Supermodeling of a Tumor
with Isogeometric Analysis Solvers

Maciej Paszynski

Marcin to$, Leszek Siwik,

Department of Computer Science
AGH University of Science and Technology, Krakéw, Poland
home.agh.edu.pl/paszynsk

Oden Institute, The University of Texas at Austin
August 6, 2019 1/46



References

[1] Marcin to$, Maciej Paszynski, Adrian Ktusek, Witold Dzwinel,
Application of fast isogeometric L2 projection solver for tumor
growth simulations, Computer Methods in Applied Mechanics
and Engineering 316 (2017), 1257-1269

[2] Marcin to$, Adrian Ktusek, Muhammad Amber Hassaan,
Keshav Pingali, Witold Dzwinel, Maciej Paszynski, Parallel fast
isogeometric L2 projection solver with GALOIS system for 3D tumor
growth simulations, Computer Methods in Applied Mechanics
and Engineering, 343 (2019) 1-22

git clone -b tumor —single-branch
https://github.com /marcinlos/iga-ads

[3] Leszek Siwik, Marcin £os$, Adrian Ktusek, Keshav Pingali, Witold
Dzwinel, Maciej Paszynski, Supermodeling of Tumor with
Isogeometric Analysis Solvers in preparation. (2019)

2/46



Outline

Introduction

Critical issues of supermodeling
Tumor model

Sensitivity analysis
Supermodeling algorithm

Numerical results

Conclusions

3/46



Introduction

@ Data assimilation is the key component of computer
simulations

@ Computer models of a tumor with several dozen of parameters
@ Solution space explodes with a number of parameters

@ Classical data assimilation algorithms result in prohibitively
long computations

@ The single tumor model itself may not be able to match the
reality well

@ We propose supermodeling as a second abstraction layer to
classical data assimilation procedures, which can improve their
performance

Frank M. Selten, Francine J. Schevenhoven, and Gregory S. Duane,
Simulating climate with a synchronization based supermodel, Chaos
27, 126903 (2017)
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Critical issues in supermodeling

Which sub-models: heterogeneous, homogeneous

How many sub-models (M=?) and # teaching samples
How to select sub-models?

Number of and which dynamic variables are coupled (N=7?)

Strong or weak coupling?

Training procedure?
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Supermodeling

The general idea is to speed up data assimilation for a complex
multi-parameter dynamical process by adding the supermodeling
abstraction layer.

@ The supermodel consists of homogeneous M sub-models with
various parameter sets Py = (pi,..., p}), ..., Pm = (pM, ..., pM)
@ We use supermodeling for prediction of the system trajectory
@ As a ground truth, we use the results produced by another
simulation.
Adrian Ktusek, Marcin to$, Maciej Paszynski, Witold Dzwinel,
Efficient model of tumor dynamics simulated in multi-GPU

environment, The International Journal of High Performance
Computing Applications, 33(3) (2019) 1-18
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How to select sub-models ?

@ Randomly selected set of parameters Pi, Ps, ..., Py for each
sub-model

@ Pretrained models as sub-models (using classical DA
procedures, e.g., resulting from inverse modeling, sensitivity
analysis)

@ Rule of thumb: close to the GT, should be closed to different
»good" local minima surrounding GT
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Coupling all dynamic variables?
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Coupling one dynamic variable
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Supermodel construction

@ Selection of homogenous model with P = (p1, ..., pn)
parameters

@ Sensitivity analysis: find the most sensitive parameters and
dynamical variables

o Classical data assimilation: find M sets of parameters
P1=(pt, s Pp)s s Pm = (P, ... YY)

@ Create the supermodel by coupling the submodels via the most
sensitive dynamical variable

@ Train the supermodel: estimate M! coupling coefficients by
using classical data assimilation procedure

@ Validate the supermodel on a test data
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Tumor model

15 /46



Tumor growth model

Tumor cell
density b

Density of degraded
extra-cellular matrix A

Tumor
Angiogenic
Factor (TAF) ¢

Density of
extra-cellular
matrix (ECM) M

Vasculature

16/ 46



Tumor growth model
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Tumor model PDEs

ob
E =-V-J- W[O < Odeath]+
b A b /
— (1 P, 11— — pro
Torol ( T AT ”) ( b’W) [o> 0]
0
(BTi = XcAc —ycoc + ¢t
0
8—(: = agAo — Yobo + 0, (0™ — 0)
oM
— = —ByMb
ot Bm
0A
9 YaMb + x0aAA — y0aA

Dynamic variable used for coupling: tumor cell density b

Most sensitive model parameters:

tumor cell proliferation threshold 0P and hypoxia threshold o/,
tumor cell proliferation time TP and survival time Tdeath
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Supermodeling of tumor
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Figure: Dynamic variable used for coupling: tumor cell density b

Most sensitive model parameters:
tumor cell proliferation threshold 0P and hypoxia threshold o
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Single submodel: Numerical formulation

Explicit time discretization:

bei1 = bt + At (=V - Jp + by + b}")
Cey1 = Gt + At (xcAcr — Yeorct + ¢, )
orr1 = 0t + At (Aot — Yobror + do (0™ — 01))
Miy1 = M + At (—BpmM:by)
(

Ats1 = At + At (yaMiby + X 0aAA: — Y04A:)

J=—Dpb(VP + r,VA)

p_ 0 for b < bV
gy for bV < b<bM
b THA b
+t__- o prol
b T prol <1+TbA—|—1Pb) (1 bM> foro> o
b death

b_:—m foro< o
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Single submodel: Numerical results 3D

Initial state:
@ tumor concentrated in the center of the domain
@ constant ECM in each skin layer
@ no TAF, no degraded ECM

Isogeometric analysis (IGA-FEM with B-splines basis functions)
with Alternating Directions Solver (ADS)
Parameters:

@ 120 x 120 x 120 elements

@ quadratic B-splines (p = 2)

e At =1 (60 minutes of reality)
@ 300 time steps
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Single submodel: Numerical results 3D

Time [s] speedup
16
node 4
100 14
12

10

8 node 2
node 1

node 1 4
node 2

node 4 0
10

1 6 12* cores 1 6 12 cores

300*10[s]=3000[s]=50 minutes of simulation using GLUON*
on 4 nodes of PROMETHEUS cluster from CYFRONET
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, Keshav Pingali,

GLUON: A Communication - Optimizing Substrate for Distributed
Heterogeneous Graph Analytics, Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) June 2018

22/46



PART Il

Sensitivity analysis

23/46



Model parameters

Symbol Value | Description

bm 0 min tumor cell density

bm 2 | max tumor cell density

pnerm 1 | normal tumor cell density

Dy, varies | tumor cell diffusion rate

ry 0.3 | tumor cells chemoattractant sensitivity
oProl 10 | tumor proliferation threshold
odeath 2 | tumor cell hypoxia threshold

T prol 10 | tumor cell proliferation time

T death 100 | tumor cell survival time

Py 0.001 | maximum stimulated mitosis rate
Th 0.5 | instantaneous reaction rate
Bm 0.0625 | ECM decay rate

YA 0.032 | production rate of attractants
XaA 0.000641 | decay rate of digested ECM
YoA 0.000641 | diffusion rate of digested ECM
Xc 0.0000555 | TAF diffusion rate

Ye 0.01 | TAF decay rate

Qo 0.0000555 | oxygen diffusion rate

Yo 0.01 | oxygen consumption rate

do 0.4 | oxygen delivery rate

omax 60 | maximal oxygen concentration

Table: Continuous model parameters
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Sensitivity analysis

The IGA-ADS tumor solver is a stand-alone code, executed with the
input parameters provided from the command line, e.g.:

./tumor 2 80 10000 0.1 1000 0.5 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555
0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4

We perform the sensitivity analysis of the model using the following
method. We start with the above reference values of the parameters.
We pick one parameter, and we run 20 simulations varying its values
+/- 10 percent over the range presented in Tables, while keeping
other parameters fixed.

For example, possible modifications of parameter pg are as follows:

./tumor 2 80 10000 0.1 1000 0.45 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555
0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4
./tumor 2 80 10000 0.1 1000 0.455 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4

./tumor 2 80 10000 0.1 1000 0.55 10 2 10 100 0.001 0.3 0.625 0.3205 0.0064 0.0064 0.0000555 0.01 0.0000555

0.01 0.4 0.5 0.05 0.3 0.01333 10 0.003 2 5 25 24 0.003 0.4
25 /46



Sensitivity analysis

Figure: Sensitivity of the tumor model with respect to tumor proliferation

threshold.
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Figure: Sensitivity of the tumor model with respect to tumor cell

proliferation time.
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Sensitivity analysis
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Figure: Sensitivity of the tumor model with respect to tumor cell hypoxia
threshold.
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Figure: Sensitivity of the tumor model with respect to tumor cell survival

time.
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PART IV

Supermodeling algorithm
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Supermodeling algorithm: Initialization

INITIALIZATION

© Perform sensitivity analysis to find most sensitive parameters

@ Optionally solve inverse problem to find local minima

© Setup three submodels siml, sim2, sim3 with different
parameters, resulting in different tumor progressions
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Supermodeling algorithm: Training

TRAINING
@ Setup identical initial states in each submodel,
@ Setup coupling weights C,-? fori,j=1,2,3, setup K coefficient
© For STEP=1,300

@ Run 1 step in each simulator (sim1, sim2, sim3) and ,reality”
@ Modify obtained fields using the coupling constants

XY+_ Z Xy7 ) bi(X7y7Z))+
i=1,2,3

Z K X Yy Z _bmeas(Xv)/vz))

i=1,2,3

@ Correct the coupling parameter

by = / (bi(x0y+2) — bmess(x,y.2)) (Bilx. y.2) — by(x,¥.2))
Q
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Supermodeling algorithm: Execution

EXECUTION
© Setup identical initial states in each submodel,
@ Use coupling weights C,ﬁ? for i,j =1,2,3, and K coefficient as
obtained from training stage
© For STEP=1,300

@ Run 1 step in each simulator (siml, sim2, sim3) and ,reality”
@ Modify obtained fields using the coupling constants

b, y)+ =Y C(bi(x,y,2) = bi(x,y,2)) +
i=1,2,3
Z K (bi(x,y,2) — bmeas(x,y,2))
i=1,2,3
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Numerical results
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Numerical results: Experiment 1

Cj=05 K=20

sim1 with tumor proliferation threshold ofro, = 3.0,
sim1 with tumor proliferation threshold ogml =5.0,
sim1 with tumor proliferation threshold ogml = 15.0,

reality

0,6

NNNNNNNNNNNNNNNNNNNNNNN

—C01 (02 C10 emmm(l2 em=(20 c21

Figure: Convergence of coupling coefficients Cij
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Cj =05, K=2.0

Tumor volumes
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Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (sim1+sim2+sim3)/3, for the supermodel,

with respect to the "reality”.

To obtain better fitting, we will change reality coupling constant K
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Numerical

results: Experiment 2

C;j = 0.5,
sim1 with
sim1 with
sim1 with
reality

0,43

K =09

tumor proliferation threshold o™ = 3.0,
tumor proliferation threshold ogml =5.0,
tumor proliferation threshold ogml =15.0,
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Figure: Convergence of coupling coefficients Cij

38/46



Numerical results: Experiment 2

Cj =05 K =09

Tumor volumes
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Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (siml+sim2+sim3)/3, for the supermodel,
with respect to the "reality”.
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Numerical results: Experiment 2

Cj=05 K=09

Tumor volumes difference wrt "reality"
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Figure: Difference between supermodel with respect to the "reality”, for
the supermodel before and after the training phase.

To obtain better fitting, we will select different submodels
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Numerical results: Experiment 3

Cj=05 K=09

sim1 with tumor proliferation threshold o = 0.1,
sim1 with tumor proliferation threshold ogml =10.0,
sim1 with tumor proliferation threshold ogml = 30.0,
reality
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Figure: Convergence of coupling coefficients Cij
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Numerical results: Experiment 3

Cj =05, K =09

Tumor volumes
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Figure: Convergence of tumor volumes for different submodels sim1, sim2,
sim3, for the averaged model (simI+sim2+sim3)/3, for the supermodel,
with respect to the "reality”.
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Numerical results: Experiment 3

Cj =05 K=09

Tumor volumes proliferating
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Figure: Convergence of tumor volumes for proliferating cells, for different
submodels sim1, sim2, sim3, for the averaged model (sim1+sim2+sim3)/3,
for the supermodel, with respect to the "reality”.
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Numerical results: Experiment 3

Cj =05 K=09

Tumor volumes quescient
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Figure: Convergence of tumor volumes for quescient cells, for different
submodels sim1, sim2, sim3, for the averaged model (sim1+sim2+sim3)/3,
for the supermodel, with respect to the "reality”.
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Numerical results: Experiment 3

Cj =05 K=09

Tumor volumes difference wrt "reality"
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Figure: Difference between supermodel with respect to the "reality”, for
the supermodel before and after the training phase.
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Conclusions

Tumor growth model with 20+ parameters

Linear cost O(N) IGA-ADS solver for tumor growth simulations
coupled with discrete vasculature graph

Sensitivity analysis
Inverse analysis
Supermodeling for intelligent coupling of several sub-models

Training phase to find coupled coefficients Cj;,
followed by the supermodel simulation phase

Good agreement with "reality” when proper coupling of
supermodel with reality and when we have a good selection of
sub-models
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