
Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(3) 320–330
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015572031
hpc.sagepub.com

A tale of two laws

Michael T Heath

Abstract
As Amdahl’s law and Moore’s law reach their 50th anniversaries, we review the roles they have played in shaping both
perception and reality in high-performance computing. Along the way, we also attempt to clarify some misconceptions
that have surrounded both of these highly influential but not always fully appreciated ‘‘laws.’’

Keywords
Amdahl’s law, Moore’s law, parallel computing, scalability, speedup, efficiency, Dennard scaling

1. Amdahl, Moore, and you

Amdahl’s law and Moore’s law have had a profound
impact on the evolution of high-performance comput-
ing (HPC). The two laws are of similar vintage, both
having been formulated in the mid-1960s at the dawn
of the modern era of HPC, but they differ markedly in
many other respects. Amdahl’s law expresses a mathe-
matical relationship whose conclusion is logically unas-
sailable, but the applicability of its hypotheses has been
the subject of considerable debate. Moore’s law, on the
other hand, expresses an empirical observation about
trends in technological capability and manufacturing
efficiency, but its extraordinary predictive accuracy has
depended to a large extent on self-fulfilling prophecy.
Amdahl’s law provoked widespread skepticism con-
cerning the ultimate potential of parallel computing,
whereas Moore’s law engendered great optimism for
the future of computing in general and eventually
enabled the present ubiquity of computers in daily life.
Accordingly, heroic efforts have been expended both to
circumvent Amdahl’s law and to prolong Moore’s law.
As they reach their 50th anniversaries, we review the
roles played by these two highly influential ‘‘laws’’ in
shaping both perception and reality in HPC. We exam-
ine how and why each law came to be formulated, how
practitioners have grappled with their implications in
the intervening years, and why both remain relevant
today.

2. Parallel scalability

Serious interest in parallel computing dates from the
mid-1960s, with ILLIAC IV (designed 1965–66, deliv-
ered 1971) often cited as the first ‘‘massively’’ parallel

computer, designed to have 256 processing elements
(although only 64 were actually fabricated) (Hord,
1982). By this time transistors had replaced the vacuum
tubes and relays in the logic circuits of the first genera-
tion of electronic digital computers, but integrated cir-
cuits (invented in 1958) were still in their infancy, so
computers were made of individually wired compo-
nents that filled large cabinets or whole rooms. But
improvements in the speed of such ‘‘macro’’ computers
were beginning to level off, due to physical constraints
such as the speed-of-light limit (about one foot per
nanosecond) on signal propagation, thus the growing
interest in applying many processors in concert to solve
a single problem.

The primary motivation for parallel computing is to
increase computational speed (work per unit time) by
spreading the work over more processors. The goal
might be:

� to solve a given problem (same work) in less time;
� to solve a larger problem (more work) in the same

time; or
� to gain sufficient capacity to solve ever larger prob-

lems regardless of time.

Department of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, IL, USA

Corresponding author:

Michael T Heath, Department of Computer Science, University of Illinois

at Urbana-Champaign, 201 North Goodwin Avenue, Urbana IL 61801,

USA.

Email: heath@illinois.edu

Qualitatively, scalability refers to the relative effective-
ness with which additional processors can be used: as
the number of processors increases, does performance
increase commensurately? As we will see, however, this
concept is not easy to quantify, and often difficult to
achieve. To help quantify scalability, the following
quantities are conventionally defined for a given
problem:

� processors, p = number of processors used;
� execution time, T(p) = elapsed wall-clock time

using p processors;
� cost, C(p) = pT(p), measured in processor-seconds,

processor-hours, etc.;
� speedup, S(p) = T(1)/T(p);
� efficiency, E(p) = C(1)/C(p) =

T(1)/(pT(p)) = S(p)/p.

The goal then becomes to solve the problem p times as
fast, S(p) = p, by using p processors, which is equiva-
lent to achieving 100% efficiency, E(p) = 1. In prac-
tice, such ideal performance is unattainable (barring
effects of cache or chance), and one settles for some
lower level of efficiency E(p) \ 1. Arbitrarily low effi-
ciency is obviously unacceptable, however, so a mini-
mal criterion for scalability is that E(p) be bounded
away from zero as p!N. As we will see, however, even
this seemingly innocuous criterion can be difficult or
impossible to meet in many practical situations.

2.1 Empirical speedup considered harmful

Note that speedup and efficiency depend on the serial
time T(1), but what does T(1) really mean? Plausible
answers include:

� execution time for the parallel code using one
processor;

� execution time for the corresponding serial code
using one processor (i.e. the same basic algorithm
but without any parallel overhead); or

� execution time for the ‘‘best’’ serial algorithm;

but none of these is truly satisfactory. Running the par-
allel code on a single processor generally incurs signifi-
cant overhead for communication and synchronization
that is unnecessary when p = 1. Even if this parallel
overhead is removed or bypassed in a serial version of
the code, the underlying parallel algorithm may not be
optimal when p = 1. The criterion for ‘‘best’’ serial
algorithm may not be clear-cut (least computing time,
least memory usage, etc.), and the optimal choice may
depend on particular problem features, such as prob-
lem size. Moreover, using a fundamentally different
algorithm for the special case p = 1 introduces a

disruptive discontinuity that resets the particular level
of efficiency but usually does not alter the overall trend
in relative performance as p varies.

Further complicating matters, the problem of inter-
est may not fit in the memory of a single processor,
making direct measurement of T(1) impossible. One
alternative approach is to use the smallest p for which
the problem fits in memory as a benchmark for com-
puting relative speedup, but this particular choice seems
arbitrary, and in any case cache behavior may differ
greatly as p varies, yielding erratic computed speedups
that are not very meaningful.

But who cares about serial execution time anyway?
Today’s users are not interested in what happens when
they go from 1 processor to 100,000 processors, they
are interested in what happens when they go from
100,000 processors to 200,000 processors. Thus, they
care about the behavior of their parallel code, not that
of some mythical serial code. We conclude that because
of their dependence on often ill-defined or irrelevant
serial execution time, speedup and efficiency as conven-
tionally defined are often not useful measures of paral-
lel performance for real programs.

2.2 A better alternative

Rather than using a derived measure such as speedup to
assess scalability, a better alternative is simply to plot
raw execution data, specifically a log–log plot of T(p)
versus p, for a systematic sequence of runs, varying the
number of processors (Van de Velde, 1994). Two com-
mon instances of this approach are:

� Strong scaling: for a fixed problem, a straight line
with slope 21 indicates good scalability, whereas
any upward curvature away from that line indicates
limited scalability.

� Weak scaling: for a sequence of problems with a
fixed amount of work per processor, a horizontal
straight line indicates good scalability, whereas any
upward trend of that line indicates limited
scalability.

An example of strong scaling is shown in Figure 1,
where the bullets represent execution times for a fixed
problem using various numbers of processors (data
generated synthetically). The solid line is a least-squares
fit of a straight line with slope 21 to the given data
points (plotting such a line is not strictly necessary, but
it can be a helpful visual aid). Note that the smallest
number of processors for which the problem fits in
memory happens to be 16, but no notion of relative
speedup is required. The tailing off in scalability is evi-
dent for p . 104.

Heath 321

3. Amdahl’s law

The foregoing observations were aimed at empirical
performance analysis for real parallel programs.
Theoretical performance models can often provide
valuable insight into the scalability of the underlying
parallel algorithms independent of any specific imple-
mentation. By assuming away memory limitations,
cache effects, etc., the conventional definitions of con-
cepts such as speedup and efficiency can be applied
meaningfully and unambiguously in this theoretical
context. One of the earliest and easily the most famous
such theoretical performance model forms the basis for
Amdahl’s law. Amdahl’s original paper (Amdahl, 1967)
provided only a verbal description of the relationship
that later became known as Amdahl’s law, but it is
equivalent to the following mathematical statement.

Amdahl’s law. If a fraction s of the work for a given
problem is serial, with 0 \ s � 1, while the remaining
portion, 1 2 s, is p-fold parallel, then

T (p)= sT(1)+ (1� s)
T (1)

p

S(p)=
T (1)

T (p)
=

1

s+(1� s)=p

E(p)=
T (1)

pT(p)
=

1

sp+(1� s)

and hence S(p)! 1/s and E(p)! 0 as p!N.
If the serial fraction s exceeds 1%, for example, then
the speedup can never exceed 100 no matter how many
processors are used, and the efficiency becomes arbitra-
rily low as increasingly many processors are used.

Amdahl’s pessimistic conclusion of limited speedup
and poor efficiency should come as no surprise, at least
qualitatively, as no fixed, finite amount of work can be
shared profitably by arbitrarily many processors, with

the obvious negative ultimate consequences for speedup
and efficiency. Nevertheless, Amdahl’s quantifying of
these effects, albeit in the context of a very simple com-
putational model, served as an eye opener that justified
a continued emphasis on further improving serial com-
puting speeds (aided largely by Moore’s law, as we will
see), as well as extensive efforts to circumvent Amdahl’s
unwelcome strictures.

Since Amdahl’s simple derivation is valid mathema-
tically, to avoid his sobering conclusion one must evade
his hypotheses. One could argue, for example, that the
assumed dichotomy between serial and p-fold parallel
portions is too simplistic. But in fact it is not an unrea-
sonable proxy for the inevitable lack of perfect paralle-
lism in most computational problems due to precedence
constraints, communication overhead, etc. To illustrate,
consider these typical examples of parallel performance
models for some common numerical computations,
where nmeasures problem size in basic work units:

� summation of n numbers, T(p) ’ n/p + log p;
� solution of a triangular system of order n, T(p)

’ n2/p + n;
� LU factorization of a matrix of order n, T(p) ’ n3/p+ n;
� solution of a tridiagonal system of order n, T(p)

’ (n log n)/p + log p.

These examples were chosen to represent a number of
realistic situations that arise often in practice.
Summation is ubiquitous, of course, but a similar com-
plexity model, having a perfectly parallel phase fol-
lowed by a reduction whose length grows at least
logarithmically with p, applies to many other computa-
tions, such as computing inner products, convergence
tests for iterative methods, and Monte Carlo simula-
tions in which independent trials are computed simulta-
neously in parallel and then all of the results must be
averaged to produce the final result. Solution of trian-
gular linear systems and LU factorization with an n 3

n matrix typify many problems for which the bulk of
the computation is highly parallel, but due to prece-
dence constraints there is a serial thread (here of length
n) running through the computation, the length of
which grows with problem size. Solution of tridiagonal
systems incurs additional work in order to introduce
parallelism into an otherwise inherently sequential
computation.

Log–log performance plots for these examples (nor-
malized by the total amount of work in each case) are
shown in Figure 2, along with performance plots given
by Amdahl’s law for various serial fractions s. The
behavior and scalability of the real examples is visually
indistinguishable from those for Amdahl’s law with an
appropriately chosen serial fraction s. In each case, the
serial fraction is an effective proxy for the terms in the

Figure 1. Log–log performance plot.

322 The International Journal of High Performance Computing Applications 29(3)

performance model that do not decrease as p increases.
In fact, for any parallel computation one can infer an
effective serial fraction empirically from measured
speedup, as in the Karp–Flatt metric (Karp and Flatt,
1990), although empirical speedup has its own short-
comings, as we have already seen. Thus, one cannot
deny the applicability of Amdahl’s law simply by argu-
ing that the performance model underlying it is too
unrealistic, and therefore one must grapple with the
(effective) serial fraction for a given problem of interest.

3.1 Consequences of Amdahl’s law

Fortunately, for most problems the effective serial frac-
tion decreases as problem size increases, and hence
Amdahl’s limits on speedup and efficiency become cor-
respondingly less onerous. Thus, the most common
response to the limited speedups and declining effi-
ciency implied by Amdahl’s law is to solve increasingly
larger problems as the number of processors increases
(Gustafson, 1988; Singh et al., 1993). However, the rate
of growth in problem size, relative to the growing num-
ber of processors, is constrained: if the problem size
grows too slowly, then efficiency may decline unaccep-
tably, but if the problem size grows too rapidly, then
execution time may grow unacceptably. Thus, solving
ever larger problems is not a panacea, but a two-edged
sword that necessitates walking a fine line between
declining efficiency and growing execution time, which
may not be possible in practice, as we will see next.

Amdahl’s key observation was that any inherently
serial work imposes a lower bound on execution time
that is independent of the number of processors.
Increasing the problem size can reduce the proportion
of serial work, but it often increases the total amount of
effectively serial work, and thus the lower bound on
execution time increases with problem size. Increasing
problem size also increases the parallel portion of the

execution time unless the problem size grows no faster
than the number of processors. Thus, total execution
time increases unless the problem size grows more
slowly than the number of processors, yielding declin-
ing efficiency.

One can infer from Amdahl’s law how rapidly the
serial fraction must decrease with increasing problem
size in order to achieve a desired efficiency. For exam-
ple, to maintain a given constant efficiency E,
0 \ E � 1, Amdahl’s law requires that

s=
1� E

E
� 1

p� 1

Applying this result to a performance model of interest
then determines the corresponding minimum growth
rate in problem size. For example, if T(p) ’ n/p + log
p, then the problem size n must grow proportionally to
p log p, causing execution time to grow like log p. More
generally, this observation leads to one of the most use-
ful measures of scalability, the isoefficiency function,
which is defined to be the minimum rate at which the
problem size (as measured by the total amount of com-
putational work) must grow in order to maintain con-
stant efficiency as p grows (Grama et al., 1993). The
growth rate of the isoefficiency function with respect to
the number of processors then characterizes the degree
of scalability:

� Y(p), highly scalable;
� Y(p log p), reasonably scalable;
� Y(p

ffiffiffi

p
p

), moderately scalable;
� Y(p2) or higher, not scalable.

For a given problem, its isoefficiency function divided
by p gives the growth rate of the execution time as p
increases. For example, if the isoefficiency function is
Y(p2), then doubling the number of processors also
doubles the execution time, which is clearly untenable.
For any slower growth rate, however, constant effi-
ciency cannot be maintained, and efficiency necessarily
declines.

We have just seen that except for the usually unat-
tainable ideal isoefficiency function Y(p), execution
time necessarily increases, and possibly quite rapidly,
unless one is willing to accept ever lower efficiency.
Incurring ever longer turnaround times in order to meet
efficiency goals may or may not be acceptable, depend-
ing on the purpose of the computation. Turnaround
time may be limited by, among other factors:

� hard real-time constraints, as in control systems or
weather prediction;

� practical working schedules requiring say hourly or
daily turnaround;

� mean time between failures of computing
equipment.

Figure 2. Scalability of various performance models.

Heath 323

Even when limiting turnaround time is not crucial,
there may still be little or no value in solving ever larger
problems. For example, over-resolving a problem
beyond the accuracy needed or beyond that warranted
by the available data solely to achieve higher parallel
efficiency is of dubious value.

For example, if you are trying to intercept an incom-
ing missile, then it is not helpful to assume 10 or 100
incoming missiles instead, because you will not be around
to brag about the improved efficiency with which you
can track them. For weather prediction, efficiency could
be improved through increasing problem size by:

� refining the spatial resolution of the computational
mesh;

� enlarging the geographic region covered; or
� adding more detailed physics;

but none of these will decrease turnaround time and
are instead likely to increase it, eventually threatening
the ability to make timely predictions. Additional pro-
cessors can potentially be used more helpfully to per-
form sensitivity analysis or uncertainty quantification,
thereby improving the quality and reliability of results,
but again this yields no reduction in execution time.

Solving ever larger problems may be warranted if
the additional scientific payoff is sufficiently great, but
in that event one must accept ever-increasing execution
times. On the other hand, solving ever larger problems
just to meet efficiency goals is of questionable value.
This point can be succinctly summarized by a variation
on Richard Hamming’s famous dictum, ‘‘the purpose of
computing is insight, not numbers,’’ namely, ‘‘the purpose
of computing is insight, not keeping processors busy.’’

Alternatively, instead of maintaining constant effi-
ciency, one could insist on fixed execution time
(Worley, 1990; Gustafson, 1992). But a similar analysis
shows that in order to maintain constant execution
time, the problem size (as measured by total computa-
tional work) must grow more slowly than the number
of processors, and hence efficiency inevitably declines.

In summary, the constraints and tradeoffs implied by
Amdahl’s law remain relevant today, almost 50 years
later. Heroic efforts by hardware designers and users
have made large-scale parallel computers the workhorses
of scientific computing. Their success did not come by
somehow overturning Amdahl’s law, however, but by
learning to deal with its consequences creatively and
effectively. Indeed, Amdahl’s fundamental message of
ruthlessly limiting parallel overhead becomes even more
compelling as processor counts exceed one million.

3.2 Categorizing speedup

Before leaving the topic of parallel speedup, we note an
unfortunate inconsistency in the terminology

commonly used to describe it. According to conven-
tional terminology in parallel computing:

� linear speedup means S(p) = p;
� superlinear speedup means S(p) . p;
� sublinear speedup means S(p) \ p.

However, according to standard mathematical
terminology:

� linear speedup means S(p) = ap for some constant
a . 0;

� superlinear speedup means S(p) = apb for some
constants a . 0 and b . 1;

� sublinear speedup means S(p) = apb for some con-
stants a . 0 and b \ 1.

This marked discrepancy in terminology leads to poten-
tially confusing anomalies, such as

� mathematically linear speedups with a = 2 or
a = 0.5, for example, would conventionally be
deemed superlinear or sublinear, respectively;

� mathematically superlinear speedup with a� 1

and b . 1 would conventionally be deemed sub-
linear, at least initially;

� mathematically sublinear speedup with a� 1 and
b \ 1 would conventionally be deemed super-
linear, at least initially.

Similar anomalies are illustrated in Figures 3–6. Figure
3 shows three standard speedup curves, one that is
mathematically linear (b = 1), another that is mathe-
matically sublinear (b = 0.5) but falls on the super-
linear half of the plot using conventional terminology,
and a third that is mathematically superlinear
(b = 2.0) but falls on the sublinear half of the plot
using conventional terminology. The same performance
data are shown in a log–log performance plot in Figure
4, which makes it clear (from their respective slopes)
which curve is really linear, sublinear, or superlinear.
Figure 5 shows three standard speedup curves, each of
which is mathematically linear, but which would be
conventionally categorized as superlinear, linear, or
sublinear, respectively. The same performance data are
shown in a log–log performance plot in Figure 6, which
makes it clear that all three are actually linear (with
slope 21), and they differ only in their (constant) rela-
tive efficiencies.

This distinction has implications that are not merely
semantic. Linear speedup in the conventional sense is
not a realistic goal, as it requires achieving 100% effi-
ciency. Linear speedup in the mathematical sense is a
more reasonable goal, however, as it merely implies
constant efficiency E for some 0 \ E � 1. As we have
seen, this goal is often achievable, but it may require

324 The International Journal of High Performance Computing Applications 29(3)

solving ever larger problems with increasing turn-
around times.

4. Moore’s law

One measure of the impact of Moore’s law on modern
society is the frequency with which it is cited, especially
in the popular press. Unfortunately, it is almost as fre-
quently misstated, or at least misleadingly stated. Here
are a couple of typical examples:

‘‘Computer processing power doubles about every 18

months.’’
–http://www.technologyreview.com

‘‘Processor speeds, or overall processing power for comput-

ers will double every two years.’’
–http://www.mooreslaw.org

Here is what Moore actually said (Moore, 1965):

‘‘The complexity for minimum component costs has

increased at a rate of roughly a factor of two per year (see
graph).’’

The graph referred to is reproduced here in Figure 7.
Although Moore’s original statement was actually an
observation about the past, he went on to say later in
the same paragraph, ‘‘there is no reason to believe it
[the rate of increase] will not remain nearly constant for
at least ten years,’’ or until 1975, as indicated by the
extrapolated dashed line on his graph. As it turned out,
Moore’s projection actually held for more than 50
years (see Figure 8, which begins with the first complete
microprocessors in 1971), although this required subse-
quently adjusting the doubling period to between 1.5
and 2 years.

Figure 4. Log–log performance plot for performance models
shown in Figure 3.

Figure 6. Log–log performance plot for performance models
shown in Figure 5.

Figure 3. Speedup curves for various performance models. Figure 5. Speedup curves for various performance models.

Heath 325

Note, however, that Moore’s statement did not
address ‘‘processing power’’ or ‘‘processor speeds,’’ but
rather complexity, by which he meant the ‘‘number of
components per integrated function,’’ as spelled out
explicitly in his graph. In addition to transistors, Moore
included resistors, diodes, and capacitors in the compo-
nent count (transistor count alone was later adopted as
the standard measure of complexity). Moore’s focus on
circuit density was also reflected in the title of the article,
‘‘Cramming more components onto integrated circuits.’’

Note also that Moore did not predict the maximum
complexity that would be technologically feasible, but
rather the level of complexity that would be most cost
effective to manufacture. Thus, it was not only a pre-
diction about future technological capabilities, but also
about economic costs and manufacturing efficiencies,
as well as indirectly about the size of prospective mar-
kets for the resulting products. Apparently, Moore cor-
rectly foresaw the fantastically rapid growth in demand
for integrated circuits and devices made from them,
leading to the billions we see today in a wide array of
consumer products. This aspect of Moore’s prediction
contrasts sharply with the statement made in 1943 (only
22 years earlier) and often attributed to T J Watson,

‘‘I think there is a world market for maybe five computers.’’

Moore’s law is not a law of nature, however: it
remained valid because of economic incentives for chip
designers and manufacturers to meet its aggressive
goals. In that sense, the remarkable accuracy and long-
evity of Moore’s multifaceted projection have resulted
in part from self-fulfilling prophecy.

4.1 Source and implications of Moore’s law

Another fascinating aspect of Moore’s prediction was
its brashness: based on only five data points, and only
6 years after the initial introduction of the planar tran-
sistor, he extrapolated a decade into the future (and, as
it turned out, well beyond). As the graph in Figure 7
shows, the component count at the time Moore made
his prediction had reached all of 64; nevertheless, he
boldly projected a further thousand-fold increase by
1975.

Moore’s original projection was based simply on
plotting the few data points available and observing
their approximately linear behavior on a semi-log scale.
Subsequently, Moore resolved his projection as a com-
posite of three main trends in the design and manufac-
turing of integrated circuits (Moore, 1975; Mack,
2011):

� increasing chip area (20% per year);
� decreasing feature size (25% per year in compo-

nents per unit area);
� improving circuit and device designs (33% per

year).

Taken together, these factors produced an improve-
ment of 1.20 3 1.25 3 1.33 = 23 per year. Some
of these trends subsequently slowed down, but were
partially offset by acceleration of others, leading to an
overall doubling rate of 18 months to 2 years instead of
the original 1-year doubling rate. Chip area, for exam-
ple, stopped growing in the late 1990s. The primary
driver in recent years has been the continued shrinking
of feature size (see Figure 9), while manufacturing cost
per unit area has remained roughly constant, so that
cost per component decreases.

Moore’s original prediction did not address clock
speed or power consumption, but later in the same arti-
cle (Moore, 1965) he observed,

‘‘Shrinking dimensions on an integrated structure makes it

possible to operate the structure at higher speed for the same

power per unit area.’’

But this is not the only option. Due to the greater effi-
ciency of smaller circuits one can:

� maintain the same power but increase clock speed;
� maintain the same power and clock speed but

increase functionality; or
� maintain the same clock speed but use less power.

For the first several generations of Moore’s law, chip
designers chose the first of these options, with clock
speeds doubling about every 2 years from roughly 1975
to 2005, then leveling off at about 3 GHz due primarily
to limits on power (heat) dissipation (see Figure 10).

Figure 7. Moore’s original 1965 plot showing his extrapolation
to 1975 (Moore, 1965).

326 The International Journal of High Performance Computing Applications 29(3)

Meanwhile, Moore’s original projection (concerning
complexity, not speed) has continued to hold more or
less to the present, although it too may be beginning to
wane. With clock speeds having leveled off, the second
option has become the more recent trend, using those
additional transistors to increase functionality (e.g.
multicore chips). With the advent of millions of mobile
devices, however, the third option (lower power) may
become the dominant trend in order to prolong battery
life.

In 1974, near the end of the period of Moore’s origi-
nal projection, these power issues were analyzed in
greater detail by Dennard et al. (1974), who observed
that both voltage and current scale proportionally with
feature size, so power scales proportionally with area,
leading to a doubling of performance per watt approxi-
mately every 2 years. Their analysis was specifically for
MOSFETs (metal-oxide-semiconductor field-effect
transistors), but their conclusions were widely taken to
be generally applicable to integrated circuits more
broadly and were adopted by the semiconductor indus-
try as a roadmap for future development. However, as
feature size continued to shrink in accordance with
Moore’s law, this so-called Dennard scaling began to
break down around 2005 due to increasing current
leakage and thermal noise, leading to the current stag-
nation in clock speeds (Figure 10).

A more comprehensive study was undertaken by
Koomey et al. (2010), who examined trends in power
consumption since the beginning of electronic digital
computers with the ENIAC in 1946. Remarkably, the
data they collected for a wide variety of computers
(mainframes, supercomputers, desktops, laptops, etc.)
showed that energy efficiency, as measured by the num-
ber of computations per unit of energy (kWh) dissi-
pated, doubled every 1.57 years from 1946 to 2009 (see
Figure 11). Since a significant portion of their data was
for computers that predated the advent of integrated

Figure 8. Plot of microprocessor transistor counts 1971–2011 showing continuation of Moore’s law (http://en.wikipedia.org/wiki/
Moore’s_law).

Figure 9. Plot showing decreasing feature size of integrated
circuits in accordance with Moore’s law.

Heath 327

Figure 11. Plot showing computations per kWh 1946–2009 (Koomey et al., 2010).

Figure 10. Plot showing flattening of clock speed, power, and relative performance around 2005, with corresponding increase in
number of cores per chip (Fuller and Millett, 2011).

328 The International Journal of High Performance Computing Applications 29(3)

circuits, not all of the credit can be attributed to
Moore’s law. Currently, GPUs (graphics processing
units) are continuing this doubling of performance per
watt with each new generation. And for mobile devices
this means that for a fixed computing load the amount
of battery required is approximately halved every year
and a half. Alas, this fortunate trend cannot continue
indefinitely, as conventional computation cannot be
made arbitrarily energy efficient according to the
Landauer limit (Landauer, 1961).

As we have seen, smaller transistors are better (cheaper,
faster, lower power, more reliable), which enabled enor-
mous gains in performance and cost effectiveness to
accompany the inexorable shrinking of feature size implied
by Moore’s law. Unfortunately, however, a threshold is
eventually encountered below which smaller becomes
worse rather than better, due to power dissipation, current
leakage, thermal noise, and ultimately quantum effects,
thereby negating all of the advantages listed above except
cheaper, and even that becomes questionable as more exo-
tic materials and manufacturing processes are introduced
in an attempt to prolong Moore’s law, which increases
manufacturing costs in the bargain, exacerbating the
already exponential growth in the cost of fabrication facili-
ties. Having now reached this threshold, the future fate of
Moore’s law has become less important, as the payoff
from further shrinking of feature size becomes increasingly
marginal instead of the pure win of the preceding era. One
can debate whether or when Moore’s law has or will end,
but in any case the 40-year free lunch appears to be over,
regardless of whether another generation or two of shrink-
age may prove to be possible at reasonable cost.

The relationships formulated by Moore and by
Dennard were destined to break down eventually, due
to both physical and economic constraints. When inter-
est in large-scale parallel computing first arose in the
mid-1960s, reasons cited were often physical limits on
single processor speeds, such as the speed-of-light limit
on signal propagation, thereby forcing consideration of
parallel computing. Nevertheless, thanks to the trends
noted by Moore and Dennard, single-processor speeds
(and especially their cost effectiveness) continued to
advance exponentially for the next 40 years, confound-
ing many early attempts at building commercially
viable parallel computers. Ironically, when the day of
reckoning eventually came, it was barriers imposed by
19th century physics (thermodynamics) rather than
20th century physics (relativity and quantum
mechanics) that first proved insuperable.

The economic and societal impact of the 50-year
reign of Moore’s law is inestimable, with computers
and other electronic devices now permeating every
aspect of daily life in a manner unimaginable 50 years
ago. To cite a familiar but telling example, the exponen-
tial miniaturization, high performance, and low cost
that followed from Moore’s law have made it possible

to buy for a few hundred dollars a cell phone that fits in
a pocket and runs for days on battery power, yet has an
order of magnitude more processing power and mem-
ory capacity than a US$10 million, 5.5 ton, 115 kW
Cray-1 supercomputer that was the world’s fastest from
1976 until 1982. Whatever may lie ahead in the ‘‘post-
Moore’’ era, we should be grateful that Moore’s law
persisted long enough to provide the extreme degree of
interconnectedness, information access, and productiv-
ity enhancement that we now enjoy, not to mention the
availability of high-end computers for scientific com-
puting at the petascale and beyond.

5. Epilogue

There has been an interesting interplay between Amdahl’s
law and Moore’s law throughout their mutual infancy,
adolescence, and maturity. Consider the very first sentence
of Amdahl’s paper (Amdahl, 1967):

‘‘For over a decade prophets have voiced the contention that

the organization of a single computer has reached its limits

and that truly significant advances can be made only by

interconnection of a multiplicity of computers in such a man-

ner as to permit cooperative solution.’’

Amdahl’s deprecation of parallel processing was explicitly
intended to bolster the case for developing faster sequential
processing, as indicated by the title of his paper (‘‘Validity
of the single processor approach .’’). Fortunately for
Amdahl’s cause, Moore’s law would soon enable relentless
and relatively easy gains in single-processor performance,
thereby forestalling successful commercial deployment of
parallel processing for decades.

Ironically, Amdahl’s first sentence eerily foresha-
dowed the situation 40 years later when Dennard scaling
ground to a halt and parallel processing once again
emerged as the answer to stagnating single-processor per-
formance, but this time with much greater commercial
success, thanks to the additional processing cores that
Moore’s law could still deliver cheaply even if they could
not run any faster. Amdahl may yet have the last laugh,
however, as many of the impediments to effectively
exploiting parallelism that he decried (irregular applica-
tions, load imbalance, interprocessor coordination, slo-
wed convergence rates, etc.) remain challenging today.

Acknowledgement

A preliminary version of this paper was presented as an invited
talk at SC14 in New Orleans, Louisiana, 19 November 2014.

References

Amdahl GM (1967) Validity of the single processor approach

to achieving large scale computing capabilities. In: AFIPS

Spring joint computer conference, pp. 483–485.

Heath 329

Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous
E and LeBlanc AR (1974) Design of ion-implanted MOS-
FET’s with very small physical dimensions. IEEE Journal

of Solid-State Circuits 9(5): 256–268.
Fuller SH and Millett LI (eds.) (2011) The Future of Comput-

ing Performance: Game Over or Next Level? Washington,
DC: National Academy of Sciences.

Grama A, Gupta A and Kumar V (1993) Isoefficiency: mea-
suring the scalability of parallel algorithms and architec-
tures. IEEE Parallel and Distributed Technology 1: 12–21.

Gustafson JL (1988) Reevaluating Amdahl’s law. Communi-

cations of the ACM 31: 532–533.
Gustafson JL (1992) The consequences of fixed time perfor-

mance measurement. In: Proceedings of the twenty-fifth

Hawaii international conference on systems science

Hord RM (1982) The ILLIAC IV: The First Supercomputer.
New York: Springer.

Karp AH and Flatt HP (1990) Measuring parallel processor
performance. Communications of the ACM 33: 539–543.

Koomey JG, Berard S, Sanchez M and Wong H (2010) Impli-
cations of historical trends in the electrical efficiency of
computing. IEEE Annals of the History of Computing

33(3): 46–54.
Landauer R (1961) Irreversibility and heat generation in the

computing process. IBM Journal of Research and Develop-

ment 5: 183–191.
Mack CA (2011) Fifty years of Moore’s law. IEEE Transac-

tions on Semiconductor Manufacturing 24(2): 202–207.
Moore GE (1965) Cramming more components onto inte-

grated circuits. Electronics 38(8): 114–117.

Moore GE (1975) Progress in digital integrated electronics.
In: IEEE international electronic devices meeting, pp.
11–13.

Singh JP, Hennessy JL and Gupta A (1993) Scaling parallel
programs for multiprocessors: methodology and examples.
IEEE Computer 26(7): 42–50.

Van de Velde EF (1994) Concurrent Scientific Computing.
New York: Springer.

Worley PH (1990) The effect of time constraints on scaled
speedup. SIAM Journal on Scientific and Statistical Com-
puting 11: 838–858.

Author biography

Michael T Heath is Professor and Fulton Watson
Copp Chair Emeritus in the Department of Computer
Science at the University of Illinois at Urbana-
Champaign. He received his Ph.D. in Computer
Science from Stanford University in 1978. His research
interests are in scientific computing and parallel com-
puting. He is an ACM Fellow, SIAM Fellow, AIAA
Associate Fellow, and a member of the European
Academy of Sciences. He received the Taylor L Booth
Education Award from the IEEE Computer Society in
2009, and is author of the widely adopted textbook
Scientific Computing: An Introductory Survey, 2nd edi-
tion, published by McGraw-Hill in 2002.

330 The International Journal of High Performance Computing Applications 29(3)

