
2
ε

+ x − 1)

Figure: RVPINNs approximation with ε = 0.1, constrained BCs imposition, and 50 spectral test functions.

21 / 24



RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: Advection-dominated-difussion problem

(β = 1, ϵ = 0.005, f = 1, and u(x) =
2(1− e

x−1
ε )

1− e−
2
ε

+ x − 1)

Figure: RVPINNs approximation with ε = 0.005, constrained BCs imposition, and 200 spectral test functions.
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RVPINNs: Robust Variational Physics-Informed Neural Networks Numerical results

Example: 2D pure diffusion ∆u = f with exact solution (u(x , y) = sin(πx) sin(πy))

Figure: Error of RVPINNs approximation. 30× 30 spectral test functions, strong imposition of zero Dirichlet BC.
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Conclusions & further directions

Conclusions4

We presented a general framework to define robust VPINNs losses.

The strategy is based on defining the loss function in terms of a discrete Riesz representative for
the residual.

We derive a posteriori error estimates in terms of the DNN structure and the discrete test.

Further directions

Other combinations of DNN structures, VFs, and discrete tests

Extension to other PDEs

Efficient integration techniques

Adaptive strategies (in the test) to speed up computational time

Application to data interpolation

Hyperbolic conservation laws

4 S. Rojas, P. Mazuga, J. Muñoz-Matute, D. Pardo, and M. Paszynski. (2024). Robust Variational Physics-Informed
Neural Networks. Computer Methods in Applied Mechanics and Engineering, 425, 116904.
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