
Akademia Górniczo-Hutnicza
im. Stanisława Staszica w Krakowie

Wydział Informatyki, Elektroniki, i Telekomunikacji

KATEDRA INFORMATYKI

PRACA DOKTORSKA

ARKADIUSZ SZYMCZAK

WSPÓŁBIEŻNE SOLVERY ADAPTACYJNE DLA PROBLEMÓW
INŻYNIERYJNYCH STEROWANE SIECIAMI PETRIEGO

PROMOTOR:

dr hab. Maciej Paszyński, prof. AGH

Kraków 2014

OŚWIADCZENIE AUTORA PRACY

OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE

NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I

SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W

PRACY.

. .

PODPIS

AGH
University of Science and Technology in Krakow

Faculty of Computer Science, Electronics, and Telecommunications

DEPARTMENT OF COMPUTER SCIENCE

PH.D. THESIS

ARKADIUSZ SZYMCZAK

PETRI NETS CONTROLLED CONCURRENT ADAPTIVE
SOLVERS FOR ENGINEERING PROBLEMS

SUPERVISOR:

Maciej Paszyński Ph.D, D.Sc.

Krakow 2014

I would like to express my true appreciation to Prof. Maciej Paszyński for his guidance, patience
and great attitude that were of invaluable help to me in my research concluded with this thesis.

...

Table of contents

1. Introduction... 7

1.1. Motivation.. 7

1.2. Main thesis and the structure of this book... 8

1.3. State-of-the-art... 9

1.3.1. Adaptation algorithms... 9

1.3.2. Mesh adaptation and deadlock problem ... 10

1.3.3. Graph grammar models... 15

1.4. Open problems... 16

1.5. Main scientific results.. 16

2. Petri net models of adaptive meshes.. 18

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 18

2.1.1. Mesh adaptation algorithm ... 18

2.1.2. Graph grammar model .. 18

2.1.3. Hierarchical Petri net model ... 20

2.1.4. Enhanced grammar ... 26

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes......... 29

2.2.1. Mesh adaptation algorithm ... 29

2.2.2. Graph grammar model .. 29

2.2.3. Hierarchical Petri net model ... 35

2.2.4. Enhanced grammar ... 45

3. Numerical results .. 53

3.1. 2D Example ... 53

3.1.1. Strong formulation .. 53

3.1.2. Weak formulation.. 53

3.1.3. Deadlock problem... 54

3.2. 3D Example ... 58

3.2.1. Strong formulation .. 58

3.2.2. Weak formulation.. 59

3.2.3. Deadlock problem... 59

4. Conclusions and future remarks ... 63

A. Exemaplary analysis of Petri nets modeling 2D finite element method ... 64

B. Introduction to hp adaptive Finite Element Method ... 85

5

TABLE OF CONTENTS 6

B.1. Two dimensional rectangular finite element.. 85

B.2. Three dimensional rectangular finite element ... 87

C. Basic Definitions of Petri nets .. 89

C.1. Simple Petri net ... 89

C.2. Hierarchical Petri net ... 89

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Chapter 1
Introduction

1.1. Motivation

The class of adaptive algorithms based on two- and three-dimensional computational meshes is widely utilized

to solve many engineering problems in the domains such as nano-litography simulations (the process of production

of micro-processors, so-called Step-and-Flash Imprint Lithography simulations) [50], propagation of electroma-

gnetic waves (so-called Maxwell problem), in particular with oil-industry applications [40, 39, 37, 46], material

science [21, 48, 47] as well as heat transfer problems [48, 47].

The aforementioned class of algorithms utilizes adaptive finite element method and other similar computational

methods.

A formal model of adaptive algorithms, based on Petri nets and graph grammar, would allow to perform formal

proofs of correctness of those algorithms. In particullar, it would allow for detection and prevention of deadlocks

that could occur during adaptation of computational meshes.

In this thesis I focus on construction of Petri net models for particular implementation of adaptive algorithms,

namely the two-dimensional self-adaptive hp finite element method code hp2d as described in [10] as well as

three-dimensional self-adaptive hp finite element method hp3d code as described in [11]. I show that the original

implementations of those algorithms may lead to a deadlock problem for certain configurations of mesh refine-

ments. This happens during two-dimensional simulations of magnetolluric measurements process [60, 1] as well

as during three-dimensional simulations of resistivity logging while drilling measurements [62, 40, 37]. Both pro-

blems are related to geolocation using antennas transmitting or receiving electromagnetic radiation, in order to

localize oil and / or gas bearing formations in the ground.

The constructed Petri nets models allow to detect deadlock problems in both 2D and 3D problems. They also

suggest the modification of 2D and 3D mesh adaptation algorithms, making them deadlock-free. Thus, the Petri

nets models have been utilized for detection of deadlock problems in the original mesh adaptation algorithms as

well as for proving that the new modified algorithms are actually deadlock-free.

Scientific results presented in this thesis are not limited to specific implementations of the hp2d and hp3d

algorithms. They may be easly generalized to any other implementation of the mesh refinements algorithm. This

is in particular true since hp2d and hp3d algorithms so far are the most complicated versions of the adaptive

algorithms.

7

1.2. Main thesis and the structure of this book 8

1.2. Main thesis and the structure of this book

The main thesis of this work may be formulated as follows:

It is possible to develop a formal model, based on Petri nets and graph grammar, for a class of adaptive

algorithms based on two-dimensional and three-dimensional computational meshes, that allows for formal

analysis of the correctness of these algorithms, in particular for detection of the deadlock problem.

The rest of the book is organized as follows:

– I start with presenting the state-of-the-art in the field of adaptive algorithms for finite element method and

graph grammar models.

– I introduce several deadlock problems that occured during two- and three-dimensional computations with

adaptive finite element method.

– I summarize the list of open problems related to correctness analysis of mesh refinement algorithms and

detection of the deadlock problem.

– I summarize the main scientific results obtained in this thesis.

– In the following sections I introduce formal definitions of the Petri net model.

– The adaptive algorithm as implemented in hp2d code [10] is expressed by graph grammar productions.

– Petri net model for deadlock detection in anisotropic mesh adaptation algorithm hp2d is presented.

– The adaptive algorithm hp2d is corrected by including some additional graph grammar productions.

– The new Petri net model for the enhanced graph grammar is created.

– The new Petri net model is proven to be deadlock-free, thus the new adaptive algorithm hp2d is proven to be

deadlock-free.

– The entire consideration is repeated for three-dimensional adaptive computations.

– The adaptive algorithm as implemented in hp3d code [11] is expressed by graph grammar productions.

– Petri net model for deadlock detection in anisotropic mesh adaptation algorithm hp3d is presented.

– The adaptive algorithm hp3d is corrected by including some additional graph grammar productions.

– The new Petri net model for the enhanced graph grammar is created.

– The new Petri net model is proven to be deadlock-free, thus the new adaptive algorithm hp3d is proven to be

deadlock-free.

– Conclusions on the research results and remarks for future research are discussed.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 9

1.3. State-of-the-art

1.3.1. Adaptation algorithms

This section provides a short presentation on the current state-of-the-art in the field of the development of

sequential and parallel mesh refinement algorithms for h adaptive grids. The adaptive algorithms can be classified

in the following way:

– Uniform h adaptation: all finite elements are uniformly broken into smaller elements.

– Uniform p adaptation: the polynomial order of approximation is increased uniformly over the entire mesh,

e.g. by adding bubble shape functions of higher orders over element edges and interiors.

– Non-uniform h adaptation: some finite elements are broken into smaller elements, only in those parts of the

mesh which have high numerical error.

– Non-uniform hp adaptation: some finite elements are broken into smaller elements, and the polynomial

orders of approximation are increased, only in those parts of the mesh which have high numerical error.

– r adaptation where the mesh is re-generated using new distribution of elements.

For non-uniform h or hp adaptation, it is necessary to locate finite elements with high numerical error. In the case

of non-uniform hp adaptation, it is also necessary to select the optimal refinements for such finite elements. The

non-uniform h or hp adaptation process can be executed in the following ways:

– The selection of the finite elements to be refined and the type of refinement depends on the user.

– The selection of the finite elements to be refined and the type of refinement depends on an algorithm based

on the knowledge of the structure of the solution.

– The selection of the finite elements to be refined and the type of refinement depends on the self-adaptive

algorithm, which is designed without any particular knowledge of the structure of the solution, and works in

fully automatic mode, without any user interaction.

The first and the second algorithm are reffered to as the non-automatic adaptation, whereas the third algorithm is

called automatic adaptation. In particular, the non-uniform hp automatic adaptation is called the self-adaptive hp

Finite Element Method (self-adaptive hp-FEM). The r adaptation is also often referred to as re-meshing.

Algorithms for the uniform h, uniform p, non-uniform h and non-uniform hp automatic adaptation for 3D grids

have been designed, implemented and tested by the group of prof. Leszek Demkowicz [11]. Many authors followed

the approach originated by Demkowicz and implemented their own variations of these algorithms. In [33], authors

employ modern h and hp adaptation algorithms for the Girkmann problem. [3] presents the h adaptation approach

using the octree data structure and the ideas originally introduced by [11] for local h refinements. The uniform h

adaptation algorithm has also been utilized for the solution of the projection problem [23].

The r-adaptation is also commonly used in the computational community. Paper [29] uses the re-meshing

algorithm for modeling large deformations in geological problems. The r adaptation algorithm can also be utilized

for solution of non-stationary problems. An example of that is modeling of the wind flow around a bridge, as

presented in [52].

The self-adaptive h-FEM or hp-FEM algorithm may utilize different error estimators for guiding the adaptation

process. There are different error estimators defined for elliptic [4, 7], parabolic [19, 8] or multi-physics problems

[34]. From the point of view of deadlock modeling, the error estimator does not influence the problem.

This dissertation focuses on modeling deadlock scenarios in the self-adaptive h-FEM algorithm. The addition

of automatic p adaptivity is also possible, since playing with different polynomial orders of approximation over the

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 10

edge does not influence the deadlock problem, which results from h adaptation only. The Petri net model presented

in this work can be also applied to model the other non-automatic adaptation algorithms. The only exception is the

r adaptivity.

The parallelization of any of the above adaptation algorithm results in distribution of the computational mesh

over a number of processors. Among major undertakings to develop the algorithms supporting h refinements over

the computational mesh divided into sub-domains, first of all one has to list the Sierra Environment [15, 16, 17,

18]. There are also some ongoing object-oriented projects developing distributed data structure hp-adaptive FEM

for flow simulations [2]. The original hp-adaptive algorithm from [11] has also been parallelized using either

domain decomposition approach [47] or OpenMP approach [53, 54, 55]. Other parallel hp adaptive algorithms

implemented so far have been developed by [14, 56] in the context of Discontinuous Galerkin (DG) methods. The

only parallel hp adaptive algorithms for Continuous Galerkin method that I am aware of have been developed by

[51, 31]. None of these algorithms supports automatic hp adaptation.

The model presented in this thesis can still be applied for analyzing the deadlock problem for parallel mesh

refinements algorithm, assuming the deadlock scenario takes place within a single sub-domain, or the sub-domains

have been collected into a single processor.

1.3.2. Mesh adaptation and deadlock problem

This section introduces the deadlock problem encountered in two- and three-dimensional mesh adaptation

algorithms.

Isotropic mesh refinements in 2D break selected finite elements in two directions to construct four son elements.

Anisotropic refinements break selected elements in one or two directions, producing two or four son elements,

respectively. Isotropic mesh refinements in 3D break selected finite elements in three directions to construct eight

son elements. Anisotropic refinements break selected elements in one, two or three directions, producing two, four

or eight son elements, respectively. Let us consider anisotropic mesh refinement algorithms for 2D grids composed

of rectangular finite elements as presented in [10], and for 3D grids composed of hexahedral finite elements as

presented in [11]. Incorrect implementation of the anisotropic h-adaptation algorithm may result in a deadlock

scenario, where some requested refinements are impossible to execute.

To make the implementation of local refinements tractable while ensuring continuity in the finite element

solution, many anisotropic refinement codes support the so-called 1-irregularity rule. According to that rule, an

element with hanging nodes (i.e., a node whose coefficient value is determined by neighboring nodes in order to

impose global continuity of the solution), cannot be further refined. For refining such an element, one needs to

refine one or several neighboring elements first in order to eliminate all hanging nodes.

The 1-irregularity rule is presented in Figure 1.1 for the 2D case. The rule prevents unbroken element edges

from being adjacent to more than two finite elements on one side. When an unbroken edge is adjacent to one large

finite element on one side and two smaller finite elements on the other side, the approximation over these two

smaller elements is constrained by the approximation over the larger element. This is illustrated in Figure 1.2. To

avoid technical nightmare with constrained approximation over multiple constrained edges, the 1-irregularity rule

is commonly used in the h adaptive algorithms. To satisfy the 1-irregularity rule, several additional refinements

on large adjacent elements may be required. As it is presented in this thesis, the 1-irregularity rule may lead to a

deadlock problem if the mesh adaptation algorithm is not designed correctly.

This problem is also illustrated in Figure 1.3 for the 3D case. Let us consider two finite elements, one broken

into eight son elements, and the other one unbroken. In the finite element method nomenclature, the nodes and

vertexes of the shared face are called constrained, in the sense that the approximation over four small faces of the

small elements is constrained by the approximation over one big face of the big element.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 11

Figure 1.1: 1-irregularity rule: a finite element can be broken only once without breaking the adjacent large ele-

ments.

Figure 1.2: 1-irregularity rule: approximation over the common edge is constrained by the big element.

If we break one of the small elements for the second time, the resulting state is forbidden, compare Figure

1.4. The reason is that in such a case, we will have double constrained nodes over the smallest faces of the small

broken element. To prevent such forbidden state, it is necessary to break the large neighbor before breaking the

small element, compare Figure 1.5.

As it has been experienced during numerical experiments, the 1-irregularity rule has one unexpected drawback,

both in two and three dimensions. Namely, it may result in a deadlock of the adaptation process. It should be

emphasized that the mesh at deadlock state is at an acceptable state, the numerical problem can be solved on that

mesh, however further refinements are not possible here.

Figure 1.3: Two adjacent elements, one broken into eight son elements.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 12

Figure 1.4: The forbidden state with double constrained nodes.

Figure 1.5: Breaking large adjacent element followed by breaking one of the small elements. No double constrained

nodes.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 13

Figure 1.6: A first deadlock scenario.

Figure 1.7: A second deadlock scenario.

Practical motivation for this work was the communication with prof. David Pardo, working on 3D anisotropic

mesh refinement algorithm used for the simulations of 3D DC resistivity logging measurements in deviated wells

[38]. This problem is of great interest to the geophysical community [32, 35, 22]. During those computations, the

deadlock problem occurred.

The deadlock problems are related to the 1-irregularity rule mentioned above. This rule implies that an edge of

an element can be adjacent to no more than two smaller edges. Additionally, a face of an element can be adjacent

to either two smaller faces, or to four smaller faces, provided they are broken in both directions. In the adaptive

community, it is often said that the small edge is constrained by the big edge, or the small face is constrained by

the big face.

One of the first deadlock problems in 3D h-adaptive computations with hexahedral elements was identified

in [12]. The deadlock in that version of the adaptive code was caused by the fact that elements could be broken

only into two son elements, either along X or Y or Z direction. In that paper [12] Figure 13 (reproduced here as

Figure 1.6 with authors’ agreement) illustrates a basic deadlock scenario. There are three elements in a row, the

first one and the third one are broken in two different directions. Another request to break the first element implies

the necessity of breaking the central element. This is because the left side face of the central element cannot be

adjacent to twice-broken faces of the first element. If we break the central element in two directions, we will block

the possibility of breaking the third element, since the central element would have to be broken in another direction

to make breaking the third element possible. This deadlock problem was overcome by adding the possibility of

breaking elements into four or eight son elements at the same time [12].

Actually, the authors of [12] found out that this additional breaking of elements should be performed into eight

son nodes, to block unwanted propagation of additional refinements.

Another deadlock scenario, presented in Figure 1.7, has been identified. In this case, there is a patch of four

elements. Each of those elements has been broken into two son elements. The resulting mesh does not violate the

1-irregularity rule, however, further refinements are not possible in this patch.

For example, let us assume that we want to break element 1 again in the direction perpendicular to the X axis.

The right face of element 1 is constrained by the left face of element 2. We need to break element 2 first, into eight

son nodes, in order to prevent further propagation of refinements. But we cannot do that, since the front face of

element 2 is constrained by the rear face of element 3. We need to break element 3 into eight son nodes, but we

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 14

Figure 1.8: A third deadlock scenario.

cannot do that since the left face of element 3 is constrained by the right face of element 4. So we need to break

element 4 into eight son nodes, but we cannot do that yet, since the rear face of element 4 is constrained by the

front face of element 1. We have to break element 1 first, in the way that is contradictory to its original request for

refinement. We have a deadlock scenario here.

Yet another deadlock problem has been found, much more complicated. In the 3D mesh described in Figure

1.8, there are four elements that touch one another through edges. We would like to break the black element one

more time into four son nodes, along Z axis. This refinement request implies the necessity of breaking the green

element, since the edge of the black element parallel to Y axis is constrained by the edge of the green element

parallel to Y axis. We want to break the green element into eight son nodes, to prevent unwanted propagation of

refinements. But this is not possible yet, since the Z edge of the green element is constrained by the Z edge of the

blue element. The blue element also must be broken into eight son elements. But again, this is not possible, since

Y edge of the blue element is constrained by Y edge of the red element. In turn, the Z edge of the red element is

constrained by the Z edge of the black element. Again, we encounter a deadlock scenario here.

Other deadlock scenarios have been also reported in non-structural 3D tetrahedral adaptive finite element me-

thod computations [30].

In this work I propose the use of a Petri net for detecting deadlock scenarios. I will show how to overcome the

deadlock problem, and how to prove formally by using reachability graphs of Petri nets that the proposed corrected

mesh transformations are actually deadlock-free.

Modeling of deadlock scenarios for adaptive finite element methods was already performed for two dimensio-

nal (2D) anisotropic refinements of rectangular meshes. In the first attempt [59], only a 2D sub-mesh with 2 × 2

rectangular elements was modeled, and a Petri net was constructed for detecting deadlock scenarios in such a sim-

ple example. This result is generalized for arbitrary 2D rectangular grids in this dissertation. Please also refer to

[60]. Subsequently, in [45] a Petri net model was designed for a 3D sub-mesh with 2× 2× 2 hexahedral elements,

and it was shown how to prevent deadlocks in such an example. This thesis generalizes those results to the class of

arbitrary 3D hexahedral meshes in a similar way as it was performed in [60] for the case of 2D rectangular grids

[59]. Please also refer to [62].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.3. State-of-the-art 15

The Petri net model is independent of the numerical problem being solved, however it depends on the parti-

cular mesh adaptation algorithm. The Petri net models described in this thesis have been implemented in PIPE

software [9]. Reachability graph construction and the deadlock analysis have been executed by using automatic

tools implemented also in PIPE software. Once we have a corrected version of the adaptation algorithm proven to

be deadlock-free, this algorithm can be used to solve any numerical problem without incurring a deadlock.

1.3.3. Graph grammar models

Representation of the topological structure of computational meshes as a hierarchy of vertices, edges, faces and

regions has been proposed by [6]. The first attempt to model mesh transformations by graph grammar productions

has been proposed by [20], for regular triangular two-dimensional meshes with h adaptation. The authors utili-

zed a quasi context sensitive graph grammar there. However, the application of the quasi-context sensitive graph

grammar for hp- adaptive mesh transformation seems to be limited, because the mesh transformations, such as

the enforcement of 1-irregularity rule or the minimum rule, are context dependent and cannot be modeled by a

quasi-context sensitive graph grammar. In [57] a simple topological chain rewriting framework modeling mesh

refinement process is described. The approach presented there also allows for modeling uniform mesh refinements

only. Recently, the Composite Programmable Graph Grammar (CP-GG) for modeling the mesh refinements as

graph grammar productions (graph transformations), in both 2D [43, 44, 61] and 3D [41, 42] has been introduced.

The CP-GG, which has been introduced in [25], is a generative tool for the design process using graph transforma-

tions executed on a graph representation of the designed object [24, 26, 27].

Expressing mesh transformations by graph grammar productions simplifies construction of the Petri net model.

Thus, this work introduces several graph grammar productions representing anisotropic refinements of either 2D

or 3D computational meshes with rectangular and hexahedral elements. Graph grammar productions presented in

this work are introduced using a simplified notation, for both 2D and 3D meshes. This is because the details of the

CP-GG model are not part of this dissertation. All is needed is a high level abstract notation for expressing mesh

transformations in order to build Petri nets on top of them. For the formal definitions please refer to [62].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.4. Open problems 16

1.4. Open problems

This section summarizes the open problems related to the field of correctness analysis of mesh adaptation

algorithms.

1. There is no model allowing for formal correctness analysis of two-dimensional mesh adaptation algorithms,

like hp2d algorithm presented in [10].

2. There is no model allowing for formal correctness analysis of three-dimensional mesh adaptation algorithms,

like hp3d algorithm presented in [11].

3. There is no model allowing for automatic detection of potential deadlock during execution of two-

dimensional mesh adaptation algorithms, like the one presented in [10].

4. There is no model allowing for automatic detection of potential deadlock during execution of three-

dimensional mesh adaptation algorithms, like the one presented in [11].

5. Deadlock problems have been reported during two-dimensional adaptive finite element method computations

simulating the process of magnetolluric measurements for the detection of the oil / gas bearing formations

in the ground [60, 1] .

6. Deadlock problems have been reported during three-dimensional adaptive finite element method computa-

tions simulating the process of resistivity logging while driling measurements for the detection of the oil /

gas bearing formations in the ground [62, 40, 37]. .

1.5. Main scientific results

This section summarizes my main scientific results related to the open problems listed in the previous section.

1. Expressing the two-dimensional mesh adaptation algorithm hp2d as implemented in [10] by a set of graph

grammar productions.

2. Development of a Petri net based model for the two-dimensional mesh adaptation algorithm hp2d as imple-

mented in [10].

3. Detection of the deadlock problem for the two-dimensional mesh adaptation algorithm hp2d as implemented

in [10].

4. Introduction of some additional graph grammar productions to the set of productions expressing the two-

dimensional mesh adaptation algorithm hp2d as implemented in [10].

5. Proof for the deadlock-free enhanced graph grammar model expressing the two-dimensional mesh adapta-

tions by using the Petri net model.

6. Correction of the two-dimensional mesh adaptation algorithm according to the enhanced deadlock-free graph

grammar model.

7. Deadlock-free numerical results for two-dimensional magnetotelluric problem.

8. Expressing the three-dimensional mesh adaptation algorithm hp3d as implemented in [11] by a set of graph

grammar productions.

9. Development of a Petri net based model for three-dimensional mesh adaptation algorithm hp3d as imple-

mented in [11].

10. Detection of the deadlock problem for the three-dimensional mesh adaptation algorithm hp3d as implemen-

ted in [11].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

1.5. Main scientific results 17

11. Introduction of some additional graph grammar productions to the set of productions expressing the three-

dimensional mesh adaptation algorithm hp3d as implemented in [11].

12. Proof for the deadlock-free enhanced graph grammar model expressing the three-dimensional mesh adapta-

tions by using the Petri net model.

13. Correction of the three-dimensional mesh adaptation algorithm according to the enhanced deadlock-free

graph grammar model.

14. Deadlock-free numerical results for three-dimensional direct current borehole resistivity measurement simu-

lations in deviated wells.

These results solve the open problems listed in section 1.4.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Chapter 2
Petri net models of adaptive meshes

2.1. Petri net based detecting of deadlock during anisotropic adaptation
of 2D rectangular meshes

2.1.1. Mesh adaptation algorithm

The mesh adaptation algorithm as implemented in hp2d code [10], can be summarized in the following way:

Algorithm 2.1.1. (Automatic two-dimensinal mesh adaptations)

1 L = List of elements el to be refined with refinement kind

2 do while L not empty

3 el = get next element from L and its refinement kind

4 loop through edge ∈ edges of element el

5 if edge belongs to big neighbor element then
6 Store neighbor with its refinement kind at the end of L

7 Store el and its refinement kind at the end of L

8 continue do-loop from line 2

9 endif
10 enddo
11 break element el in a way kind using the virtual refinement

12 end while

Remark 2.1.1. A deadlock scenario occurs when a virtual refinement propagates onto some adjacent element

through an edge, and it is contradictory to the virtual refinement that has already been selected for the adjacent

element.

In the mesh adaptation Algorithm 2.1.1, the deadlock happens in line 11 when we try to break the interior of

an element that has already been broken in some other way.

2.1.2. Graph grammar model

The mesh transformations performed by the mesh adaptation algorithm can be expressed by several basic tasks,

called graph grammar productions. These tasks are summarized in Figure 2.1.

18

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 19

Figure 2.1: Graph grammar modeling the two-dimensional mesh adaptation according to hp2d.

Productions whose names start with V denote the so-called virtual refinements - requests for breaking an

element interior in one of several possible directions. Productions (VBIH) and (VBIV) denote virtual breaking

of an element interior in a single direction along X , and Y axis, respectively. Production (VBI) denotes virtual

breaking of an element interior along two designated axis at the same time.

The computational mesh after execution of any of these virtual refinements is not in a legal state. This is be-

cause the virtual refinements break only the element interiors. Afterwards the mesh must be closed by enforcing

additional breaking of some edges. An edge must be broken if it is surrounded by two broken interiors. Corre-

sponding graph grammar productions for actual refinements are denoted by B letter. Let us assume that closing of

the refinement process for edges can be expressed by one production B* whose name corresponds to the virtual

refinement executed before.

According to 1-irregularity rule, a finite element edge can be broken only once. In other words, when we try to

break a finite element edge for the second time, it is necessary to break large adjacent element first. It is assumed

that the large adjacent element is always broken in both directions, to prevent long propagation of refinements.

Observation 2.1.1. There are eight possible configurations when 1-irregularity rule implies breaking the large

adjacent element, as shown in Figure 2.2.

Observation 2.1.2. The request to break the second large adjacent element occurs only when the first large ad-

jacent element was already broken in the direction perpendicular to the direction of refinement propagation. The

direction of refinement propagation turns each time it reaches a large adjacent element already broken in the

direction perpendicular to the direction of refinement propagation.

Proof. From the eight configurations considered in Observation 2.1.1 there are four configurations when such a

requirement applies, as shown in Figure 2.3. In all of them the first large adjacent element is already broken in

the direction perpendicular to the direction of refinement propagation. Notice that the large adjacent element to be

broken may be also a half of some larger element, as shown in Figure 2.4.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 20

Figure 2.2: 1-irregularity rule configurations

2.1.3. Hierarchical Petri net model

Remark 2.1.2. In order to detect a possible deadlock scenario, we need to construct a hierarchical Petri net

with the main page covering the entire two-dimensional mesh, and sub-pages corresponding to pairs of elements

adjacent through an edge.

Let us construct the hierarchical Petri net model for the entire mesh, with main page corresponding to the

entire two-dimensional mesh, and with sub-pages corresponding to all element pairs adjacent by an edge. Because

of the 1-irregularity rule enforced over the entire mesh, all the pairs of elements are at the same level of adaptation.

Each sub-page corresponding to a single pair of elements considers refinement request for any of the elements

in the pair, with possible propagation to the other element in the pair. The sub-page considers also all possible

refinement requests coming from the external elements. Thus, let us consider all possible combinations of two

virtual refinement requests, and check if they can result in a deadlock.

The hierarchical Petri net model has been constructed in such a way that actual deadlock detection is performed

by the sub-pages covering two-element patches of the two-dimensional mesh. The hierarchical Petri net sub-page

for finite elements adjacent along X axis is depicted in Figure 2.5. The hierarchical Petri net sub-page for finite

elements adjacent along Y axis is depicted in Figure 2.6.

The Petri nets described in this thesis are defined as hierarchical colored Petri nets (compare [58] p. 177

definition 10.16), limited to just one color (there is just one type of token). Sub-pages are linked to the main page

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 21

Figure 2.3: Double refinement propagations

by socket and port nodes. A socket is a place in the main page of the hierarchical Petri net that is linked to a port

node in a sub-page. Such a pair of places behaves as a single common place (or a fusion) shared between the two

pages (compare [58] p. 176).

The hierarchical Petri net subpage contains two starting places (P0 and P1) - one for each mesh element of

the modeled pair. The two upper rows of Petri net transitions are named after grammar productions they represent.

Numbers at the end of transition names denote the corresponding mesh element a given transition pertains to. Firing

any of those transitions models executing a corresponding grammar production. Remaining Petri net transitions

model the following mesh element transformations:

– VHA - request (virtual) to break sub-element adjacent to the other element in the pair, along X axis;

– VVA - request (virtual) to break sub-element adjacent to the other element in the pair, along Y axis;

– VA - transformation breaking sub-element adjacent to the other element in the pair, along Y axis;

– HA - transformation breaking sub-element adjacent to the other element in the pair, along X axis;

– VP - transformation propagating the refinement request (virtual) onto the other element in the pair;

– P - transformation executing the propagated refinement.

The Petri net arcs define all possible execution paths for a round of mesh element refinements by enforcing depen-

dency relationships between relevant transitions (productions). Whenever only one of a set of grammar productions

can be executed, corresponding Petri net transitions depend on a common place with single token. Whenever exe-

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 22

Figure 2.4: Double propagations to half-element

cution of a production blocks execution of another production, an inhibitor arc is used between corresponding Petri

net transitions (actually between intermediate place and dependent transition).

Remark 2.1.3. If the request is for the refinement in both directions at the same time, the potential propagation

of refinement request cannot lead to a deadlock since the propagated requests are always for bidirectional refi-

nements, hence such a propagated refinement request will never contradict the original bidirectional refinement

request. That is why the bidirectional refinement requests for the sub-elements are omitted in the Petri net model.

It is critical that each pair of adjacent mesh elements is covered with a Petri net subpage of appropriate type.

To this end the algorithm of hierarchical Petri net generation for given finite element mesh has been developed.

Algorithm 2.1.2. (generation of hierarchical Petri net for given FE mesh)

1. Create the main page of the hierarchical Petri net.

(a) Create a Petri net place for each element of the mesh being analyzed.

(b) For each pair of adjacent mesh elements create a Petri net transition and connect the corresponding

places to this transition with arcs.

(c) Create an output place for each transition and connect each place to its corresponding transition with

an arc.

2. Bind the main page of the hierarchical Petri net with the subpages.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 23

Figure 2.5: Hierarchical Petri net subpage for pair of mesh elements adjacent along X axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 24

Figure 2.6: Hierarchical Petri net subpage for pair of mesh elements adjacent along Y axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 25

Figure 2.7: Main page of hierarchical Petri net for four finite element mesh

(a) Substitute each transition in the main page with an appropriate subpage instance depending on whether

the input places to the given transition represent mesh elements adjacent along X or Y axis.

(b) The input places of each transition in the main page become the socket nodes to the substituted subpage

instance and are bound to the port nodes (places P0 and P1) in the substituted subpage instance.

(c) The output place of each transition in the main page becomes the socket node to the substituted subpage

instance and is bound to the port node (place P26 for the deadlock subpage or place P28 for the

nondeadlock subpage) in the substituted subpage instance.

3. Each port node is a global fusion, i.e. there is a single instance of the given place shared by all sub-page

instances in the hierarchical Petri net.

Figure 2.7 presents the main page of hierarchical Petri net generated for an exemplary computational mesh

consisting of 4 elements. Places Sock[#] correspond to mesh elements with a given number. All Sock[#] places

in the main page are input sockets, bound to port nodes of sub-page instances of appropriate type. All Sock[##]
places in the main page are output sockets, bound to port nodes in sub-pages. Socket nodes in the main page

and corresponding port nodes in sub-pages are places by means of which sub-pages are bound to the main page,

comprising a coherent model. For precise definitions of socket nodes and port nodes, please refer to [58], page

176. Transitions SubP12, SubP41, SubP34 and SubP23 are substituted with instances of a sub-page modeling a

mesh element pair that is adjacent along eighter X or Y axis.

Observation 2.1.3. Complexity (size of the hierarchical Petri net) of the proposed model can be estimated by the

number of adjacent element pairs in a computational mesh (directly determining the number of subpages in the

hierarchical Petri net model). This number is highest for rectangular meshes and can be expressed as (#columns *

(#rows - 1) + #rows * (#columns - 1)).

Remark 2.1.4. The grammar is not deadlock-free.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 26

Figure 2.8: New productions in the enhanced graph grammar

Proof. It is clearly visible that the following sequence of fired transitions (in the subpage for a mesh element

pair adjacent along X axis): VBIH1, VBIV2, BIH1, BIV2, VVA2, VHA1, VP2 leads to a dead state. In this

state, two mutually contradicting refinement requests have occurred on the right element, leading to a deadlock

condition.

2.1.4. Enhanced grammar

Figure 2.8 presents productions that have been added to the previously defined grammar. Figures 2.9 and 2.10

present the counterparts of the deadlock detecting Petri net subpages reflecting the enhanced grammar, for finite

element pairs adjacent along X and Y axis, respectively.

Remark 2.1.5. The enhanced grammar is deadlock-free.

Proof. Reachability graph has been generated for given Petri net and given initial marking (shown in the figure).

The initial marking reflects the intention of braking each mesh element once. The reachability graph contains no

dead state (the Petri net is live) which implies that the grammar modeled by the Petri net is deadlock-free.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 27

Figure 2.9: Petri net subpage for mesh element pair adjacent along X axis and the enhanced grammar

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.1. Petri net based detecting of deadlock during anisotropic adaptation of 2D rectangular meshes 28

Figure 2.10: Petri net subpage for mesh element pair adjacent along Y axis and the enhanced grammar

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 29

2.2. Petri net based detecting of deadlock during anisotropic adaptation
of 3D hexahedral meshes

2.2.1. Mesh adaptation algorithm

The mesh adaptation algorithm as implemented in hp3d code [11], can be summarized in the following way:

Algorithm 2.2.1. (Automatic three-dimensinal mesh adaptations)

1 L = List of elements el to be refined with refinement kind

2 do while L not empty

3 el = get next element from L and its refinement kind

4 loop through face ∈ faces of element el

5 if face belongs to big neighbor element then
6 Store neighbor with its refinement kind at the end of L

7 Store el and its refinement kind at the end of L

8 continue do-loop from line 2

9 endif
10 enddo
11 loop through edge ∈ edges of element el

12 if edge belongs to big neighbor element then
13 Store neighbor with its refinement kind at the end of L

14 Store el and its refinement kind at the end of L

15 continue do-loop from line 2

16 endif
17 enddo
18 break element el in a way kind using the virtual refinement

19 end while

Remark 2.2.1. A deadlock scenario occurs when a virtual refinement propagates onto some adjacent element

either by a face or an edge, and it is contradictory to the virtual refinement that has already been selected for the

adjacent element.

In the mesh adaptation Algorithm 2.2.1, the deadlock happens in line 18 when we try to break the interior of

an element that has already been broken in some other way.

2.2.2. Graph grammar model

The mesh transformations performed by the mesh adaptation algorithm can be expressed by several basic tasks,

called graph grammar productions. These tasks are summarized in Figure 2.11.

Productions whose names start with V denote the so-called virtual refinements - requests for breaking an

element interior in one of several possible directions. Productions (VX), (VY) and (VZ) denote virtual breaking

of an element interior in a single direction along X , Y and Z, axis, respectively. Productions (VXY), (VYZ)
and (VXZ) denote virtual breaking of an element interior along two designated axis at the same time. Production

(VXYZ) denotes virtual breaking of element interior along all three axis at the same time.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 30

(VY)

(VX)

(VZ)

(VXY)

(VYZ)

(VXZ)

(BY)

(BX)

(BZ)

(BXY)

(BYZ)

(BXZ)

(VXYZ) (BXYZ)

Figure 2.11: Graph grammar productions for the mesh refinements process as implemented in hp3d code.

The computational mesh after execution of any of these virtual refinements is not in a legal state. This is because

the virtual refinements break only element interiors. Afterwards the mesh must be closed by enforcing additional

breaking of some edges. A face must be broken if it is surrounded by two broken interiors. An edge can be broken

if it is surrounded by four broken faces. The execution of virtual refinements is followed by the execution of several

graph grammar productions, checking the connectivities between edges, faces and interiors, and enforcing some

additional refinements. Corresponding graph grammar productions for actual refinements are denoted by B letter.

Let us assume that closing of the refinement process for faces and edges can be expressed by one production B*
whose name corresponds to the virtual refinement executed before.

According to 1-irregularity rule in 3D a finite element face can be broken only once. In other words when

we try to break a finite element face for the second time, it is necessary to break large adjacent element first. It

is assumed that the large adjacent element is always broken in three directions, to prevent long propagation of

refinements.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 31

Figure 2.12: Cases 1-8 of propagation of h refinement onto adjacent element.

Figure 2.13: Cases 9-12 of propagation of h refinement onto adjacent element.

Observation 2.2.1. There are fourty eight possible configurations when 1-irregularity rule implies breaking the

large adjacent element, as shown in Figures 2.12-2.19.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 32

Figure 2.14: Cases 13-20 of propagation of h refinement onto adjacent element.

Figure 2.15: Cases 21-24 of propagation of h refinement onto adjacent element.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 33

Figure 2.16: Cases 25-32 of propagation of h refinement onto adjacent element.

Figure 2.17: Cases 33-36 of propagation of h refinement onto adjacent element.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 34

Figure 2.18: Cases 37-44 of propagation of h refinement onto adjacent element.

Figure 2.19: Cases 45-48 of propagation of h refinement onto adjacent element.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 35

2.2.3. Hierarchical Petri net model

Remark 2.2.2. In order to detect a possible deadlock scenario, we need to construct a hierarchical Petri net with

the main page covering the entire mesh, and sub-pages corresponding to pairs of elements either through a face

or through an edge.

The hierarchical Petri net model is constructed for the entire mesh, with main page corresponding to the entire

mesh, and with sub-pages corresponding to all element pairs, adjacent either by face or by edge. Because of the

1-irregularity rule enforced over the entire mesh, all the pairs of elements are at the same level of adaptation.

Each sub-page corresponding to a single pair of elements considers refinement request for any of the elements in

the pair, with possible propagation to the other element from the pair. The sub-page considers also all possible

refinement requests coming from the external elements. Thus, let us consider all possible combinations of two

virtual refinement requests, and check if they can result in a deadlock.

The hierarchical Petri net model has been constructed in such a way that actual deadlock detection is performed

by the sub-pages covering two-element patches of the mesh. The hierarchical Petri net sub-page for finite elements

adjacent along X axis is depicted in Figures 2.20 and 2.21. Similar hierarchical Petri net sub-pages for finite

elements adjacent along Y and Z axis are presented in Figures 2.22 and 2.23, respectively.

The Petri nets described in this section are again defined as hierarchical colored Petri nets (compare [58] p.

177 definition 10.16), limited to just one color (there is just one type of token). Like for the two-dimensional case,

sub-pages are linked to the main page by socket and port nodes. A socket (in the main page) and its corresponding

port (in a sub-page) behave as a single common place (or a fusion) shared between the two pages (compare [58] p.

176).

Since the propagation of refinements may also occur by an edge, as it is depicted in Figure 1.8, it is also neces-

sary to consider patches of elements adjacent through edges. Each element has up to six neighbors through faces,

where there are actually three symmetric Petri nets, for adjacency along X, Y and Z axis. There are also twelve ed-

ges, and there are twelve possible adjacent neighbors through edges. The Petri net sub-page for adjacency by edges

is similar to the sub-pages reflecting adjacency by faces, but only the refinements in the direction perpendicular to

the edge may occur there. Such a Petri net is presented in Figures 2.24 and 2.25.

The Petri net arcs define all possible execution paths for a round of mesh element refinements by enforcing

dependency relationships between relevant transitions (productions). Whenever only one of a set of grammar pro-

ductions can be executed, the corresponding Petri net transitions depend on a common place with a single token in

the initial marking. Whenever execution of a production blocks execution of another production, an inhibitor arc

is used between the corresponding Petri net transitions (actually between the intermediate place and the dependent

transition).

Each hierarchical Petri net subpage contains two starting places (P1 and P2) - one for each mesh element of

the modeled pair. P1 and P2 are fusion places - shared between all sub-pages covering common mesh elements (a

given mesh element can be part of up to six element pairs). The two upper rows of Petri net transitions are named

after the grammar productions they represent. Numbers at the end of transition names denote the corresponding

mesh element to which a given transition pertains. Firing any of those transitions models executing a corresponding

grammar production. The remaining Petri net transitions model the following mesh element transformations:

– VXA - request (virtual) to break along X axis the sub-element adjacent to the other element in the pair

– VYA - request (virtual) to break along Y axis the sub-element adjacent to the other element in the pair

– VZA - request (virtual) to break along Z axis the sub-element adjacent to the other element in the pair

– VXYA - request (virtual) to break along X and Y axis the sub-element adjacent to the other element in the

pair

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 36

Figure 2.20: First part of the hierarchical Petri net subpage with deadlock for finite elements adjacent along X

axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 37

Figure 2.21: Second part of the hierarchical Petri net subpage with deadlock for finite elements adjacent along X

axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 38

Figure 2.22: The hierarchical Petri net subpage with deadlock for finite elements adjacent along Y axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 39

Figure 2.23: The hierarchical Petri net subpage with deadlock for finite elements adjacent along Z axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 40

Figure 2.24: First part of the hierarchical Petri net subpage with deadlock for finite elements adjacent by edge.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 41

Figure 2.25: Second part of the hierarchical Petri net subpage with deadlock for finite elements adjacent by edge.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 42

– VXZA - request (virtual) to break along X and Z axis the sub-element adjacent to the other element in the

pair

– VYZA - request (virtual) to break along Y and Z axis the sub-element adjacent to the other element in the

pair

– BXA - transformation breaking along X axis the sub-element adjacent to the other element in the pair

– BYA - transformation breaking along Y axis the sub-element adjacent to the other element in the pair

– BZA - transformation breaking along Z axis the sub-element adjacent to the other element in the pair

– BXYA - transformation breaking along X and Y axis the sub-element adjacent to the other element in the

pair

– BXZA - transformation breaking along X and Z axis the sub-element adjacent to the other element in the

pair

– BYZA - transformation breaking along Y and Z axis the sub-element adjacent to the other element in the

pair

– BXYZA - transformation breaking along all 3 axis the sub-element adjacent to the other element in the pair

– VP - transformation propagating the refinement request (virtual) onto the other element in the pair

– BP - transformation executing the propagated refinement

– VB - transformation converting any virtual refinement into a three-directional virtual refinement

Transitions whose names end with prim model the same graph transformations as the corresponding transitions

without prim at the end of the name but reachable by a different execution path (that is, with vs. without refinement

propagation).

A mesh (sub-)element can be broken for the second time (transitions B [D]A[#], where [D] stands for any

direction(s) and [#] is the number of concerned mesh element) only when the adjacent element is already broken

in the same direction at least once. This can be achieved in either of the following two ways:

1. The adjacent element has been broken in the required direction independently.

2. The required refinement is propagated onto the adjacent element (e.g. P33→ VP2→ P49→ BP2 for the

“left” element in the pair).

An alternative to the above two scenarios is modeled in the Petri net by means of places P65 - P70. Single breaking

of a mesh element in a set D of directions “un-inhibits” (unblocks) the single breaking of the adjacent (sub-)element

in a subset D of directions (places P65 - P68). A second virtual refinement of a mesh element in fewer than three

directions at the same time inhibits the refinement to be propagated from the adjacent mesh element (places P69
and P70). It is critical that each pair of adjacent mesh elements is covered with a Petri net subpage of appropriate

type. To this end, the hierarchical Petri net generation algorithm for a given finite element mesh has been developed.

Assumption 2.2.1. All elements of the mesh to be analyzed are at the same adaptation level. This is a direct

consequence of the 1-irregularity rule that must be fulfilled over the mesh.

Algorithm 2.2.2. Generation of a hierarchical Petri net for a given 3D finite element mesh

1. Create the main page of the hierarchical Petri net.

– Create a Petri net place for each element of the mesh being analyzed.

– For each pair of adjacent (by face in any direction: along X, Y or Z axis; or by any of the twelve edges)

mesh elements, create a Petri net transition and connect the corresponding places to this transition

with arcs.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 43

Figure 2.26: Exemplary eight finite element mesh.

– Create two output places for each transition and connect each place to its corresponding transition

with an arc.

2. Bind the main page of the hierarchical Petri net with the sub-pages.

– Substitute each transition in the main page with an instance of appropriate sub-page type, depending

on whether the input places to the given transition represent mesh elements that are face-adjacent

along X , Y or Z axis, or adjacent by one of the twelve edges.

– The input places of each transition in the main page become the socket nodes to the substituted sub-

page instance and are bound to the port nodes (places P1 and P2) in the substituted sub-page instance.

– The output places of each transition in the main page become the socket nodes to the substituted

sub-page instance and are bound to the port nodes (places P63 and P64) in the substituted sub-page

instance.

3. Each port node is a global fusion, i.e. there is a single instance of given place shared by all sub-page

instances of the hierarchical Petri net.

Figure 2.27 presents the main page of the hierarchical Petri net generated for an exemplary computational mesh

consisting of 8 elements, depicted in Figure 2.26. Places Elem[#] correspond to mesh elements with given number.

All Elem[#] places in the main page are input sockets, bound to port nodes (places P1 and P2) of sub-page instances

of appropriate type. All P[#] places in the main page are output sockets, bound to port nodes (places P63 and P64)

in sub-pages. Socket nodes in the main page and corresponding port nodes in sub-pages are places by means of

which sub-pages are bound to the main page, comprising a coherent model. For precise definitions of socket nodes

and port nodes, please refer to [58], page 176. Transitions Face12, Face34, Face56 and Face78 are substituted

with instances of a sub-page modeling a mesh element pair that is face-adjacent along X axis. Transitions Face14,

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 44

Figure 2.27: The main page of the hierarchical Petri net for the eight element mesh example.

Face23, Face57 and Face68 are substituted with instances of a sub-page modeling a mesh element pair that is

face-adjacent along Y axis. Transitions Face15, Face26, Face38 and Face47 are substituted with instances of a

sub-page modeling a mesh element pair that is face-adjacent along Z axis. Transitions Edge[#][#] are substituted

with instances of a sub-page modeling a mesh element pair that is edge-adjacent in appropriate direction.

Remark 2.2.3. Complexity (size of the hierarchical Petri net) S of the proposed model can be estimated by the

number of adjacent element pairs in a computational mesh (directly determining the number of sub-pages in the

hierarchical Petri net model). This number is highest for (regular) hexahedral meshes and can be expressed as

S = F + E

F = ((x− 1)yz + x(y − 1)z + xy(z − 1))

E = 2(((min(x, y)− 1)max(x, y) +min(x, y) + 1)z + ((min(y, z)− 1)max(y, z) +min(y, z) + 1)x)

(2.1)

where:

F - the number of face-adjacent element pairs;

E - the number of edge-adjacent element pairs;

and x, y, z denote the number of elements in X , Y and Z directions, respectively.

As far as the number of reachable Petri net’s states is concerned, I used PIPE software to compute them

automatically for each sub-page type. I obtained the following numbers:

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 45

Figure 2.28: Additional graph grammar productions to eliminate the deadlock problem.

– 5391 states for face-adjacent element pair in deadlock prone graph grammar,

– 3918 states for edge-adjacent element pair in deadlock prone graph grammar,

– 5859 states for face-adjacent element pair in deadlock free graph grammar, and

– 3918 states for edge-adjacent element pair in deadlock free graph grammar.

Remark 2.2.4. The grammar is not deadlock-free.

Proof. It is clearly visible that the following sequence of fired transitions (in the subpage for a mesh element pair

adjacent along X axis) VY1, BY1, VZ2, BZ2, VYA1, VZA2, VP2, VP1 leads to a dead state. In this state, two

mutually contradicting refinement requests have occurred on both pair elements, leading to a deadlock scenario.

2.2.4. Enhanced grammar

In this section, some additional graph grammar productions are provided, which allow to overcome the de-

adlock problem. Figure 2.28 presents productions that have been added to the previously defined grammar. These

graph grammar productions update the broken interior of an element in order to merge two different refinement

requests. The implementation of these additional graph grammar productions in the mesh adaptation Algorithm

3Dadaptation requires replacing line 18 with the following lines:

18a if element el interior is already broken then
18b replace the virtual refinement of element el with the mixture of

18c actual_refinement_kind and the new refinement kind

18d else
18e break element el in a way kind using the virtual refinement

18f endif

Figures 2.29 and 2.30 present the counterparts of the deadlock detecting Petri net sub-page reflecting the enhan-

ced grammar, for finite element pairs adjacent along X axis. It is also possible to construct analogous Petri nets for

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 46

elements adjacent along Y and Z axis, as presented in Figures 2.31 and 2.32 . The corresponding deadlock-free Pe-

tri net sub-page for elements adjacent through an edge is also presented in Figures 2.33 and 2.34. Transitions VB1
and VB2 have been added to the hierarchical Petri net sub-pages, with arcs from places P69 and P70, respectively.

Firing the newly added transitions effectively “un-inhibits” (unblocks) transitions BP2 and BP1 respectively,

should any of the latter had been previously inhibited (by firing a transition representing a contradicting refinement

request). This result demonstrates that executing any of the newly added grammar productions reconciles the

contradicting refinement requests. Additionally, arcs BP2→ P64 and BP1→ P63 have been added to reflect the

fact that actual execution of the propagated refinement brings a given mesh element to the next adaptation level.

Remark 2.2.5. The enhanced grammar is deadlock-free.

Proof. Reachability graph has been generated from PIPE [9] for a given Petri net and given initial marking (shown

in the figures). The initial marking reflects the intention of breaking each mesh element once. The reachability

graph contains no dead state (the Petri net is alive), which implies that the grammar modeled by the Petri net is

deadlock-free.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 47

Figure 2.29: First part of deadlock-free hierarchical Petri net subpage for finite elements adjacent along X axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 48

Figure 2.30: Second part of deadlock-free hierarchical Petri net subpage for finite elements adjacent along X axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 49

Figure 2.31: Deadlock-free hierarchical Petri net subpage for finite elements adjacent along Y axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 50

Figure 2.32: Deadlock-free hierarchical Petri net subpage for finite elements adjacent along Z axis.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 51

Figure 2.33: First part of deadlock-free hierarchical Petri net subpage for finite elements adjacent by edge.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

2.2. Petri net based detecting of deadlock during anisotropic adaptation of 3D hexahedral meshes 52

Figure 2.34: Second part of deadlock-free hierarchical Petri net subpage for finite elements adjacent by edge.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Chapter 3
Numerical results

3.1. 2D Example

The deadlock problem can be illustrated by simulating the two-dimensional (2D) magnetotelluric (MT) pro-

blem. This technique is used to determine the resistivity map of the Earth’s subsurface by performing electroma-

gnetic (EM) measurements. The main difference between MT and usual measurement acquisition scenarios is that

MT uses natural sources generated within the ionesphere, and it does not require artificial sources. Thus, acquisi-

tion of MT measurements is rather inexpensive and it can cover large areas. Applications of MT measurements

include hydrocarbon (oil and gas) exploration and finding suitable regions for storage of CO2.

3.1.1. Strong formulation

Let us consider the 2D conductive media equation

∇ · σ∇u = ∇ · Jimp, (3.1)

where σ is the conductivity of the media, u is the electric potential, and Jimp is the impressed electric current (the

source). The above partial differential equation (PDE) is imposed on a computational domain Ω = [0, 1]d, where

d is the spatial dimension. Homogeneous Dirichlet boundary conditions are imposed

u = 0 on ΓD, (3.2)

where ΓD = ∂Ω.

3.1.2. Weak formulation

The weak variational formulation is obtained by taking the L2-scalar product with functions v ∈ H1
ΓD

(Ω) =

{v ∈ H1 (Ω) : v|ΓD
= 0}, and integrating by parts to obtain:

Find u ∈ V = H1
ΓD

(Ω) such that (3.3)

b (v, u) = l (v) ,∀v ∈ V, (3.4)

where

b (v, u) =

∫
Ω

σ∇v · ∇udx, and (3.5)

l (v) =

∫
Ω

v · Jimpdx (3.6)

53

3.1. 2D Example 54

3.1.3. Deadlock problem

An hp-adaptive finite element method is employed for simulations of MT measurements [1]. The measurement

acquisition scenario is considered, as described in Figure 3.1. It is composed of a source modeled as a plane

wave operating at 100Hz coming from the top part of the domain, a layer of air, a background earth material

with resistivity equal to 200Ωm, and three target zones with resistivities equal to 1000Ωm, 2000Ωm, and 50Ωm,

respectively. This 2D model problem is governed by Maxwell’s equations, and a Perfectly Matched Layer (PML)

is incorporated in order to truncate the computational domain. Receivers are located along the air-earth interface.

For simplicity, in this example only one receiver position on top of the 2000Ωm resistivity layer is considered. For

that position, the so-called hp goal-oriented adaptive strategy is employed [38].

20 km 20 km20 km

PML

PML

P
M

L

P
M

L

Air

 Sub−surface of the Earth

ρ=1000 Ω m ρ=2000 Ω m ρ=50 Ω m

ρ=200 Ω m

3
0
 k

m

3
0
 k

m

3
0
 k

m

Figure 3.1: Geometry for the magnetolluric problem being solved

The original hp2d algorithm from [10] has been applied for the adaptive solution of this magnetolluric problem.

The version without fixing the deadlock problem breaks down with just 6,245 unknowns, delivering an error of

0.03%, while for reliable analysis of MT results 0.001% accuracy is needed. The convergence history is presented

in Figure 3.2. The solution obtained on the mesh with accuracy 0.03% where the deadlock happened is presented

in Figure 3.3. It is clear that the accuracy is too low to estimate the properties of formation layers, since the solution

over the part of domain representing the air is dominating. Figures 3.4 and 3.5 present the mesh with the deadlock

problem.

A graph grammar model, expressing the mesh transformations performed by the hp2d code, was constructed.

Next, the Petri net model was built for the analysis of the algorithm, and the deadlock problem was detected. Some

additional graph grammar productions were added, eliminating the deadlock problem. The Petri nets model was

constructed for the enhanced graph grammar and proved that the new model was indeed deadlock-free. Finally, the

hp2d algorithm was corrected in order to continue the magnetolluric simulations without deadlock.

The computations were continued until the accuracy of 0.001% was reached, as required for the accurate

magnetolluric problem solution. The final mesh delivering 0.001% accuracy is presented in Figure 3.6. The corre-

sponding final solution is presented in Figure 3.7.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.1. 2D Example 55

Figure 3.2: Convergence history for hp-adaptive finite element method simulations with the deadlock problem

Figure 3.3: Solution over the mesh with 0.03% accuracy where the deadlock problem occured

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.1. 2D Example 56

Figure 3.4: Global view on the hp-refined mesh with deadlock

Figure 3.5: Amplification with the factor of 100 towards the deadlock area

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.1. 2D Example 57

Figure 3.6: Global view of the final hp-refined mesh without deadlock

Figure 3.7: Solution over the final mesh with 0.001% accuracy

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.2. 3D Example 58

3.2. 3D Example

The hp3d code was executed with the original mesh adaptation algorithm over a problem consisting in the

simulation of 3D direct current (DC) borehole resistivity measurements in deviated wells. A quantity of interest,

in this case the voltage, is measured at a receiver electrode located in a borehole logging instrument.

As the logging instrument moves along the borehole, the voltage measured at the receivers is expected to be

proportional to the electrical resistivity of the nearby formation. Thus, logging instruments are used to estimate

the properties (in this case, the electrical conductivity or resistivity) of the sub-surface material, with the ultimate

objective of describing hydrocarbon (oil and gas) bearing formations.

In this section, the behavior of a resistivity logging instrument is simulated by performing computer-based

simulations of resistivity logging instruments in a borehole environment [38].

Of particular interest to the oil industry are 3D simulations of resistivity measurements in deviated wells, where

the angle between the borehole and the formation layers is not equal to 90 degrees.

Different electrode configurations (see Figure 3.8) and dip angles (which is the angle of incidence between the

well and the formation layers) are considered.

3.2.1. Strong formulation

Find u : Ω 3 x→ u (x) ∈ R where Ω ⊂ R3 the electrostatic scalar potential such that

−div (σ∇u) = ∇ · J in Ω, (3.7)

(the conductive media equation), where ∇ · J is the load (divergence of the impressed current) and σ represents

the conductivity of the media, defined according to Figure 3.9. The electrostatic scalar potential u is related to the

electric field E by

E = −∇u. (3.8)

FULL PATCH ONE PATCH

10º

TOP VIEW

SIDE VIEW

Figure 3.8: The geometry of antennas.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.2. 3D Example 59

Figure 3.9: The conductivities of the borehole, mandrel and formation layers in cylindrical coordinates.

The boundary conditions are defined as

u = 0 on ∂Ω. (3.9)

3.2.2. Weak formulation

The strong formulation is transformed into the weak one: Find u ∈ V such that

b (u, v) = l (v) ∀v ∈ V (3.10)

b (u, v) =

∫
Ω

3∑
i=1

σ
∂u

∂xi

∂v

∂xi
dx (3.11)

l (v) =

∫
Ω

3∑
i=1

v
∂J

∂xi
dx (3.12)

where V = H1
0 (Ω).

3.2.3. Deadlock problem

The adaptive algorithm from the hp3d code [11] generates a sequence of computational grids delivering expo-

nential convergence of the numerical error with respect to the mesh size. The sequence of meshes is obtained by

performing h refinements (by breaking selected elements in one of eight possible ways) or p refinements (by modi-

fying the polynomial order of approximation on finite element edges, faces, and interiors). This adaptation process

is performed by considering a sequence of coarse and fine grids, and by selecting the optimal refinements over the

coarse grid resulting from comparison of the coarse and fine grid solutions, compare Figure 3.10. For the detailed

description of the algorithm selecting the optimal refinement, please refer to [40].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.2. 3D Example 60

Figure 3.10: The sequence of coarse, fine and optimal grids generated by the self-adaptive hp-FEM algorithm.

Figure 3.11: Exemplary resulting potential at the receiver electrode for a single position of a logging tool for 60

degrees deviated well.

The original mesh adaptation algorithm from hp3d code stopped after executing several h refinements due to

adaptation deadlock. In order to analyze the problem, the graph grammar model of the adaptation algorithm was

constructed, as summarized in Figure 2.11. Afterwards, the hierarchical Petri net model was constructed, based on

the nets presented in Figures 2.20-2.25, according to Algorithm 2.2.2. The hierarchical Petri net detected a deadlock

scenario, meaning the adaptation algorithm from [11] needed corrections. To this end, the graph grammar was

extended with additional productions presented in Figure 2.28. Subsequently, the hierarchical Petri net based on

the augmented nets presented in Figures 2.29-2.34, reflecting the extended graph grammar model, was constructed

according to Algorithm 2.2.2. The new hierarchical Petri net was live (no dead state was possible), which allowed

to correct the original adaptation algorithm from hp3d and to overcome the deadlock problem and complete the

computation process.

The problem of propagation of electromagnetic waves has been solved for a sequence of positions correspon-

ding to different locations of the logging tool moving along the borehole, for axial-symmetric as well as 30 and

60 degrees deviated well. The exemplary resulting potential at the receiver electrode for a single position of the

tool is presented in Figure 3.11. In this picture a 2D vertical cross-section of the 3D mesh was considered. The

cross-section is going through the borehole with receiver electrodes.

The resulting logging curves for different dip angles and different kind of antennas are presented in Figures

3.12-3.14.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.2. 3D Example 61

Figure 3.12: Logging curves for different antennas for axial-symmetric case.

Figure 3.13: Logging curves for different antennas for 30 degrees deviated well case.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

3.2. 3D Example 62

Figure 3.14: Logging curves for different antennas for 60 degrees deviated well case.

From the physical point of view, the following can be observed:

– For the axisymmetric case (Figure 3.12), a response independent of the type of antenna is obtained, as

physically expected;

– As the dip angle increases (Figures 3.13 and 3.14), the effect of the antenna becomes noticeable, the “one-

patch antenna” being the one that is more sensitive to variations in the formation resistivity.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Chapter 4
Conclusions and future remarks

This thesis introduced a Petri net model for two- and three-dimensional anisotropic mesh adaptation algorithms.

The two-dimensional model was based on the adaptive algorithm as implemented in hp2d code, described in

[10]. Similarly, the three-dimensional model was based on the adaptive algorithm as implemented in hp3d code,

described in [11]. Both two- and three-dimensional models were based on a set of graph transformations, called

graph grammar productions, that described the mesh transformations performed by adaptive algorithms from hp2d

and hp3d codes, respectively. The Petri net model allowed to analyze the correctness of the mesh adaptation

algorithms.

The Petri net model presented in this thesis allowed to detect potential deadlocks that may happen for specific

configurations of mesh refinements in both two- and three-dimensional models. The possibility of deadlock was

proved by providing a sequence of fired transitions (executed graph grammar productions) leading to a dead state

of the hierarchical Petri net subpage. PIPE software was used to execute the simulation of the part of the Petri net

model.

The deadlock problems were overcome by introducing some additional graph grammar productions, that al-

lowed for an upgrade of some previous anisotropic mesh refinements to new isotropic ones. The enhanced graph

grammar model expressing the new transformations was analyzed again by using the Petri net model. The re-

achability graph was constructed in PIPE tool, and the automatic analysis showed that the enhanced model was

deadlock-free. This in turn allowed for modification of both hp2d and hp3d codes so they became deadlock-free.

The model described in this thesis was successfully employed to remove the deadlock from mesh adaptation

algorithms applied for solution of two challenging engineering problems. The first one was the two-dimensional

simulation of the magnetotelluric measurements performed in order to identify oil and gas location in the ground.

The second one was three-dimensional direct current borehole resistivity measurement simulations in deviated

wells, also performed in order to find carbohydrants bearing formations. These problems are of great importance

to the geophysical community.

An obvious direction for future research in this field is modeling other shapes of computational meshes, for

which anisotropic adaptation may lead to deadlock scenarios, e.g. two-dimensional meshes with triangular ele-

ments, two-dimensional meshes with mixed rectangular and triangular elements, two-dimensional unstructured

grids, three-dimensional meshes with mixed tetrahedral elements or three-dimensional meshes with mixed tetra-

hedral, hexehedral, prism and pyramid elements.

63

Appendix A
Exemaplary analysis of Petri nets modeling

2D finite element method

The appendix presents exemplary analysis with two Petri nets. The first one concerns the “vertical” pair of elements

subject to mesh refinements as expressed by the hp2d algorithm [10]. This analysis leads to a dead state. The

particular steps are presented in Figures A.1-A.9. The second one concerns the “vertical” pair of elements subject

to mesh refinements as expressed by the corrected mesh adaptation algorithm, deadlock-free. The particular steps

are presented in Figures A.10-A.20.

64

65

Figure A.1: Deadlock detection. The initial state

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

66

Figure A.2: Deadlock detection. Stage 1

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

67

Figure A.3: Deadlock detection. Stage 2

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

68

Figure A.4: Deadlock detection. Stage 3

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

69

Figure A.5: Deadlock detection. Stage 4

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

70

Figure A.6: Deadlock detection. Stage 5

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

71

Figure A.7: Deadlock detection. Stage 6

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

72

Figure A.8: Deadlock detection. Stage 7

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

73

Figure A.9: Deadlock detection. Stage 8

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

74

Figure A.10: Deadlock-free case. The initial state

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

75

Figure A.11: Deadlock-free case. Stage 1

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

76

Figure A.12: Deadlock-free case. Stage 2

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

77

Figure A.13: Deadlock-free case. Stage 3

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

78

Figure A.14: Deadlock-free case. Stage 4

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

79

Figure A.15: Deadlock-free case. Stage 5

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

80

Figure A.16: Deadlock-free case. Stage 6

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

81

Figure A.17: Deadlock-free case. Stage 7

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

82

Figure A.18: Deadlock-free case. Stage 8

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

83

Figure A.19: Deadlock-free case. Stage 9

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

84

Figure A.20: Deadlock-free case. Stage 10

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Appendix B
Introduction to hp adaptive Finite Element

Method

This appendix introduces the hp-adaptive Finite Element Method (hp-FEM), the numerical method for solving

Partial Differential Equations (PDE) in variational form. The method starts with either two-dimensional [10] or

three-dimensional [11] boundary-value elliptic PDE transformed into so-called weak (variational) formulation of

the form (B.1): Find u ∈ V such that

b (u, v) = l (v) ∀v ∈ V (B.1)

where b (u, v) and l (v) are some problem dependent bilinear and linear functionals, and

V = {v :

∫
Ω

‖v‖2 + ‖∇v‖2dx <∞, tr (v) = 0 on ΓD} (B.2)

is the functional Sobolev space over an open set Ω called the domain, and ΓD is the part of boundary of Ω where

Dirichlet boundary conditions are defined.

For a given domain Ω the hp-FEM consists in constructing a finite-dimensional subspace Vhp ⊂ V with a finite-

dimensional polynomial basis {eihp}i=1,...,Nhp
. The subspace Vhp is constructed by partitioning the domain Ω into

so-called finite elements. Considerations in this thesis are restricted to rectangular elements in two dimensions

or hexahedral elements in three dimensions. The basis functions are constructed by gluing together the so-called

shape functions constructed over vertices, edges, and interiors of finite elements in two dimensions, or over vertices,

edges, faces, and interiors of finite elements in three dimensions.

B.1. Two dimensional rectangular finite element

Figure B.1 presents an exemplary two-dimensional mesh consisting of rectangular finite elements with vertices,

edges and interiors. Figure B.2 presents shape functions defined over vertices, edges and interiors of rectangular

finite elements of the mesh. Let us introduce four shape functions over the four vertices of the two dimensional

rectangular element {(ξ1, ξ2) : ξi ∈ [0, 1], i = 1, 2}:

φ̂1(ξ1, ξ2) = χ̂1(ξ1)χ̂1(ξ2)

φ̂2(ξ1, ξ2) = χ̂2(ξ1)χ̂1(ξ2)

φ̂3(ξ1, ξ2) = χ̂2(ξ1)χ̂2(ξ2)

φ̂4(ξ1, ξ2) = χ̂1(ξ1)χ̂2(ξ2) (B.3)

85

B.1. Two dimensional rectangular finite element 86

Figure B.1: A mesh with rectangular finite elements.

Figure B.2: Shape functions defined over vertices, edges and interiors of two-dimensional mesh with rectangular

finite elements.

pi − 1 shape functions over each of the four edges of the element

φ̂5,j(ξ1, ξ2) = χ̂2+j(ξ1)χ̂1(ξ2) j = 1, ..., p1 − 1

φ̂6,j(ξ1, ξ2) = χ̂2(ξ1)χ̂2+j(ξ2) j = 1, ..., p2 − 1

φ̂7,j(ξ1, ξ2) = χ̂2+j(ξ1)χ̂2(ξ2) j = 1, ..., p3 − 1

φ̂8,j(ξ1, ξ2) = χ̂1(ξ1)χ̂2+j(ξ2) j = 1, ..., p4 − 1 (B.4)

where pi is the polynomial order of approximation utilized over the i-th edge, and (ph − 1) × (pv − 1) shape

functions over an element interior

φ̂9,ij(ξ1, ξ2) = χ̂2+i(ξ1)χ̂2+j(ξ2) i = 1, ..., ph − 1, j = 1, ..., pv − 1 (B.5)

where (ph, pv) are the horizontal and vertical polynomial orders of approximation utilized over an element interior,

and

χ̂1(ξ) = 1− ξ

χ̂2(ξ) = ξ

χ̂l(ξ) = (1− ξ)ξ(2ξ − 1)l−3, l = 4, ..., p+ 1 (B.6)

where p is the polynomial order of approximation over an edge. The above shape functions defined over element

vertices, edges and interior are glued together for adjacent elements in order to form a global basis functions. These

basis functions are utilized to approximate a solution of the weak form of the PDE being solved. For more details

please refer to [10].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

B.2. Three dimensional rectangular finite element 87

B.2. Three dimensional rectangular finite element

The three dimensional hexahedral finite element {(ξ1, ξ2, ξ3) : ξi ∈ [0, 1], i = 1, 3} is defined with eight shape

functions over the eight vertices of the element:

φ̂1(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂1(ξ3)

φ̂2(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂1(ξ3)

φ̂3(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂1(ξ3)

φ̂4(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂1(ξ3)

φ̂5(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂2(ξ3)

φ̂6(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂2(ξ3)

φ̂7(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂2(ξ3)

φ̂8(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂2(ξ3) (B.7)

pi − 1 shape functions over each of the twelve edges of the element

φ̂9,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂1(ξ3) j = 1, ..., p1 − 1

φ̂10,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂1(ξ3) j = 1, ..., p2 − 1

φ̂11,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂1(ξ3) j = 1, ..., p3 − 1

φ̂12,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂1(ξ3) j = 1, ..., p4 − 1

φ̂13,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂2(ξ3) j = 1, ..., p5 − 1

φ̂14,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂2(ξ3) j = 1, ..., p6 − 1

φ̂15,j(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂2(ξ3) j = 1, ..., p7 − 1

φ̂16,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂2(ξ3) j = 1, ..., p8 − 1

φ̂17,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂1(ξ2)χ̂2+j(ξ3) j = 1, ..., p9 − 1

φ̂18,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂1(ξ2)χ̂2+j(ξ3) j = 1, ..., p10 − 1

φ̂19,j(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2(ξ2)χ̂2+j(ξ3) j = 1, ..., p11 − 1

φ̂20,j(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2(ξ2)χ̂2+j(ξ3) j = 1, ..., p12 − 1 (B.8)

where pi is the polynomial order of approximation utilized over the i-th edge. Let us also define (pih−1)×(piv−1)

shape functions over each of six faces of the finite element

φ̂21(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂1(ξ3) j = 1, ..., p13h − 1, k = 1, ..., p13v − 1

φ̂22(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2+k(ξ2)χ̂2(ξ3) j = 1, ..., p14h − 1, k = 1, ..., p14v − 1

φ̂23(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂1(ξ2)χ̂2+k(ξ3) j = 1, ..., p15h − 1, k = 1, ..., p15v − 1

φ̂24(ξ1, ξ2, ξ3) = χ̂2(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) j = 1, ..., p16h − 1, k = 1, ..., p16v − 1

φ̂25(ξ1, ξ2, ξ3) = χ̂2+j(ξ1)χ̂2(ξ2)χ̂2+k(ξ3) j = 1, ..., p17h − 1, k = 1, ..., p17v − 1

φ̂26(ξ1, ξ2, ξ3) = χ̂1(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) j = 1, ..., p18h − 1, k = 1, ..., p18v − 1 (B.9)

where pih, piv are the polynomial orders of approximations in two directions in the i-th face local coordinates

system. Finally, let us define (px − 1)× (py − 1)× (pz − 1) basis functions over an element interior

φ̂27,ij(ξ1, ξ2) = χ̂2+i(ξ1)χ̂2+j(ξ2)χ̂2+k(ξ3) i = 1, ..., px − 1, j = 1, ..., py − 1, k = 1, ..., pz − 1 (B.10)

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

B.2. Three dimensional rectangular finite element 88

where (px, py, pz) are the polynomial orders of approximation in three directions, respectively, utilized over an

element interior. The above shape functions defined over element vertices, edges, faces, and interior are glued

together for adjacent elements in order to form a global basis functions. These basis functions are utilized to

approximate a solution of the weak form of the PDE being solved. For more details please refer to [11].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Appendix C
Basic Definitions of Petri nets

All definitions in this Appendix are taken from [58].

C.1. Simple Petri net

Definition C.1.1. A Petri net is a 5-tuple N = (P, T, F,W,M0) where:

– P and T are disjoint finite sets of places and transitions, respectively;

– F ⊂ (P × T) ∪ (T × P) is a set of arcs (or flow relations);

– W : F −→ Z is an arc multiset, so that the count (or weight) for each arc is a measure of the arc

multiplicity;

– M0 : P −→ Z is a place multiset, where Z is a countable set. It is commonly described with reference to

Petri net diagrams as initial marking.

The preset of a transition t is the set of its input places: •t = {s ∈ S |W (s, t) > 0}; its postset is the set of its

output places: t• = {s ∈ S |W (t, s) > 0}. Definitions of pre- and postsets of places are analogous.

Firing a transition t in a marking M consumes W (s, t) tokens from each of its input places s, and produces

W (t, s) tokens in each of its output places s.

A transition is enabled (it may fire) in M if there are enough tokens in its input places for the consumptions to

be possible, i.e. iff ∀s : M(s) ≥W (s, t).

C.2. Hierarchical Petri net

For a variable v, θ(v) denotes type of v, i. e. the set of all possible values of v.

For an expression x, Ω(x) denotes the set of all variables in x, and θ(x) denotes type of x, i. e. the set of all

possible values that can result from evaluation of x.

For a set of variables V , the type of V is defined as θ(V) = {θ(v) : v ∈ V }.
Bool denotes the set of boolean values ({false, true}).
For an arc a, P (a) denotes the place node of a, and T (a) denotes the transition node of a.

89

C.2. Hierarchical Petri net 90

Definition C.2.1. Colored Petri net is a tuple N = (Σ, P, T,A, γ, C,G,E,M0) where:

– Σ is a non-empty finite set of types (colors), whereof each is a non-empty set;

– P is a non-empty finite set of places;

– T is a non-empty finite set of transitions;

– A is a non-empty finite set of arcs, and P ∩ T = P ∩A = T ∩A = ∅;

– γ : A −→ (P × T) ∪ (T × P) is a function associating each arc with an ordered pair of nodes (places and

transitions);

– C : P −→ Σ is a function associating each place with a set of token types (colors) allowed for given place;

– G is a function associating each transition with a guard expression such that ∀t ∈ T : θ(G(t)) ⊆ Bool ∧
θ(Ω(G(t))) ⊆ Σ;

– E is a function associating each arc with its weight such that ∀a ∈ A : θ(E(a)) ⊆ 2C(P (a))∗ ∧
θ(Ω(E(a))) ⊆ Σ;

– M0 is an initial marking such that ∀p ∈ P : M0(p) ∈ 2C(p)∗ .

For a transition t, In(t) denotes a set of places input to t and Out(t) denotes a set of places output to t.

Transition substitution is a method of constructing a hierarchical Petri net by substituting a transition with

another (flat or hierarchical) Petri net called sub-page.

Places in the super-page connected to the substituted transition with arcs are called sockets. For given substi-

tuted transition t, place p is called input socket if p ∈ In(t), or p is called output socket if p ∈ Out(t).

Sub-page places bound to super-page sockets are called ports. Each port may have one of the following types:

input port (In), output port (Out), input-output port (I/O) or general port (Gen).

Place fusion is a set of indistinguishible places, i. e. all places belonging to the same fusion must have the same

type and the same marking at any state of the Petri net. There are three types of place fusions:

– Global fusion (FG) - places belonging to such fusion may come from different pages;

– Page fusion (FP) - places belonging to such fusion may come from different instances of the same page in

the entire Petri net;

– Instance fusion (FI) - places belonging to such fusion must come from the same page instance.

Definition C.2.2. Hierarchical colored Petri net is a tuple N = (S, SN, SA, PN,PT, PA, FS, FT, PP) where:

– S is a set of pages, whereof each is a colored non-hierarchical Petri net and elements of PS , TS and AS for

each pair of pages are disjoint;

– SN ⊆ T is a set of substituted transitions;

– SA is a function associating each substituted transition with its sub-page such that no page is its own sub-

page;

– PN ⊆ P is a set of ports;

– PT is a function associating each port with its type (In, Out, I/O, Gen);

– PA is a function associating each substituted transition with a two-argument relation such that:

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

C.2. Hierarchical Petri net 91

– sockets are bound to ports, i. e. ∀t ∈ SN : PA(t) ⊆ (In(t) ∪ Out(t)) × PNSA(t), where PNSA(t)

denotes ports on t’s immediate sub-page;

– corresponding sockets and ports have the same type, while general ports (type Gen) can be bound to

sockets of any type;

– bound places (sockets and ports) have the same type and initial marking.

– FS ⊆ 2P is a finite set of place fusions such that places belonging to the same fusion must have the same

type and initial marking;

– FT is a function associating each place fusion with its type (FG,FP, FI);

– PP is a multiset of main pages.

For additional definitions and explanations related to Petri nets please refer to [58].

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

List of figures

1.1 1-irregularity rule: a finite element can be broken only once without breaking the adjacent large

elements. 11

1.2 1-irregularity rule: approximation over the common edge is constrained by the big element. 11

1.3 Two adjacent elements, one broken into eight son elements. 11

1.4 The forbidden state with double constrained nodes. 12

1.5 Breaking large adjacent element followed by breaking one of the small elements. No double con-

strained nodes. 12

1.6 A first deadlock scenario. 13

1.7 A second deadlock scenario. 13

1.8 A third deadlock scenario. 14

2.1 Graph grammar modeling the two-dimensional mesh adaptation according to hp2d. 19

2.2 1-irregularity rule configurations . 20

2.3 Double refinement propagations . 21

2.4 Double propagations to half-element . 22

2.5 Hierarchical Petri net subpage for pair of mesh elements adjacent along X axis. 23

2.6 Hierarchical Petri net subpage for pair of mesh elements adjacent along Y axis. 24

2.7 Main page of hierarchical Petri net for four finite element mesh 25

2.8 New productions in the enhanced graph grammar . 26

2.9 Petri net subpage for mesh element pair adjacent along X axis and the enhanced grammar 27

2.10 Petri net subpage for mesh element pair adjacent along Y axis and the enhanced grammar 28

2.11 Graph grammar productions for the mesh refinements process as implemented in hp3d code. . . . 30

2.12 Cases 1-8 of propagation of h refinement onto adjacent element. 31

2.13 Cases 9-12 of propagation of h refinement onto adjacent element. 31

2.14 Cases 13-20 of propagation of h refinement onto adjacent element. 32

2.15 Cases 21-24 of propagation of h refinement onto adjacent element. 32

2.16 Cases 25-32 of propagation of h refinement onto adjacent element. 33

2.17 Cases 33-36 of propagation of h refinement onto adjacent element. 33

2.18 Cases 37-44 of propagation of h refinement onto adjacent element. 34

2.19 Cases 45-48 of propagation of h refinement onto adjacent element. 34

2.20 First part of the hierarchical Petri net subpage with deadlock for finite elements adjacent along X

axis. 36

92

LIST OF FIGURES 93

2.21 Second part of the hierarchical Petri net subpage with deadlock for finite elements adjacent along

X axis. 37

2.22 The hierarchical Petri net subpage with deadlock for finite elements adjacent along Y axis. 38

2.23 The hierarchical Petri net subpage with deadlock for finite elements adjacent along Z axis. 39

2.24 First part of the hierarchical Petri net subpage with deadlock for finite elements adjacent by edge. . 40

2.25 Second part of the hierarchical Petri net subpage with deadlock for finite elements adjacent by edge. 41

2.26 Exemplary eight finite element mesh. 43

2.27 The main page of the hierarchical Petri net for the eight element mesh example. 44

2.28 Additional graph grammar productions to eliminate the deadlock problem. 45

2.29 First part of deadlock-free hierarchical Petri net subpage for finite elements adjacent along X axis. 47

2.30 Second part of deadlock-free hierarchical Petri net subpage for finite elements adjacent alongX axis. 48

2.31 Deadlock-free hierarchical Petri net subpage for finite elements adjacent along Y axis. 49

2.32 Deadlock-free hierarchical Petri net subpage for finite elements adjacent along Z axis. 50

2.33 First part of deadlock-free hierarchical Petri net subpage for finite elements adjacent by edge. . . . 51

2.34 Second part of deadlock-free hierarchical Petri net subpage for finite elements adjacent by edge. . 52

3.1 Geometry for the magnetolluric problem being solved . 54

3.2 Convergence history for hp-adaptive finite element method simulations with the deadlock problem 55

3.3 Solution over the mesh with 0.03% accuracy where the deadlock problem occured 55

3.4 Global view on the hp-refined mesh with deadlock . 56

3.5 Amplification with the factor of 100 towards the deadlock area 56

3.6 Global view of the final hp-refined mesh without deadlock . 57

3.7 Solution over the final mesh with 0.001% accuracy . 57

3.8 The geometry of antennas. 58

3.9 The conductivities of the borehole, mandrel and formation layers in cylindrical coordinates. 59

3.10 The sequence of coarse, fine and optimal grids generated by the self-adaptive hp-FEM algorithm. . 60

3.11 Exemplary resulting potential at the receiver electrode for a single position of a logging tool for 60

degrees deviated well. 60

3.12 Logging curves for different antennas for axial-symmetric case. 61

3.13 Logging curves for different antennas for 30 degrees deviated well case. 61

3.14 Logging curves for different antennas for 60 degrees deviated well case. 62

A.1 Deadlock detection. The initial state . 65

A.2 Deadlock detection. Stage 1 . 66

A.3 Deadlock detection. Stage 2 . 67

A.4 Deadlock detection. Stage 3 . 68

A.5 Deadlock detection. Stage 4 . 69

A.6 Deadlock detection. Stage 5 . 70

A.7 Deadlock detection. Stage 6 . 71

A.8 Deadlock detection. Stage 7 . 72

A.9 Deadlock detection. Stage 8 . 73

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

LIST OF FIGURES 94

A.10 Deadlock-free case. The initial state . 74

A.11 Deadlock-free case. Stage 1 . 75

A.12 Deadlock-free case. Stage 2 . 76

A.13 Deadlock-free case. Stage 3 . 77

A.14 Deadlock-free case. Stage 4 . 78

A.15 Deadlock-free case. Stage 5 . 79

A.16 Deadlock-free case. Stage 6 . 80

A.17 Deadlock-free case. Stage 7 . 81

A.18 Deadlock-free case. Stage 8 . 82

A.19 Deadlock-free case. Stage 9 . 83

A.20 Deadlock-free case. Stage 10 . 84

B.1 A mesh with rectangular finite elements. 86

B.2 Shape functions defined over vertices, edges and interiors of two-dimensional mesh with rectangu-

lar finite elements. 86

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

Bibliography

[1] Alvarez-Aramberria, J.—Pardo, D.—Barucq, H.: Inversion of Magnetotelluric Measurements using Multi-

goal Oriented hp-Adaptivity, Procedia Computer Science, Vol. 18, 2013, pp. 1564-1573.

[2] Banaś, K.—Michalik, K.: Design and development of an adaptive mesh manipulation module for detailed

FEM simulation of flows. Procedia Computer Science, Vol. 1, 2010, No. 1, pp. 2043-2051.

[3] Bao, G.—Hu, G.—Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structu-

res. Journal of Computational Physics, Vol. 231, 2012, No.14, pp. 4967–4979.

[4] Babuška, I.—Rheinboldt, W.: Error Estimates for Adaptive Finite Element Computations. SIAM Journal of

Numerical Analysis, Vol.15, 1978, No.4, pp. 736–754.

[5] Banaś K.:A Model for Parallel Adaptive Finite Element Software. Proceedings of 15th International Confe-

rence on Domain Decomposition Methods, Freie Universitat Berlin, 2003.

[6] Beal M. W., Shephard M. S., A General Topology-Based Mesh Data Structure, International Journal for

Numerical Methods in Engineering, 40 (1997) 1573-1596

[7] Becker, R.—Kapp, H.—Rannacher, R.: Adaptive Finite Element Methods for Optimal Control of Partial

Differential Equations: Basic Concept. SIAM Journal on Control and Optimisation, Vol. 39, 2000, No.1, pp.

113–132.

[8] Belytschko, T.—Tabbar, M.: H-Adaptive finite element methods for dynamic problems, with emphasis on

localization. International Journal for Numerical Methods in Engineering, Vol. 36, 1993, No. 24, pp. 4245–

4265.

[9] Chung, E.—Kimber, T.—Kirby, B.—Master, T.—Worthington, M.—Knottenbelt, W.: Petri nets group project

final report, http://pipe2.sourceforge.net/documents/PIPE2 Final Report.pdf

[10] Demkowicz, L., 2006: Computing with hp-Adaptive Finite Elements, Vol. I. Frontiers: Three Dimensional El-

liptic and Maxwell Problems with Applications. Chapman and Hall/Crc Applied Mathematics and Nonlinear

Science, 2006.

[11] Demkowicz, L.—Kurtz, J.—Pardo, D.—Paszyński M.—Rachowicz, W.—Zdunek A.: Computing with hp-

Adaptive Finite Elements, Vol. II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Appli-

cations. Chapman and Hall/Crc Applied Mathematics and Nonlinear Science, 2007.

[12] Demkowicz, L.—Pardo, D.—Rachowicz, W.: 3D hp-Adaptive Finite Element Package (3Dhp90) Version

2.0. The Ultimate Data Structure for Three-Dimensional Anisotropic hp-Refinements. TICAM Report 02-

24, 2002.

[13] Demkowicz, L.—Rachowicz, W.—Devloo, P.: A Fully Automatic hp-Adaptivity. Journal of Scientific Com-

puting, Vol. 17, 2001, No. 1-3, pp. 127-155.

95

BIBLIOGRAPHY 96

[14] Devine, K. D.—Flaherty, J. E.: Parallel Adaptive hp-Refinement Techniques for Conservation Laws. Applied

Numerical Mathematics, Vol. 20, 1996, pp. 367-386.

[15] Edwards, H. C.: A Parallel Infrastructure for Scalable Adaptive Finite Element Methods and its application

to Least Squares C-infinity Collocation. PhD. Dissertation, The University of Texas at Austin, 1997.

[16] Edwards, H. C.: SIERRA Framework Version 3: Core Services Theory and Design. SAND2002-3616, Albu-

querque, NM: Sandia National Laboratories, 2002.

[17] Edwards ,H. C.—Stewart, J. R.: SIERRA, A Software Environment for Developing Complex Multiphysics

Applications. Computational Fluid and Solid Mechanics, Proc. First MIT Conf. Cambridge MA, 2001.

[18] Edwards, H. C.—Stewart, J. R.—Zepper J. D.: Mathematical Abstractions of the SIERRA Computational

Mechanics Framework. Proceedings of the Fifth World Congress on Computational Mechanics, Vienna Au-

stria, 2002.

[19] Errikson, K.—Johnson, C.: Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model

Problem. SIAM Journal on Numerical Analysis, Vol. 28, 1991, No.1, pp. 43–77.

[20] Flasiński M., Schaefer R., Quasi context sensitive graph grammars as a formal model of FE mesh generation,

Computer-Assisted Mechanics and Engineering Science, 3 (1996) 191-203

[21] Gawad J., Paszyński M., Matuszyk P., Madej L., Cellular automata coupled with hp-adaptive Finite Ele-

ment Method applied to simulation of austenite-ferrite phase transformation with a moving interface, Steel

Research, ISSN 1611-3683, 79 (2008) 579-586.

[22] Gomez-Revuelto, I.—Garcia-Castillo, L. E.—Llorente-Romano, S.,—Pardo, D.: A three-dimensional self-

adaptive hp finite element method for the characterization of waveguide discontinuities. Computer Methods

in Applied Mechanics and Engineering, Vol. 249-252, 2012, pp.62-74.

[23] Gurgul, P.—Sieniek, M.—Paszyński, M.—Madej, L.—Collier, N.: Two-dimensional HP-adaptive Algorithm

for Continuous Approximations of Material Data Using Space Projection. Computer Science, Vol. 14, 2013,

No.1.,pp.97–112.

[24] Grabska E., Theoretical Concepts of Graphical Modeling. Part One: Realization of CP-Graphs. Machine

Graphics and Vision 2, 1 (1993) 3-38

[25] Grabska E., Theoretical Concepts of Graphical Modeling. Part Two: CP-Graph Grammars and Languages.

Machine Graphics and Vision 2, 2 (1993) 149-178

[26] Grabska E., Graphs and Designing, Graph Transformation in Computer Science, H.J. Schneider and H.Ehrig

(Eds.), Lecture Notes in Computer Science, Springer-Verlag, 776, 1994.

[27] Grabska E, Hliniak G., Structural Aspects of CP-Graph Languages. Schedae Informaticae 5 (1993) 81-100

[28] Habel A, Hyperedge Replacement: Grammars and Languages, Lectures Notes in Computer Science, 643,

Springer, 1992.

[29] Kardani, M.—Nazem, M.—Abbo, A.—Sheng, D.—Sloan, S.: Refined h-adaptive finite element procedure

for large deformation geotechnical problems. Computational Mechanics, Vol.49, 2012, No.1, pp.21–33.

[30] Kyoungjoo K.: Finite Element Modeling of Electromagnetic Radiation and Induced Heat Transfer in Human

Body. PhD Thesis, The University of Texas at Austin, 2013.

[31] Laszloffy, A.—Long, J.—Patra, A. K.: Simple data management, scheduling and solution strategies for ma-

naging the irregularities in parallel adaptive hp finite element simulations. Parallel Computing, Vol. 26, 2000,

pp.1765-1788.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

BIBLIOGRAPHY 97

[32] Nam, M.J.—Pardo, D.—Torres-Verdin, C. :Simulation of borehole-eccentered triaxial induction measure-

ments using a Fourier hp finite element method. Geophysics, Vol. 78, 2013, No. 2, pp. D41-D52.

[33] Niemi, A.—Babuška, I.—Pitkäranta, J.—Demkowicz, L.: Finite element analysis of the Girkmann problem

using the modern hp-version and the classical h-version. Engineering with Computers, Vol. 28, 2012, No.2,

pp.123–134.

[34] Nochetto, R. H.—Siebert, K. G.—Veeser, A.: Multiscale, Nonlinear and Adaptive Approximation. Springer,

2009, pp. 409–542.

[35] Pardo, D.—Torres-Verdin, C.: Sensitivity analysis for the appraisal of hydrofractures in horizontal wells with

borehole resistivity measurements. Geophysics, Vol. 78, 2013, No. 4, pp. D209-D222.

[36] Pardo D., Demkowicz L., Torres-Verdin C., Paszyński M., A Goal Oriented hp-Adaptive Finite Element Stra-

tegy with Electromagnetic Applications. Part II: Electrodynamics. Computer Methods in Applied Mechanics

and Engineering, special issue in honor of Prof. Ivo Babuška, 196 (2007) 3585-3597.

[37] Pardo D., Torres-Verdin C., Paszyński M., Simulation of 3D DC Borehole Resistivity Measurements with a

Goal-Oriented hp Finite Element Method. Part II: Through-Casing Resistivity Instruments, Computational

Geophysics, 12 (2008) 83-89.

[38] Pardo, D.—Demkowicz, L.—Torres-Verdín, C.—Paszynski, M.: A self-adaptive goal-oriented hp-finite ele-

ment method with electromagnetic applications. Part II: Electrodynamics. Computer Methods in Applied

Mechanics and Engineering, Vol. 196, 2007, No. 37, pp. 3585–3597.

[39] Pardo, D.—Demkowicz, L.—Torres-Verdín, C.—Paszynski, M.:Two-Dimensional High-Accuracy Simula-

tion of Resistivity Logging-While-Drilling (LWD) Measurements Using a Self-Adaptive Goal-Oriented hp

Finite Element Method. SIAM Journal on Applied Mathematics, Vol. 66, 2006, No.6, pp. 2085–2106.

[40] Pardo, D.—Torres-Verdín, C.—Paszynski, M.: Simulations of 3D DC borehole resistivity measurements with

a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments. Computational Geo-

sciences, Vol. 12, 2008, No. 1, pp.83–89.

[41] Paszynska, A.—Grabska, E.—Paszynski, M.: A Graph Grammar Model of the hp Adaptive Three Dimensio-

nal Finite Element Method. Part I. Fundamenta Informaticae, Vol. 114, 2012, No. 2, pp.149–182.

[42] Paszynska, A.—Grabska, E.—Paszynski, M.: A Graph Grammar Model of the hp Adaptive Three Dimensio-

nal Finite Element Method. Part II. Fundamenta Informaticae, Vol. 114, 2012, No. 2, pp.183–201.

[43] Paszynska, A.—Paszynski, M.—Grabska, E.: Graph Transformations for Modeling hp-Adaptive Finite Ele-

ment Method with Mixed Triangular and Rectangular Elements. Lecture Notes in Computer Science, Vol.

5545, 2009, pp.875-884.

[44] Paszynska, A.—Paszynski, M.—Grabska, E.: Graph Transformations for Modeling hp-Adaptive Finite Ele-

ment Method with Triangular Elements. Lecture Notes in Computer Science, Vol. 5103, 2008, pp.604–613.

[45] Paszynska, A.—Paszynski, M.—Szymczak, A.—Pardo, D.: Petri Nets for Detecting a 3D Deadlock Problem

in Hp-adaptive Finite Element Simulations. Procedia Computer Science, Vol. 9, 2012, pp. 1434-1443.

[46] Paszyński M., Demkowicz L., Pardo D., Verification of Goal-Oriented hp-Adaptivity, Computers and Mathe-

matics with Applications, 50, 8-9 (2005) 1395-1404.

[47] Paszyński, M.—Demkowicz, L.: Parallel Fully Automatic hp-Adaptive 3D Finite Element Package. Engine-

ering with Computers, Vol. 22, 2006, pp.255-276.

[48] Paszyński M., Kurtz J., Demkowicz L.,: Parallel Fully Automatic hp-Adaptive 2D Finite Element Package,

Computer Methods in Applied Mechanics and Engineering, 195, 7-8 (2006) 711-741.

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

BIBLIOGRAPHY 98

[49] Paszyński M., Maciol P.: Application of the Fully Automatic 3D hp Adaptive Code to Orthotropic Heat

Transfer in Structurally Graded Materials, Journal of Material Processing Technology, 177, 1-3 (2006) 68-

71.

[50] Paszyński M., Romkes A., Collister E., Meiring J., Demkowicz L., Willson, C. G.: On the Modeling of Step-

and-Flash Imprint Lithography using Molecular Statics Models, ICES Report 05-38 (2005).

[51] Patra A. K.: Parallel HP Adaptive Finite Element Analysis for Viscous Incompressible Fluid Problems. PhD.

Dissertation, University of Texas at Austin, 1999.

[52] Patro, S. K.—Selvam, P. R.—Bosch, H.: Adaptive h-finite element modeling of wind flow around bridges.

Engineering Structures, Vol. 48, 2013, pp. 569–577.

[53] Plazek, J.: Implementation Issues of Computational Fluid Dynamics Algorithms on Parallel Computers. Lec-

ture Notes in Computer Science, Vol. 1697, 1999, pp.349-355.

[54] Plazek, J.: Scalable CFD Computations Using Message-Passing and Distributed Shared Memory Algorithms.

Lecture Notes in Computer Science, Vol. 1908, 2000, pp.282-288.

[55] Plazek, J.–Banaś, K.—Kitowski, J.: Comparison of Message Passing and Shared Memory Implementations

of the GMRES method on MIMD computers, Scientific Programming, Vol. 9, 2001, pp.195-209.

[56] Remacle, J. F.—Xiangrong, L.—Shephard, M.S.—Flaherty J.E.: Anisotropic Adaptive Simulations of Tran-

sient Flows using Discontinuous Galerkin Methods. International Journal of Numerical Methods in Engine-

ering, Vol. 00, 2000, pp. 1-6

[57] Spicher A., Michel O., Giavitto J.: Declarative Mesh Subdivision Using Topological Rewriting in MGS,

International Conference on Graph Transformation, Enschede, The Netherlands, September 2010, Lecture

Notes in Computer Science 6372 (2010) 298-313.

[58] Szpyrka, M.: Petri nets for modeling and analysis of concurrent systems, Wydawnictwa Naukowo-

Techniczne, Warsaw, Poland, 2008.

[59] Szymczak, A.—Paszynska, A.—Paszynski, M.—Pardo, D.: Anisotropic 2D mesh adaptation in hp-adaptive

Finite Element Method. Procedia Computer Science, Vol. 4, 2011, pp.1818–1827.

[60] Szymczak, A.—Paszynska, A.—Paszynski, M.—Pardo, D.: Preventing deadlock during anisotropic 2D mesh

adaptation in hp-adaptive FEM. Journal of Computational Science, Vol. 4, 2013, No. 3, pp.170–179.

[61] Szymczak A., Paszyński M.: Grach grammar based model of concurrency for self-adaptive hp Finite Element

Method, Lecture Notes in Computer Science, vol. 6067, 2010, 95-104.

[62] Szymczak, A.—Paszynski, M.—Pardo, D., A.—Paszynska: Petri Nets modeling of dead-end refinement pro-

blems in a 3D anisotropic hp-adaptive finite element method, accepted to Computing and Informatics, 2014.

[63] Zoltan: Parallel Partitioning, Load Balancing and Data-Management Services,

http://www.cs.sandia.gov/zoltan/

A. Szymczak Petri nets controlled concurrent adaptive solvers for engineering problems

