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Introduction

Data assimilation is the key component of computer
simulations
Computer models of a tumor with several dozen of parameters
Solution space explodes with a number of parameters
Classical data assimilation algorithms result in prohibitively
long computations
The single tumor model itself may not be able to match the
reality well
We propose supermodeling as a second abstraction layer to
classical data assimilation procedures, which can improve their
performance

Frank M. Selten, Francine J. Schevenhoven, and Gregory S. Duane,
Simulating climate with a synchronization based supermodel, Chaos
27, 126903 (2017)
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PART I

Critical issues of supermodeling
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Supermodeling
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How does it work?
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Supermodeling
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Critical issues in supermodeling

Which sub-models: heterogeneous, homogeneous
How many sub-models (M=?) and # teaching samples
How to select sub-models?
Number of and which dynamic variables are coupled (N=?)
Strong or weak coupling?
Training procedure?
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Supermodeling

The general idea is to speed up data assimilation for a complex
multi-parameter dynamical process by adding the supermodeling
abstraction layer.

The supermodel consists of homogeneous M sub-models with
various parameter sets P1 = (p1

1 , ..., p1
n), ...,PM = (pM

1 , ..., pM
n )

We use supermodeling for prediction of the system trajectory
As a ground truth, we use the results produced by another
simulation.

Adrian Kłusek, Marcin Łoś, Maciej Paszyński, Witold Dzwinel,
Efficient model of tumor dynamics simulated in multi-GPU
environment, The International Journal of High Performance
Computing Applications, 33(3) (2019) 1-18
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How to select sub-models ?

Randomly selected set of parameters P1,P2, . . . ,PM for each
sub-model
Pretrained models as sub-models (using classical DA
procedures, e.g., resulting from inverse modeling, sensitivity
analysis)
Rule of thumb: close to the GT, should be closed to different
„good” local minima surrounding GT
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Coupling all dynamic variables?

12 / 46



Coupling one dynamic variable
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Supermodel construction

Selection of homogenous model with P = (p1, ..., pn)
parameters
Sensitivity analysis: find the most sensitive parameters and
dynamical variables
Classical data assimilation: find M sets of parameters
P1 = (p1

1 , ..., p1
n), ...,PM = (pM

1 , ..., pM
n )

Create the supermodel by coupling the submodels via the most
sensitive dynamical variable
Train the supermodel: estimate M! coupling coefficients by
using classical data assimilation procedure
Validate the supermodel on a test data
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PART II

Tumor model
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Tumor growth model
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Tumor growth model
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Tumor model PDEs



∂b
∂t = −∇ · J − b

T death [o < odeath]+

b
T prol

(
1 + τbA

τbA + 1Pb

)(
1− b

bM

)
[o > oprol ]

∂c
∂t = χc∆c − γcoc + c+

∂o
∂t = α0∆o − γobo + δo (omax − o)

∂M
∂t = −βMMb

∂A
∂t = γAMb + χOA∆A− γOAA

Dynamic variable used for coupling: tumor cell density b
Most sensitive model parameters:
tumor cell proliferation threshold oprol and hypoxia threshold odeath,
tumor cell proliferation time T prol and survival time T death
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Supermodeling of tumor

Figure: Dynamic variable used for coupling: tumor cell density b
Most sensitive model parameters:
tumor cell proliferation threshold oprol and hypoxia threshold odeath,
tumor cell proliferation time T prol and survival time T death

19 / 46



Single submodel: Numerical formulation
Explicit time discretization:

bt+1 = bt + ∆t
(
−∇ · Jt + b−

t + b+
t
)

ct+1 = ct + ∆t
(
χc∆ct − γcotct + c+

t
)

ot+1 = ot + ∆t (α0∆ot − γobtot + δo (omax − ot))
Mt+1 = Mt + ∆t (−βMMtbt)
At+1 = At + ∆t (γAMtbt + χOA∆At − γOAAt)

J = −Db b (∇P + rb∇A)

P =
{
0 for b < bN

b−bN

bM−bN for bN ≤ b ≤ bM

b+ = b
T prol

(
1 + τbA

τbA + 1Pb

)(
1− b

bM

)
for o > oprol

b− = − b
T death for o < odeath
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Single submodel: Numerical results 3D

Initial state:
tumor concentrated in the center of the domain
constant ECM in each skin layer
no TAF, no degraded ECM

Isogeometric analysis (IGA-FEM with B-splines basis functions)
with Alternating Directions Solver (ADS)
Parameters:

120× 120× 120 elements
quadratic B-splines (p = 2)
∆t = 1 (60 minutes of reality)
300 time steps

21 / 46



Single submodel: Numerical results 3D

300*10[s]=3000[s]=50 minutes of simulation using GLUON∗

on 4 nodes of PROMETHEUS cluster from CYFRONET
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, Keshav Pingali,
GLUON: A Communication - Optimizing Substrate for Distributed
Heterogeneous Graph Analytics, Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) June 2018
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PART III

Sensitivity analysis
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Model parameters
Symbol Value Description
bm 0 min tumor cell density
bM 2 max tumor cell density
bnorm 1 normal tumor cell density
Db varies tumor cell diffusion rate
rb 0.3 tumor cells chemoattractant sensitivity
oprol 10 tumor proliferation threshold
odeath 2 tumor cell hypoxia threshold
T prol 10 tumor cell proliferation time
T death 100 tumor cell survival time
Pb 0.001 maximum stimulated mitosis rate
τb 0.5 instantaneous reaction rate
βM 0.0625 ECM decay rate
γA 0.032 production rate of attractants
χaA 0.000641 decay rate of digested ECM
γoA 0.000641 diffusion rate of digested ECM
χc 0.0000555 TAF diffusion rate
γc 0.01 TAF decay rate
αo 0.0000555 oxygen diffusion rate
γo 0.01 oxygen consumption rate
δo 0.4 oxygen delivery rate
omax 60 maximal oxygen concentration

Table: Continuous model parameters
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Sensitivity analysis
The IGA-ADS tumor solver is a stand-alone code, executed with the
input parameters provided from the command line, e.g.:
./tumor 2 80 10000 0.1 1000 0.5 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4

We perform the sensitivity analysis of the model using the following
method. We start with the above reference values of the parameters.
We pick one parameter, and we run 20 simulations varying its values
+/- 10 percent over the range presented in Tables, while keeping
other parameters fixed.
For example, possible modifications of parameter p6 are as follows:
./tumor 2 80 10000 0.1 1000 0.45 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4

./tumor 2 80 10000 0.1 1000 0.455 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4

...

./tumor 2 80 10000 0.1 1000 0.55 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4
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Sensitivity analysis

Figure: Sensitivity of the tumor model with respect to tumor proliferation
threshold.
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Sensitivity analysis

Figure: Sensitivity of the tumor model with respect to tumor cell
proliferation time.
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Sensitivity analysis

Figure: Sensitivity of the tumor model with respect to tumor cell hypoxia
threshold.
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Sensitivity analysis

Figure: Sensitivity of the tumor model with respect to tumor cell survival
time.
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Inverse problem solution with GA
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PART IV

Supermodeling algorithm
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Supermodeling algorithm: Initialization

INITIALIZATION
1 Perform sensitivity analysis to find most sensitive parameters

2 Optionally solve inverse problem to find local minima
3 Setup three submodels sim1, sim2, sim3 with different

parameters, resulting in different tumor progressions
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Supermodeling algorithm: Training

TRAINING
1 Setup identical initial states in each submodel,
2 Setup coupling weights Cb

ij for i , j = 1, 2, 3, setup K coefficient
3 For STEP=1,300

A Run 1 step in each simulator (sim1, sim2, sim3) and „reality”
B Modify obtained fields using the coupling constants

bi (x , y)+ =
∑

i=1,2,3
Cb

ij (bj(x , y , z)− bi (x , y , z)) +

∑
i=1,2,3

K (bi (x , y , z)− bmeas(x , y , z))

C Correct the coupling parameter

Cb
ij + =

∫
Ω

(bi (x , y , z)− bmeas(x , y , z)) (bi (x , y , z)− bj(x , y , z))
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Supermodeling algorithm: Execution

EXECUTION
1 Setup identical initial states in each submodel,
2 Use coupling weights Cb

ij for i , j = 1, 2, 3, and K coefficient as
obtained from training stage

3 For STEP=1,300
A Run 1 step in each simulator (sim1, sim2, sim3) and „reality”
B Modify obtained fields using the coupling constants

bi (x , y)+ =
∑

i=1,2,3
Cb

ij (bj(x , y , z)− bi (x , y , z)) +

∑
i=1,2,3

K (bi (x , y , z)− bmeas(x , y , z))
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PART V

Numerical results
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Numerical results: Experiment 1
Cij = 0.5, K = 2.0
sim1 with tumor proliferation threshold oprol

1 = 3.0,
sim1 with tumor proliferation threshold oprol

2 = 5.0,
sim1 with tumor proliferation threshold oprol

3 = 15.0,
reality

Figure: Convergence of coupling coefficients Cij
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Numerical results: Experiment 1
Cij = 0.5, K = 2.0

Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (sim1+sim2+sim3)/3, for the supermodel,
with respect to the ”reality”.

To obtain better fitting, we will change reality coupling constant K
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Numerical results: Experiment 2
Cij = 0.5, K = 0.9
sim1 with tumor proliferation threshold oprol

1 = 3.0,
sim1 with tumor proliferation threshold oprol

2 = 5.0,
sim1 with tumor proliferation threshold oprol

3 = 15.0,
reality

Figure: Convergence of coupling coefficients Cij 38 / 46



Numerical results: Experiment 2
Cij = 0.5, K = 0.9

Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (sim1+sim2+sim3)/3, for the supermodel,
with respect to the ”reality”.
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Numerical results: Experiment 2

Cij = 0.5, K = 0.9

Figure: Difference between supermodel with respect to the ”reality”, for
the supermodel before and after the training phase.

To obtain better fitting, we will select different submodels
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Numerical results: Experiment 3
Cij = 0.5, K = 0.9
sim1 with tumor proliferation threshold oprol

1 = 0.1,
sim1 with tumor proliferation threshold oprol

2 = 10.0,
sim1 with tumor proliferation threshold oprol

3 = 30.0,
reality

Figure: Convergence of coupling coefficients Cij
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Numerical results: Experiment 3

Cij = 0.5, K = 0.9

Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (sim1+sim2+sim3)/3, for the supermodel,
with respect to the ”reality”.
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Numerical results: Experiment 3

Cij = 0.5, K = 0.9

Figure: Convergence of tumor volumes for proliferating cells, for different
submodels sim1, sim2, sim3, for the averaged model (sim1+sim2+sim3)/3,
for the supermodel, with respect to the ”reality”.
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Numerical results: Experiment 3

Cij = 0.5, K = 0.9

Figure: Convergence of tumor volumes for quescient cells, for different
submodels sim1, sim2, sim3, for the averaged model (sim1+sim2+sim3)/3,
for the supermodel, with respect to the ”reality”.

44 / 46



Numerical results: Experiment 3

Cij = 0.5, K = 0.9

Figure: Difference between supermodel with respect to the ”reality”, for
the supermodel before and after the training phase.
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Conclusions

Tumor growth model with 20+ parameters
Linear cost O(N) IGA-ADS solver for tumor growth simulations
coupled with discrete vasculature graph
Sensitivity analysis
Inverse analysis
Supermodeling for intelligent coupling of several sub-models
Training phase to find coupled coefficients Cij ,
followed by the supermodel simulation phase
Good agreement with ”reality” when proper coupling of
supermodel with reality and when we have a good selection of
sub-models

The work has been suported by National Science Centre, Poland
grant no. 2016/ 21/B/ST6/01539.
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