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1 MOTIVATION  

1.1 MAIN THESIS OF THIS BOOK  

The main thesis of this work may be summarized as follows:  

'It is possible to develop adaptive algorithms for solving difficult multi-scale problems that 

allow for accurate representation of the material data resulting from MRI scans, delivering 

exponential convergence of the numerical error with respect to the problem size, resulting in 

linear computational cost.' 

1.2 STATE OF THE ART  

1.2.1 D IGIT AL MATERI AL R EP R ES ENT ATIO N  

Digital material representation utilizes generic bitmaps for representation of e.g. 

morphology of the material during finite element (FE) analysis of material behavior 

under deformation and exploitation conditions [C19, C20, C21]. Due to the 

crystallographic nature of polycrystalline material, particular features are 

characterized by different properties that significantly influence material 

deformation. To properly capture FE solution gradients which are the results of 

mentioned material inhomogenities, specific refined meshes have to be created. 

It can be generally stated that recently observed needs of the automotive and 

aerospace industries for new metallic materials that can meet strict requirements 

regarding weight/property ratio constitute a driving force for development of 

modern steel grades. Complicated thermomechanical operations are applied to 

obtain highly sophisticated microstructures with combination of e.g. large grains, 

small grains, inclusions, precipitates, multi-phase structures etc. These 

microstructure features and interaction between them at the micro-scale level during 

manufacturing or exploitation stages eventually result in elevated material properties 

at the macro-scale level. 

To support experimental research on these materials, a numerical material model 

that can take mentioned microstructure features explicitly into account during FE 

analysis of processing and exploitation conditions needs to be used. One of the 
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solutions to deal with the explicit representation of microstructure features during 

numerical analysis is an approach based on the Digital Material Representation 

(DMR) [C20]. However, there are two major issues that have to be addressed in this 

methodology. The first is development of algorithms for creation of structures that 

can represent real morphology of single and two phase microstructures [C19]. The 

second that is addressed in this dissertation is a problem of meshing of the created 

DMR as due to the nature of obtained microstructure, significant solution gradients 

(strain, stress etc.) are expected during numerical modeling. Robust and reliable 

algorithms capable of proper refinement of finite elements along mentioned 

microstructure features have to be developed. One of the solution is developed 

within the work space projection approach.  

1.2.2 APP LI CATION  O F SP ACE P ROJECTIO NS  

Space projections constitute an important tool, which can be used in diverse 

applications including finite element (FE) analysis [C14, C15, C1].  

The operator can be applied iteratively on a series of increasingly refined meshes, 

resulting in an improving fidelity of the approximation. A proof of concept for a 

limited set of applications has been presented in earlier author’s works: [C16, C17, 

C18]. 

The main goal of this part of the work is to apply the full HP-adaptive algorithm to 

the projection operation in order to observe the predicted exponential convergence. 

This idea is validated on the basis of mentioned digital microstructures, modeling of 

which constitutes an important problem among the material science community.  

1.2.3 ADAP TIV E ALGORIT HMS  F OR  SOLVING WEAK  FO RM S  O F PDES  

A number of adaptive algorithms for finite element mesh refinements are known. 

HP-adaptation is one of the most complex and accurate, as it results in an 

exponential convergence with the number of degrees of freedom [C14].  

The quality of the interpolation can be improved by the expansion of the 

interpolation base. In FEM terms, this could be done thanks to some kind of mesh 

adaptation. Two methods of adaptation are being considered in the present work: 
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 P-adaptation – increasing polynomial approximation level. One approach is to 

increase order of the basis functions on the elements where the error rate is higher 

than desired. More functions in the base means smoother and more accurate 

solution but also more computations and the use of high-order polynomials.  

 H-adaptation – refining the mesh. Another way is to split the element into smaller 

ones in order to obtain finer mesh. This idea arose from the observation that the 

domain is usually non-uniform and in order to approximate the solution fairly 

some places require more precise computations than others, where the acceptable 

solution can be achieved using small number of elements. The crucial factor in 

achieving optimal results is to decide if a given element should be split into two 

parts horizontally, into two parts vertically, into four parts (both horizontally and 

vertically on one side), into eight parts (both horizontally and vertically on the 

both sides) or not split at all. That is why the automated algorithm that decides 

after each iteration for the element if it needs h- or p-refinement or not was 

developed. The refinement process is fairly simple in 1D but the 2D and 3D cases 

enforce a few refinement rules to follow. 

 Automated hp-adaptation algorithm. Neither the p- nor the h-adaptation 

guarantees error rate decreases in an exponential manner with the size of mesh. 

This can be achieved by combining together mentioned two methods under some 

conditions, which are not necessarily satisfied in the present case. Still, in order to 

locate the most sensitive areas at each stage dynamically, and improve the 

solution as much as possible, the self-adaptive algorithm can be applied. It 

decides if a given element should be refined or it is already properly refined for 

the satisfactory interpolation, in an analogical manner to the algorithm for Finite 

Elements adaptivity described by [C14]. 

1.2.4 APP LI CATION  O F CO NTI N UO US  R EPR ESENT ATIO N O F MAT ERI AL  DATA  

The continuous data approximation is necessary in case of a non-continuous input 

data (called material data) representing continuous phenomena. Some examples may 

involve: 
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 MRI scans of non-homogenous material to be used as material data for finite 

element method simulations  

 satellite images of topography of the terrain, when we have a non-continuous 

bitmap data representing a generally continuous terrain; 

 input data obtained by using various techniques representing temperature 

distribution over the material, where the temperature is mostly a continuous 

phenomena. 

 situations when we solve the non-stationary problems of the form  
  

  
        

  , where   represents temperature, with initial conditions          , where    

is represented by a non-continuous input data, it is usually necessary to perform a 

   projection of the    to get the required regularity of  . 

1.2.5 MULTI-FR ONT AL DI RECT SO LV E R S AN D GR AP H GR AMMAR  S Y S TEMS  

Multi-frontal solvers are considered some of the most advanced direct solvers suited 

for solving linear systems of equations [C26, C27, C28]. Graph transformation 

systems have been previously used to model mesh generation and for multi-frontal 

solvers for example in [C29, C30, C31, C32, C33, C34]. 

The graph transformation system proposed by the above works for reuse of identical 

sub-trees has been also utilized for modeling mesh generation and adaptation with 

CP-graphs [C29, C30, C35] and hyper-graphs [C38]. This graph model can be also 

used for expressing the classical multi-frontal solver algorithm [C36, C37]. 

Finally, it is also possible to obtain the linear computational cost direct solver using 

some other topological features of the refined meshes [C39, C40]. 

1.3 OPEN PROBLEMS AND MAIN SCIENTIFIC RESULTS   

1.3.1 OP EN  P ROBLEMS   

 There are no self-adaptive algorithms for generation of continuous representation 

of material data based on three dimensional MRI scans. 

 There are no numerical tests showing how the generation of continuous 

representation of material data based on discrete MRI scans improves the 
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convergence of the finite element method simulations in the field of material 

science. 

 Traditional solvers deliver       computational cost when solving global three 

dimensional projection problem over regular 3D grids. 

 There are no algorithms speeding up the multi-frontal solver algorithm over sub-

parts of the computational mesh, when material data coefficients are identical and 

the geometry of the sub-meshes is identical. 

 There is a graph grammar model of the classical multi-frontal solver algorithm. 

However, there is no graph grammar expression of the multi-frontal solver 

algorithm for multi-scale problems. 

1.3.2 MAIN  S CI ENTI FI C  R ESUL T S OF T HE DI S S ERT ATI ON  

 I have proposed the application of three dimensional fully automatic adaptive 

algorithms for generation of continuous representation of material data based on 

three dimensional MRI scans. 

 I have performed a number of numerical experiments showing how generation of 

continuous representation of material data improves the convergence of the finite 

element method. 

 I have proposed a linear computational cost adaptive algorithms for generation of 

continuous representation of material data based on three dimensional MRI 

scans, using projection based interpolation algorithm.  

 I have derived the projection based interpolation algorithm for the case of three 

dimensional hexahedral and tetrahedral grids . 

 I have proposed a new algorithm for re-use of identical parts of the mesh, with 

identical material data. 

 I have expressed the multi-frontal solver algorithm allowing for reuse techniques 

with graph grammar productions which allow for dynamic construction of 

elimination trees for multi-scale problems. 

 I have also proposed a framework for automatic switching of the scales from 

macro-scale to nano-scale during multi-scale simulations. 
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2 ALGORITHMS  

In this section I present the proposed algorithms that solve the open problems 

enumerated above and constitute key findings of my PhD work. 

2.1 SELF-ADAPTIVE ALGORITHM FOR SOURCE DATA PRE-PROCESSOR  

2.1.1 SELF-ADAP TIV E ALGO R ITHM FO R S OUR CE DAT A P R E-P RO CES SO R USI NG GLO BAL 

PROJECTI ON  SO LV ER  

Material data pre-processor algorithm constructs three-dimensional coarse mesh 

along with base functions allocated on it, which enables constant approximation of 

discrete material data obtained e.g. from tomography. 

Before entering the algorithm, we define three-dimensional finite elements, which 

the algorithm uses, on the basis of [A1]: 

We start with defining one-dimensional base functions in the interval       (compare 

Figure 1). 

 

Figure 1 Base functions in the interval       

     1ˆ
1  

    2
ˆ  (1) 

      1ˆ
3  

       3121ˆ  l
l   for           
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Subsequently, we define three-dimensional base functions connected with vertices, 

edges, faces and interiors of three-dimensional cubic elements. Vertex functions, 

which are related to 8 vertices of the element (compare Figure 2), are defined as 

tensor product of three one-dimensional linear functions:  

        3121113211
ˆˆˆ,,ˆ    

        3121123212
ˆˆˆ,,ˆ    

        3122123213
ˆˆˆ,,ˆ    

        3122113214
ˆˆˆ,,ˆ    (2) 

        3221113215
ˆˆˆ,,ˆ    

        3221123216
ˆˆˆ,,ˆ    

        3222123217
ˆˆˆ,,ˆ    

        3222113218
ˆˆˆ,,ˆ     

 

 

Figure 2 Base functions connected with vertices of the element 
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Figure 3 Base functions connected with edges of the element 

Then we define functions related to edges of the element, as shown in Figure 3. They 

are defined as follows: 

 
        1,...,1ˆˆˆ,,ˆ

1312112321,9   pjjj 
 

 
        1,...,1ˆˆˆ,,ˆ

2312212321,10   pjjj 
 

         1,...,1ˆˆˆ,,ˆ
3312212321,11   pjjj   

          1,...,1ˆˆˆ,,ˆ
4312211321,12   pjjj   

 
        1,...,1ˆˆˆ,,ˆ

5322112321,13   pjjj 
 

 
        1,...,1ˆˆˆ,,ˆ

6322212321,14   pjjj 
 

 
        1,...,1ˆˆˆ,,ˆ

7322212321,15   pjjj 
  (3) 

 
        1,...,1ˆˆˆ,,ˆ

8322211321,16   pjjj 
 

         1,...,1ˆˆˆ,,ˆ
9322111321,17   pjjj   

 
        1,...,1ˆˆˆ,,ˆ

10322211321,18   pjjj 
 

 
        1,...,1ˆˆˆ,,ˆ

11322112321,19   pjjj 
 

         1,...,1ˆˆˆ,,ˆ
12322212321,20   pjjj    

In particular, it is possible to define pi base functions on each edge, where pi stands 

for polynomial approximation on the edge.  

Then, we define functions related to faces of the element (compare Figure 4). 
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Figure 4 Base functions connected with faces of the element 

         

1,...,1,1,...,1

ˆˆˆ,,ˆ
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312112321,,21



 

vh
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1,...,1,1,...,1

ˆˆˆ,,ˆ

22

322112321,,22



 

vh

jiji

pjpi



   

  

       

1,...,1,1,...,1

ˆˆˆ,,ˆ

3

322112321,,23



 

vvh

jiji

pjpi



 (4) 

  

       

1,...,1,1,...,1

ˆˆˆ,,ˆ

44

322212321,,24



 

vh

jiji

pjpi



 

  

       

1,...,1,1,...,1

ˆˆˆ,,ˆ

55

322211321,,25



 

vh

jiji

pjpi



  

  

       

1,...,1,1,...,1

ˆˆˆ,,ˆ

66

322212321,,26



 

vh

jiji

pjpi



 

Again, we have           base functions on each face, where     and     stand for 

approximation levels in vertical and horizontal directions.  

Eventually, we define          base functions connected with interior of the 

element, see Figure 5. 

  

       

1,...,1,1,...,1,1,...,1

ˆˆˆ,,ˆ
322212321,,,27



 

zyx

kjikji

pkpjpi



 (5) 
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Figure 5 Base functions connected with interior of the element 

After that, we define the problem of source data discrete projections using base 

functions                   allocated on three-dimensional mesh of cubic elements.  

In particular, we define space   allocated on base functions 

                          .  

In this subchapter, I refer to space    and    and their norms. Space    is defined as  

                     
 

      . The case of     projection in space       can be 

referred to as the following optimization problem: 

 Given a function     , find        , for which                  is minimum. 

As          
    
         where                      , then we have to define  

             , coefficients of linear combination of base functions. 

Since                     
 

, if we differentiate the equation over coefficients    

and compare the result with 0, in order to find minimum, we obtain: 

  
 

   
           

    
         

 
  

 
   (6) 

which can later be converted into a matrix equation:  

         (7) 

where: 

                    
    (8) 

                 
   (9) 
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in which the solution is a projection    z       in the space  , marked as      . 

The above method minimizes interpolation error square in function itself. 

Information on derivatives can be included through minimizing the sum error of the 

function as well as its gradients. 

This approach is called the    projection. Space    is defined as               

     
 
        

 
       and can be expressed by a similarly formulated problem:  

 Given function     , find         in which                   is minimum 

which leads to: 

  
 

   
              

 
  

 
                 

 
  

 
      (10) 

where   is a scalar parameter, which scales the part related to derivatives. Thus, the 

elements of equations system (1) take the following form: 

                     
                   

  (11) 

                  
                  

 (12) 

Such a reformulated problem can be solved with any method of solving linear 

equations system.  

The aforementioned projection problem is subsequently solved in every step of 

adapting algorithm, which generates coarse mesh approximating discrete source 

data. 

1 function adaptive_fem(initial_mesh, desired_err, coef) 

2 coarse_mesh = initial_mesh 

3 repeat 

4  coarse_u = solve the problem on coarse_mesh 

5  fine_mesh = copy coarse_mesh 

6  divide each element K of fine mesh into 8 new elements (K1 .. K8) 

7  increase polynomial order of shape functions on each element of   

8   fine mesh by 1 

9  fine_u = solve the problem on fine_mesh 

10   max_err = 0 

11  for each element K of fine mesh do 

12   K_err = compute relative decrease error rate on K  
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13   if K_err > max_err then 

14    max_err = K_err 

15   end if 

16   end do 

17   adapted_mesh = new empty_mesh 

18   for each element K of coarse_mesh do 

19   if K_err > coef * max_err then 

20    choose a combination of refinements on element K  

21     from fine_mesh to adapted_mesh 

22   else 

23    add K from coarse_mesh to adapted_mesh 

24   end if 

25  end do 

26  coarse_mesh = adapted_mesh 

27  output fine_u 

28 until max_err < desired_err 

29 return (fine_u, fine_mesh) 

Algorithm 1 Algorithm of source data adaptive pre-processor 

2.1.2 PROP ER TI ES  O F S ELF-ADAPTIV E ALGO RIT HM O F MAT ERI AL D ATA ADAPTIV E P RE -
PRO CES SOR  USI NG GLO B AL P ROJECTI ON  SO LV ER  

Properties of this algorithm were investigated in works [D8, D9]. This algorithm 

provides globally optimal approximation of function given at the beginning in the 

base of  , which is a subspace of   , in which basic computational problem is solved.  

Presented projection algorithm was tested on three dimensional example. The 

example concerns the approximation of the material data representing 6 balls of one 

material inside another material. Such a case study can represent a simplified version 

of a two phase microstructure with clearly defined fractions of subsequent materials.  

The initial microstructure morphologies as well as the resulting 3D grids and 

projection results are presented in Figure 6. The numerical results deliver exponential 

convergence rates summarized in Table 1. N denotes the number of degrees of 

freedom and the convergence is measured in the relative energy norm. These 

experiments imply also that three dimensional problems are difficult and even after 

several iterations of hp-adaptive code we reach 50% relative error, starting from 

almost 100% error. This proves the necessity for preprocessing of three dimensional 

material data by using adaptive algorithms. 
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Figure 6 3D balls problem: mesh after the sixth iterations and solution over the mesh  

step            

      
 [%] 

1 125 71.3 

2 2197 66.3 

3 5197 62.4 

4 12093 63.9 

5 22145 57.7 

6 41411 51.03 

Table 1 Convergence rate for the problem of projections of 3D balls 

The advantage of the algorithm lies in its simplicity, and in the fact that the same 

method can be used to solve the main problem (boundary problem) in pre-

processing of source data (approximation problem). 

Its main disadvantage is relatively high cost of computation (the time of single solver 

iteration). In particular, the following solution of the above system of equations (line 

4 and 9) on three-dimensional mesh shall have complexity       [D3, D8, D9].The 

time of each step iteration in pre-processing algorithm is shorter than main 
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computational problem iteration only by the difference resulting from easier 

generation of equations system for source data pre-processing problem.  

New pre-processor algorithm proposed by the author is described in next subchapter 

solves this problem.  

2.1.3 NEW  ALGO RITHM FO R  ADA PTIV E SOUR CE DAT A P R E-P RO CES SOR  BAS ED ON 

PROJECTI ON-BAS ED INT ER PO LATI ON  

The applied methodology of mesh pre-conversion with the use of interpolation with 

projection-based interpolation (PBI) was briefly introduced in [C10].  

Initially, the PBI method was presented by L. Demkowicz in order to control hp-

adaptation (for optimal adaptation selection on particular finite elements). The 

author summarizes algorithm modifications applicable for solution of a global 

projection problem in material data pre-processing.  

The main goal of PBI is to find a continuous representation of   in the base 

              of space     
    . In other words, we are looking for coefficients 

               of a linear combination         
     
   , which interpoles function on 

vertices (           for each vertex  ) and minimizes the norm   
  of a difference 

between the interpolating function and the interpolated one                  

on the remaining nodes.  

This problem could be solved as a global system of equations in cubic time with the 

number of unknowns, or – regarding complex structure of the problem – by the use 

of a Finite Element (FEM) solver in square time. Instead, I propose the use of 

algorithm with linear complexity, which provides globally suboptimal 

approximation, which, however, is sufficient to further solution conversion as source 

data for the Finite Element solver.  

As the main assumption is that in the end of the PBI step, there is a mesh compatible 

with the FEM solver, used in the later step in paper outline, then in the PBI step we 

also use the mesh composed of finite elements based on base functions used in the 

FEM solver. The PBI algorithm consists of the following sub-stages, connected 

respectively with vertices, edges, faces and interiors. For each finite element, there 

are    coefficients indicated in the appropriate order. 



15 
 

First the vertices are investigated, since their coefficients are the most 

straightforward to compute. There is only one function per vertex with a support on 

it and the interpolating function is required to be equal to the interpolant which 

yields:  

     
     

      
         (13) 

On nodes other than vertices, the input function cannot be represented exactly, so 

instead of approach to minimize the representation error is employed. First, on each 

one of the 12 edges: 

         
 
           

       
    

  
     

             (14) 

where         signifies the number of edge shape functions in space   with 

supports on edge   . Such a problem can be reduced to a linear system and solved 

with a linear solver, but if we assume the adaptation order     on each node, for 

each edge there exists only one shape function with a support on it. Not only is this 

restriction justified performance-wise (one local equation instead of a system), but it 

also suffices in most cases, according to my experiments. Thus equation (10) reduces 

to: 

          
 
    

           
  

       

  
     

             (15) 

where    vanishes on the element’s vertices. After rewriting the norm: 

                
  

     
  

              (16) 

    
   

   
 

      

   
 
 

 
     

  
              (17) 

and as             where     is constant: 

   
   

   
 
 

 
     

  
    

   

   

      

   

 
     

  
    

      

   
 
 

 
     

  
             (18) 

which leads to: 
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              (19) 

since    
   

   
 
 

 
     

  
 is constant and can be omitted in minimization. 

Let be        a bilinear, symmetric form defined as: 

            
  

   

  

   

 
     

 
 (20) 

and      be a linear form: 

          
   

   

  

   

 
     

 
 (21) 

It is proven that minimizing 
 

 
              is reducible to solving         

         . By applying this lemma to problem (19) for           , we obtain: 

    
      

   

  

   

 
     

  
    

   

   

  

   

 
     

  
              (22) 

and finally as             and     : 

     
  

   

   

    
   

 
       

  
    
   

    
   

 
       

          (23) 

The next step consists in an optimization on faces: 

         
 
          

  
    

                   
  

       

  
     

            (24) 

where    vanishes on vertices and edges. This leads to: 

     
  

   

   

    
   

 
       

  
    
   

    
   

 
       

          (25) 

Finally, an analogical optimization in the interior of the finite element: 

         
 
          

  
          

 
    

                           
  

      

  
    

     (26) 

(where    vanishes everywhere except from the interior) yields: 
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The algorithm specified above is applicable, instead of traditional one, to solving a 

projection task in lines 4 and 9.  

This algorithm can also be easily paralleled by the use of OpenMP mechanism, which 

was the subject of work [D19].  

1 #pragma omp parallel for 

2 for vertex in (vertices of elements of the mesh) 

3   compute values of coefficient 
iva  given by (13) for PBI for vertex 

4  store 
iva  at vertex 

5 #pragma omp parallel for 

6 for edge in (edges of elements of the mesh) 

7   compute values of coefficient 
iea  given by (23) for PBI for edges 

8  store 
iea  at edge 

9 #pragma omp parallel for 

10 for face in (faces of elements of the mesh) 

11  compute values of coefficient 
if

a  given by (25) for PBI for face 

12  store 
if

a  at face 

13 #pragma omp parallel for 

14 for interior in (interiors of elements of the mesh)  

15  compute values of coefficient Ia  given by (27) for PBI for  interior 

16  store Ia  at interior 

Algorithm 2 Modification of lines 4 and 9 in the algorithm of source data adaptive pre-processor 

It is worth mentioning, that application of this method does not construct any global 

equation systems but merely singular and individually independent equations for 

particular mesh nodes.  

Figure 7 presents an exemplary usage of the PBI algorithm for continuous 

representation of a human head in order to carry out simulation of propagation of 

electromagnetic waves, which are emitted from a mobile phone antenna [D11, D4], 

whereas Figure 8 shows simulation of human head heated by the phone on 
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generated mesh, by means of the Pennes equation, under the assumed radiation of 

the cell-phone antenna. For more detais we refer to [D11,D4]. 

 

Figure 7 Sequence of meshes generated by the adaptive algorithm for continuous representation of 

human head 

 

Figure 8 Computations sequence from particular simulation steps of human head heated by t he 

phone [D11,D4]  

 



19 
 

2.1.4 PROP ER TI ES  AND APP LIC ABI LIT Y  OF THE MODIF I ED ALGO RIT HMS  O F MA T ERI AL 

DATA ADAP TIV E PR E -P ROCES SOR  

The main advantage of the algorithm of material data adaptive pre-processor 

(Algorithm 2) is linear complexity O(N) in sequential version and complexity O(N/c) 

in parallel version, where c stands for number of cores.  

PBI method has been investigated in papers [D3, D10, D5, D19, D13]. In contrast with 

the method described in 2.1.1, the PBI method does not provide globally optimal 

approximation, since optimization acts locally for each finite element separately. 

However, local optimization requires constant amount of operations on each element 

of the mesh (vertex, edge, face or interior), which means, that one PBI iteration has 

linear complexity with the number of finite elements (not square number as it occurs 

in method introduced in 2.1.1).  

As one can conclude from the results obtained in [D3] for the investigated problems, 

nearly every iteration of h-adaptive PBI method reduces the number of more 

expensive iterations of h-adaptive method of finite elements, which results in a 

substantial minimization of computational costs.  

Also the local character of PBI method has significant implications – it enables much 

easier, than in the case of the method investigated in 2.1.1, parallelization algorithm 

with the use of agent techniques (which was conducted in [D5]). 

2.1.5 NUMERI CAL EXP ERIMENT  

The applicability of the method has been tested on the following example. I was 

looking for the solution of the linear elasticity problem with thermal expansion 

coefficient over the three dimensional non-regular material [D3], presented in Figure 

9. For derivation of the weak formulation of the linear elasticity with thermal 

expansion coefficient we refer to Appendix A. 
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Figure 9 Digital representation of a two-phase material [D3]  

We compare efficiency of two numerical algorithms based on the conventional and 

modified workflows for solving linear elasticity problem with thermal expansion 

coefficient [C7]. A complex dual phase steel under thermal loading conditions is 

selected for investigation, as these steels represent modern materials often used in 

automotive industry. The problem of thermal loading and related thermal stresses is 

often underestimated as usually material behavior under mechanical deformation is 

considered in metal forming. However, due to higher demands for better in use 

properties under exploitation conditions, the issue of thermal loading needs to be 

precisely investigated especially when complex multiphase materials are considered. 

Although multiphase materials can provide highly elevated properties, due to the 

fact that these materials are often a combination of several significantly different 

materials/phases, the local deformation inhomogenities can occur and they influence 

macro scale behavior of a final product. As mentioned, to model these 

inhomogenities, the digital material representation can be incorporated into the 

sophisticated h-adaptation finite element model by using conventional and modified 

workflow approaches.  

2.1.5.1  BASI C W ORKFLOW  

To simulate the micro scale behavior of a complex materials under deformation, one 

needs typically at least two steps. In the first, a digital representation of the material 

(DMR) with the required parameters is required. State of the art in the DMR models 
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is presented in the following section. In the second step of a work flow, an advanced 

h-adaptation finite element method is applied to precisely investigate material 

behavior.  

Obtaining digital 
representation (MC)

Simulating elastic 
material strain

(h-FEM)

 

Figure 10 The conventional two-stage workflow that uses an h-FEM approach 

This conventional two stage workflow can be also modified in order to obtain higher 

computational efficiency by incorporating more stages. One of the possibilities of 

such a modification is proposed as a result of the present research.  

2.1.5.2  PRO POSED  W O RKFLO W I MP ROVE MEN T  

However, such a conventional two stage work flow has limitations mainly related 

with the h-adaptive Finite Element method. Despite the fact that this method is very 

precise and converges exponentially, unfortunately it is also quite time-consuming. 

Each iteration of this algorithm requires solving the linear elasticity on two meshes, 

each in       asymptotic time with   being proportional to the number of finite 

elements. Previous experiments show that usually a few initial steps of the Finite 

Element algorithm focus on reproducing the material structure with the 

computational mesh[21], regardless of the boundary problem solved. This observation 

leads to the question, whether these iterations could be replaced with a less 

expensive pre-processing. Thus, the work flow approach was extended by a third 

intermediate stage as seen in Figure 11.  

Obtaining digital 
representation (MC)

Pre-adapting mesh 
according to structure 
of two-phase material 

(h-PBI)

Simulating elastic 
material strain

(FEM)

 

Figure 11 The modified workflow, a new intermediate stage marked in orange 
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The Projection-Based Interpolation method comes to the aid in the case of reducing 

computational time. Although unaware of the elasticity problem to be solved, this 

method adapts the computational mesh around the interface between material 

phases and around boundaries with linear rather than quadratic computational 

complexity. After a couple of steps, Finite Elements still need to be used to adapt the 

mesh around solution peculiarities (problem-specific!) and to output the actual 

solution of the boundary problem, but the process is much shorter now. The detailed 

algorithm behind the PBI is described below. 

2.1.5.3  COM PARISON  OF THE  MET HODS  IN  3D 

In the first investigated case (traditional workflow), 7 iterations of the h-adaptive 

algorithm were required. Subsequent mesh sizes are given in Table 2. A series of 

results for subsequent iterations is presented for X, Y and Z axis in Figure 13,  Figure 

14 & Figure 15 respectively. The scale for all the figures is shown in Figure 12. 

h-FEM 

iteration # 

size of the coarse mesh 

(along a single axis) 

size of the fine mesh 

(along a single axis) 

elasticity error estimate 

1 125 1000 106.8249 

2 729 5832 65.8873 

3 1331 9261 46.9618 

4 7793 58833 41.1811 

5 16377 130289 40.5419 

6 75997 630865 35.8563 

Table 2 Mesh sizes and error decrease rate for pure h-FEM 

 

Figure 12 Scale used in subsequent figures 
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Figure 13 X component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

  

Figure 14 Y component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

 

Figure 15 Z component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

Each iteration incurred constructing and solving the linear elasticity problem on two 

meshes - coarse and fine. Solving such a problem with FEM requires       

operations over the regular 3D mesh, and between       and       on highly 

refined 3D mesh, depending on the topology of the mesh [C44]. The error decrease is 

illustrated in Figure 16. 
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Figure 16 Error decrease for pure h-FEM 

In the second case study (modified work flow), first the mesh which well 

approximates the DMR was generated using the adaptive PBI procedure, as 

presented in Figure 17. 

 

 

Figure 17 A series of pre-adapted meshes along with their corresponding approximations of the 

initial microstructure from Figure 9 in subsequent steps of PBI 

Table 3 illustrates the error of the elasticity solution after pre-adapting mesh with 1-5 

PBI iterations. Figure 18, Figure 19 & Figure 20 illustrate the numerical results. 
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h-PBI 

iteration # 

size of the coarse mesh 

(along a single axis) 

size of the fine mesh 

(along a single axis) 

elasticity error estimate 

(for a single FEM iteration after the PBI) 

1 3407 26997 42.46 

2 8457 67913 38.63 

3 10187 83301 38.51 

4 25961 210753 37.87 

5 36233 602631 35.87 

Table 3 Mesh sizes and error decrease rate for h-PBI+FEM 

 

Figure 18 X component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 for h-PBI + FEM 
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Figure 19 Y component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 for h-PBI + FEM 

 

 

Figure 20 Z component of the thermal deformation vector of the squeezed dual phase material 

from Figure 9 for h-PBI + FEM 

The proposed hybrid method not only delivered the same precision (error estimate of 

~35) but it also required less iterations (5 vs. 7) of a cheaper (    ) algorithm. This 

hybrid technique required a total of              to achieve the same precision 

as the pure FEM. Moreover if the precision of ~40 is acceptable, the benefit from this 

optimization is even more prevalent - pure h-FEM would have required 5 steps to get 



27 
 

there, while the hybrid method achieved a superior precision after 2 steps of h-PBI 

and 1 step of the FEM. 

2.1.5.4  COM PARISON  OF THE  MET HODS  IN  2D 

As a proof of concept we also tested our solution on a few 2D bitmaps representing 

selected microstructures described below. Three kinds of digital material 

representations have been created for the purpose of the current experiment. The 

first one depicts a commonly used simplified representation of a two phase 

microstructure. Using this approach, an influence of different volume fractions of 

hard martensitic phase in soft ferritic matrix can be investigated. The second one 

represents a single phase polycrystalline microstructure, where subsequent grains 

are clearly distinguished. The third one represents a multi-layer composite material. 

To properly capture grain morphology with homogenous FE meshes, very fine finite 

element meshes have to be used. This, in turn, leads to excessive computational time. 

The finer the FE mesh is, the better description of the phase boundary shape is 

obtained. With coarser meshes some microstructure features can be even neglected. 

However, to reduce computational time and maintain high accuracy of the solution 

along mentioned phase/grain boundaries, proposed hp adaptation technique can be 

used to obtain specific non-uniform FE meshes that are refined along the 

phase/grain boundaries. 

Since the described algorithm operates over [0, 1]×[0, 1] square, each bitmap required 

some extra preprocessing. We converted .bmp files into input .dat files by 

performing the following steps: 

• Since the value of material data is encoded in the bitmap’s luma Y , we obtain it 

according to the formula below: 

Y = 0.299 × Red + 0.587 × Green + 0.114 × Blue  

This kind of encoding is frequently used, as it makes visually neighbouring pixels 

to be neighbours also numerically. 

• Normalize the output value set to the interval [0, 1]. 
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• Save bitmap as a 2D matrix of floating-point numbers. 

• Compute value of f(x, y):(x, y)   [0, 1] × [0, 1] by scaling and mapping (x, y) to 

the nearest pixel on the bitmap. 

• Compute value of ∂f(x,y)/∂x and ∂f(x,y)/∂y using differential quotient. 

The hp-adaptive algorithm is executed for 20 iterations until the error decrese rate 

falls below the desired 1%. Behaviour of the mesh after 10 and 20 iterations for all 

three cases has been depicted in Figures 22, 23 and 24. In the first case, adaptation 

focuses on 5 squares surrounding the distinct pieces of a different material. As the 

adaptation proceeds, the interface between materials becomes visible more clearly. 

The refinement of meshes is also reflected in the solutions. The results after 20 

iterations for the second and third microstructure have been presented in Figures 25 

and 26. These figures may be thought of as normalized continuous representations of 

the initial microstructure images (Figure 21). 

 

Figure 21 Microstructure images used for computations 

For the first bitmap we obtained an acceptable solution only after 10 iterations. This 

is presented on Figure 25. All microstructure images passed to the algorithm had a 

few features which made them especially tricky to interpolate continuously – namely 

irregular shapes, sharp edges and a wide range of values. While shapes turned out to 

be reflected in quite a faithful manner with h-adaptation, sharp edges required 

elevated degrees of p-adaptation. This, by nature, leads to the Runge effect, where 

interpolant oscillates at the edges of an interval. To avoid this effect, one should 

supply the upper bound for p-adaptation level in some applications. 
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Figure 22 Mesh density and p-refinement levels after 10 and 20 iterations for the first 

microstructure 

Figure 23 Mesh density and p-refinement levels after 10 and 20 iterations for the 

second microstructure 

Figure 24 Mesh density and p-refinement levels after 30 iterations for the third 

microstructure 
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The obtained meshes can be used as an input for the FE modeling of material 

behavior during processing or exploitation stages. We tested the feasibility of this 

application using examples 2 and 3, for which we consider the heat transfer and 

linear elasticity problems respectively. In general, the applicability of the grids for the 

finite element method simulations depends on the sensitivity of the physical 

phenomena to the changes of material properties. 

 

Figure 25 The approximation of material data after 10 iterations for the first 

microstructure 

 

Figure 26 The approximation of material data after 20 iterations for the second 

microstructure. 

First test concerned the heat transfer problem. We solved the heat transfer equation 

over the second mesh with Dirichlet boundary condition on the bottom and Neuman 

boundary condition on top, left and right sides. We assumed that the heat transfer 

coefficient K changes for different material. We also assumed that the temperature 
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over the Dirichlet boundary varies with different materials. From the numerical 

results presented in Figure 27 it follows that the heat transfer is not sensitive to the 

changes in material data. The adaptivity are only necessary for the Dirichlet 

boundary. 

 

Figure 27 The solution to the heat transfer problem over that mesh (temperature 

scalar field). 

 

Figure 28 The approximation of material data after 20 iterations for the third 

microstructure. 
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Figure 29 The solution to the linear elasticity problem (norm of the displacement 

vector) over a further refined mesh. 

The second numerical problem concerned the linear elasticity. We subjected the third 

multi-layered mesh to the crushing forces. Namely, we assumed fixed zero Dirichlet 

boundary conditions on the bottom, the crushing force on the top, with zero 

Neumann boundary conditions on both sides. We assumed different Young modulus 

for different layers denoted by different colors. Our adaptive procedure has 

improved the accuracy of the linear elasticity problem significantly. The linear 

elasticity problem solved on the uniform unrefined grid suffers from 50 percent 

numerical error (measured as relative error in H1 norm). The same problem solved 

over our hp adapted mesh (Figures 28 and 29) delivers 10 percent numerical error. In 

other words our adaptive procedure has reduced the numerical error almost one 

order of magnitude. 

Finally, in Figure 30 we present exponential convergence curves for the first and the 

second case. 
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Figure 30 Convergence curves, nrdof – number of degrees of freedom, error – 

absolute error decrease rate in terms of H1 norm. 

Since they are drawn in logarithmic scale, error decrease rate is virtually exponential 

with respect to the number of degrees of freedom (marked as ”nrdof”). In both cases 

it took the similar amount of required steps to obtain a satisfactory solution. 
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2.2 GENERALIZATION ON MES HES WITH FOUR-FACED ELEMENTS  

The algorithm of material data adaptive pre-processor was designed and 

implemented for mesh with four-faced elements [D1, D2, D19]. The necessary 

modifications to the derivation procedure are listed below: 

The location of material data inside the human head model has been obtained by 

using the projection based interpolation algorithm that consists the following sub-

steps, related to tetrahedral finite element vertices, edges, faces and interiors. For 

each finite element, we are looking for ia    coefficients in a particular order. The 

computational mesh can be generated by using a linear computational cost projection 

based interpolation routine, first proposed by [4]. We start with vertices, since their 

coefficients are the most straightforward to compute. There is only one function per 

each of four vertexes with a support on it and the interpolating function is required 

to be equal to the interpolant which yields 
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On nodes other than vertices, the input function cannot be represented exactly, so 

instead we are trying to minimize the representation error. First, on each one of the 6 

edges of tetrahedral element: 

  

 

6,...,1min

1
0

dim

1

,

4

1














 



iuuU

i

ie

ii

eH

V

l

el

j

v                    (27) 

where ieVdim         signifies the number of edge shape functions in space V   

with supports on edge   . Such a problem can be reduced to a linear system and 

solved with a linear solver, but if we assume the adaptation order     on each 

node, for each edge there exists only one shape function with a support on it. Not 

only is this restriction justified performance-wise (one local equation instead of a 

system), but it also suffices in most cases, according to our experiments. Thus 

equation (27) reduces to: 
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where U  vanishes on the element’s vertices. After rewriting the norm: 

    6,...,1min
3

1

2

,0 


idxuU

i

i

e k

e
  (29) 

  6,...,1min
3

1

2

,













idx
dx

du

dx

dU

i

i

e k k

eo

k

, and ieeo ii
au ,       (30) 

we have 
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which leads to 
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since the other term is constant and can be omitted in minimization. 

Let be        is a bilinear, symmetric form and l(u) is a linear form defined as: 
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It is proven that minimizing 
 

 
             is reducible to solving             for 

all test functions  . By applying this lemma we obtain 
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which leads to 

 6,...,1
3

1

3

1

 


idx
dx

d

dx

d
dx

dx

d

dx

dU
a

i

ii

i

i

i

e k k

e

k

e

e k k

e

k

e


 (35) 



36 
 

The next step consists in an optimization on four faces of tetrahedral element: 
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where U  vanishes on vertices and edges. This leads to: 
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Finally, an analogical optimization in the interior of the finite element: 
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(where U  vanishes everywhere except from the interior) yields: 
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It is worth noting that using this method the global matrix is not constructed at all. 

Thanks to the p=2 restriction, we have a single equation over each vertex, edge, face 

and interior. This algorithm requires a computational cost linear with respect to the 

mesh size, because it involves constant number of operations for each vertex, edge, 

face and interior and the number of respective nodes is proportional to n - the 

number of finite elements. 

Exemplary results of this simulation are presented in works [D1, D2], see Figure 21. 
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Figure 21 Computation sequence for projection pre-processor algorithm for the function with 

maximum at one corner of the cube 

2.3 ELIMINATION SUBTREE RE-USE ALGORITHM FOR MU LTI-FRONTAL 

DIRECT SOLVER  

In papers [D6, D11] I propose an improvement to the multifrontal solver, which is 

the subject of current studies in the domain of direct solvers for modeling with the 

finite element method.  

2.3.1 CLASSI CAL ALGORIT HMS O F T HE MULTI -FRON T AL SO LV ER  

To fully understand the significance of the improvements for classic multifrontal 

solver algorithm, one may need the explanation of how it works. Multifrontal solvers 

were used in [C3, C4]. Their task is to solve linear equations system. The multifrontal 

solver algorithm execution is controlled by the so-called elimination tree, which can 

be constructed with the help of many available algorithms e.g. nested-dissections 

algorithm. 

General algorithm for selected type of adaptive mesh algorithms can be presented 

similarly as in Algorithm 3 pseudo-code.   

1 function multi-frontal solver (root node) 

2   root problem  <- forward elimination (root node) 

3  solution <- solve root problem 
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4   backward substitution (root node, solution) 

5 end function 

Algorithm 3 Classical algorithm of multi-frontal solver 

Multifrontal solver algorithm starts with execution of a first elimination stage, it 

analyses an elimination tree from its leaves down to root.  

This stage is concluded with the Algorithm 4 Classic algorithm of elimination 

stagepseudocode.  

1 function forward elimination(node) 

2   if node is a leaf then 

3   generate local system assigned to node,  

4   including boundary conditions 

5  else 

6   schur matrix1 <- multi-frontal (first son node) 

7   schur matrix2 <- multi-frontal (second son node) 

8   merge schur matrices into new system 

9  end if 

10  find fully assembled nodes  

11  eliminate fully assembled nodes 

12  return schur complement matrix 

13 end function 

Algorithm 4 Classic algorithm of elimination stage 

In each node of the solver tree there is a ‘subsystem’ which represents the equation 

being solved on the part of domain (e.g. single finite element in the case elimination 

tree leaves). Subsystems can divide some variables, nevertheless, careful separation 

is recommended. Gauss elimination is carried out for each subsystem on these 

degrees of freedom, which are completely aggregated. The remaining part of the 

subsystem constitutes the so-called Schur complement matrix [C5]. Schur 

complement matrix of subsystems divide some variables, which are subsequently 

merged and partly eliminated, to a possible degree. The rest becomes another Schur 

complement matrix. Assembly and merger is continued for as long as there are 

variables left to eliminate.  

In each node of the elimination tree, the part of local matrix which can be eliminated 

is identified (lines 10 and 11), and the remaining matrix referred to as Schur 

complementation (line 12) goes to next computation stage in the parent node. Then 
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the multi-frontal solver algorithm carries out the stage of backward substitution by 

analysis of the elimination tree from root to its leaves.  

This stage is concluded with the Algorithm 5 pseudocode. 

1 function backward substitution (node, solution) 

2   execute backward substitution using solution from node local system 

3   if node is a leaf then 

4   restrict solution into node 

5   execute backward substitution using solution 

6   else 

7   solution son1 <- restrict solution into first son node 

8   backward substitution (first son node, solution son1) 

9   solution son2 <- restrict solution into second son node 

10   backward substitution (second son node, solution son2) 

11   end if 

12 end function 

Algorithm 5 Classic algorithm of backward substitution 

This stage is based on the reverse of elimination stage, solver analyses the tree from 

root to leaves. This stage has lower computational costs as we do not have to conduct 

partial elimination in elimination tree nodes, just merely a partial backward 

substitution.  

The main aim of papers [D6, D11] is to generate and optimize the multifrontal solver 

algorithm for such trees.  

2.4 ALGORITHM OF ELIMINAT ION SUBTREES REUSE ALGORITHM FOR 

REGULAR MESH  

Work [D6] specifies modifications of multifrontal solver algorithm for regular 

meshes with constant values of material functions. For such meshes, operations 

carried out on various branches of multifrontal solver elimination tree are identical. 

Thus, it is possible to reuse the results from equations on similar subtrees. To 

eliminate asymmetry resulting from the position of a given element one should delay 

introduction of boundary conditions on the boundaries of the domain to the root of a 

tree.  

Modified algorithm is presented with Algorithm 6.  
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1 function multi-frontal solver (root node) 

2  root problem <- forward elimination (root node) 

3  enforce boundary conditions at root problem 

4  solution <- solve root problem 

5  backward substitution (root node, solution) 

6 end function 

 

1 function forward elimination (node) 

2  if node is a leaf then 

3   generate local system assigned to node, incl. boundary conditions 

4   mark boundary nodes as not fully assembled 

5  else 

6   schur matrix1 <- multi-frontal (first son node) 

7   schur matrix2 <- schur matrix1 

8   merge schur matrices into new system 

9  end if 

10  find fully assembled nodes  

11  eliminate fully the boundary nodes 

12  eliminate fully assembled nodes 

13  return schur complement matrix 

14 end function 

 

1 function backward substitution (node, solution) 

2  execute backward substitution using solution  

3  from first node on this level 

4  if node is a leaf then 

5   restrict solution into node 

6  else 

7   solution <- son1  

8   restrict solution into first son node 

9   backward substitution (first son node, solution son1) 

10   solution <- son2  

11   restrict solution into second son node 

12   backward substitution (second son node, solution son2) 

13  end if 

14 end function 

Algorithm 6 Algorithm of elimination tree subtrees reuse 

The algorithm is illustrated in Figure 22.  
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Figure 22 Execution of the solver over the regular cubic mesh results in identical sub -branches of 

the elimination tree 

2.5 PROPERTIES AND APPLICATIONS OF ELIMINATION SUBTREE RE-USE 

ALGORITHM  

In this chapter we estimate the benefit of computing a single path in the above tree 

instead of the full tree for a regular 3D mesh. 

For a given solver level      , the partial Gaussian elimination complexity 

depends on two coefficients: 

    - the total number of degrees of freedom on the level  , 

    - the number of degrees of freedom that are eliminated on the level   

where     signifies the root level of the tree (and consequently the height of the 

whole tree) and     stands for lowest bottom nodes. Note that the Schur 

complement on the level   is an                 submatrix. For such a matrix, 

Gaussian elimination and substitution require exactly: 
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operations. The required memory, in turn is proportional to: 

            
    

         (41) 

The number of degrees of freedom per node is given by: 

            (42) 

            (43) 

            (44) 

              (45) 

 

Figure 23 Naming convention for an element 

where     ,  ,   mean respectively interiors, faces, edges and vertices of a finite 

element, as illustrated on Figure 23. In the above formulas   stands for the 

polynomial order of finite element shape functions used for the Galerkin 

discretization base. 

Thus,    can be expressed as 

       
 

           
    (46) 

and    can be written as 

       
 

           
    (47) 

To compute the solver complexity we need to find a formula for   
  and   

  for 

            and       . For    , this is trivial, since all interiors are eliminated at 

level  . Hence,   
   ,   

   ,   
        and   

       . 
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For other nodes the reasoning is a bit more complex. Let us introduce a helper 

variable   
 , defined as the number of the nodes of type  , on the interface of level 

 (they are repeated on both submeshes under the merger, hence "R") . Note that 

  
    

  as it is always a subset of the interface (repeated) nodes that is eliminated. 

Also, The following formula is true for all           and      : 

   
        

      
     

   (48) 

    
 
   

 
   

 
 

0 6 0 0 

1 11 1 1 

2 18 2 2 

3 28 4 4 

4 44 4 4 

5 72 8 8 

6 112 16 16 

Table 4 Coefficients over the face 

2.5.1 FACES  

The first several values of these sequences are enumerated in Table 4. It is easy to 

observe that   
 
  ,   

 
   

 
  ,   

 
   

 
   (required for the recursive formula) 

and 

   
 
  

    
 

       

     
 

       

     
 

       

   (49) 

   
 
  

    
 

       

     
 

       

     
 

       

   (50) 
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which is, in a non-recursive form: 

   
 
   

 
                      (51) 

where / is the integer division (rounding down) and % is the modulo division 

operator. 

2.5.2 EDGES  

The first few values for the coefficients corresponding to edges are presented in Table 

5. 

Here,   
    ,   

   ,   
   ,   

   ,   
    and: 

   
   

    
        

     
             

     
             

   (52) 

   
   

    
        

     
             

     
             

   (53) 

    
    

    
  

0 12 0 0 

1 20 0 4 

2 33 1 7 

3 52 4 12 

4 84 4 12 

5 138 10 22 

6 216 24 40 

Table 5 Coefficients over edges 

2.5.3 VERTI CES  

The same coefficients for vertices are outlined in Table 6. 
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0 8 0 0 

1 12 0 4 

2 18 0 6 

3 27 1 9 

4 43 1 9 

5 69 3 15 

6 107 9 25 

7 171 9 25 

8 279 21 45 

Table 6 Coefficients over vertices 

Here,   
   ,   

   ,   
   ,   

   ,   
    and 

   
   

    
        

     
               

     
               

   (54) 

   
   

    
        

     
               

     
               

   (55) 

which simplifies to the following non-recursive formulas: 

   
                        (56) 

   
                        (57) 
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2.5.4 BENEFI TS  FRO M T HE O PT IMI ZATIO N  

The absolute benefit from applying the subtree reutilization optimization to the 

polymer strain modeling during the SFIL process can be computed by comparing the 

cost ( ) / memory consumption (   of the usual, full tree computation: 

                 
 
               (58) 

                         
 
     (59) 

to the optimized computing cost (  ) and space requirements (  ) 

              
 
               (60) 

             
 
              (61) 

In both cases,           and          represent additional time and space spent on 

processing boundary conditions. The expression           can be computed for any 

  by supplying    and    (computed using formulas (46) and (47), respectively) to 

equation (40). 

Conversely, we get relative savings by referencing the absolute savings to the cost of 

the non-optimized version: 

    
    

 
  (62) 

    
    

 
  (63) 

Since           and          are functions of   and   and consequently  ,   ,  ,    

are functions of   and  , so are    and   . Theoretical benefit (time-wise and 

memory-wise) from using the described optimization is decapitated in Figure 34 and 

Figure 35, respectively. The values of    and    have been computed by a Python 

application which basically expands all the recursive formulas introduced in this 

paper. 

As one can see time and memory savings increase with the size of the problem (n). 

For small problems both time and memory savings raise, whereas for larger 

problems both measures decrease. They also converge asymptotically to, 

respectively, 31% and 66%.  
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Overall, the optimization seems to have moderate effect on the computation time, 

but memory savings of order of 70% should translate to tangible reductions in 

hardware expenditures.  

 

Figure 24 Theoretical estimations of a proportion of computational time saved thanks to the 

subtree reuse optimization on the exemplary problem 
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Figure 25 Theoretical estimations of a proportion of memory usage saved thanks to the subtree 

reuse optimization on the exemplary problem 

2.6 ALGORITHM OF ELIMINAT ION SUBTREES REUSE FOR IRREGULAR MESHES  

I have also proposed an algorithm for re-use of the elimination subtrees for irregular 

meshes, on which we apply both macro- and nano-scale approach [D13]. The 

algorithm is based on grammar graphs which attribute subtrees of an elimination 

tree and check the possibility to reuse these subtrees during  change of the 

elimination tree generated for a given coarse mesh, on which macro-scale model was 

used, whereas some parts of coarse mesh are based on use of nano-scale model. 

Reuse is only possible for these subtrees which represent parts of a mesh on which 

macro-scale model was applied. The algorithm was tested on multi-physics Step-

and-Flash Imprint Lithography problem described in Appendix B. 
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2.6.1 GR AP H GRAMMAR  BASED F O RMULATION  O F T HE MU LTI-FRON T AL SO LV ER  

ALGO RIT HM WIT H R EUS E  T ECHNIQUE  

In this section a multi-frontal solver is described. In order to present the algorithm 

performed by the solver, graph transformation systems are used. Such a formalism 

allows for describing steps of an algorithm as a set of transformations that alter a 

graph representing a computational mesh and attribute it with computational data. 

As a result it's easier to determine the algorithm's properties, time complexity and 

determine whether a given algorithm is legal. 

The first step of the solver algorithm is to generate the computational mesh. It is done 

by executing a sequence of graph transformations that generate a graph structure 

representing computational mesh. The first graph transformation is presented on left 

panel in Figure 26. The productions replace the starting graph containing only a 

single vertex S with a graph representing a single hexahedral element with eight 

nodes. The following graph transformations replace some nodes by sub-graphs that 

represent smaller elements. Graph nodes as well as graph transformations are 

attributed by the location over a rectangular domain. The transformation (P)TNW 

from right panel in Figure 37 is replicated for different locations, for 

{TNW,TNE,TSW,TSE,BNW,BNE,BSW,BSE} where T and B stands for top and 

bottom, and N, S, W, E stand for north, south, west, east. 

 

Figure 26 Exemplary graph transformations for generating of the structure of the mesh  
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The exemplary derivation of an eight-element mesh is presented in Figure 27. In the 

first step, production (P1) is executed, in the second step, productions (P)TNW - (P)TNE 

- (P)TSW - (P)TSE - (P)BNW - (P)BNE - (P)BSW - (P)BSE are executed to obtain the eight finite 

element mesh. The graph representing the mesh has hierarchical tree-like structure 

storing the history of graph transformations derivation. To obtain larger meshes, it is 

necessary to add graph transformations for locations like 

{T,B,N,S,W,E,TN,TS,TW,TE,BN,BS,BW,BE,NE,NW,SE,SW}, compare labels of the 

left bottom sub-graph at Figure 39. 

 

Figure 27 Derivation of eight finite element mesh  

The next step of the solver algorithm consists in identification of macro-scale and 

nano-scale elements. Notice that graph nodes labeled with   actually represent 

particles (over nano-scale elements) or finite element method nodes (over macro-

scale elements). Thus, the elements are represented by patches of eight nodes. 
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Figure 28 Graph transformations for identification of macro- and nano-scale elements 

This identification is performed by graph transformation presented in Figure 28. The 

macro-scale elements are attributed by Young modulus and Poisson ratio values. The 

nano-scale elements are attributed by parameters of the spring force parameters 
k .  

 

Figure 29 Exemplary graph transformation for identification of macro-scale elements with 

identical material data 

 

Figure 30 Exemplary graph transformation for partial identification of macro-scale  with identical 

material data 

The resulting tree structure can be directly utilized by the multi-frontal solver 

algorithm. However, in this work a more sophisticated approach, featuring a re-use 

optimization technique, is proposed. It is based on an observation, that if we 
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postpone the resolution of the domain boundary to the top of the elimination tree, 

given a regular mesh with equal coefficients, the LU factorized local matrices for 

different finite elements are the same and hence can be reused. 

Thus, the third step of the solver algorithm consists in an identification of identical 

sub-branches of the elimination tree, for the reuse of partially LU factorized matrices. 

An exemplary graph transformation for such an identification is presented in Figure 

40. Such a graph transformation checks if all eight son elements are macro-scale 

elements and whether the corresponding Young modulus and Poisson ratios are 

identical. If this is the case, the eight son element nodes are reduced to one 

representative node, so the LU factorization can be performed only once and father 

node can merge eight identical matrices from the same representative son node. 

Another, more complicated case for the identification is presented in Figure 30. In 

this example only four son elements are macro-scale with identical Young modulus 

and Poisson ratio values. The four identical macro-scale elements are reduced to one 

representative element, however the nano-scale elements are stochastic in their 

nature and cannot be reduced. 

Finally, on a modified elimination tree, the multi-frontal solver algorithm can be 

executed: 

1 function frontal_elimination(node) 

2  if new_schur_matrix already computed for the node then 

3   return schur_matrix 

4  if node is a leaf then 

5   generate local system assigned to node 

6   excluding boundary conditions 

7  else 

8   loop through son_nodes 

9    schur_matrix = frontal_elimination(son_node) 

10    merge schur_matrix into new_system 

11   end loop 

12  end if 

13  find fully assembled nodes and eliminate them 

14  return new_schur_matrix 

15 end function 

Algorithm 7 Frontal elimination algorithm 
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Notice that in case of representative nodes in line 9, the same node of the elimination 

tree is actually called many times and line 2 prevents from re-computing the identical 

Schur complement matrices many times. The forward elimination algorithm is 

followed by analogous backward substitution. 

2.6.2 NUMERI CAL EXP ERIMENTS  

In this section numerical results presenting the shrinkage of the feature after removal 

of the template. It is assumed that the polymer network has been damaged during 

the removal of the template, and thus the inter-particle forces are weaker in one part 

of the mesh.  

The problem has been solved first by using pure nano-scale approach, with non-

linear model allowing for large deformations, with quadratic potentials, as defined in 

Appendix B). The resulting equilibrium configurations of polymer network particles 

are presented in Figure 31 and Figure 32. The damage has been modeled here by 

assuming smaller values of the spring stiffness coefficients 
k .  

Then, the problem has been solved again by using the multi-scale approach. The part 

of the mesh with undamaged polymer has been modeled by the macro-scale 

approach, with Finite Element Method. The part of the mesh with the damaged 

polymer, denoted in Figure 33 by red color, has been modeled by the nano-scale 

approach with linear model assuming small deformations and quadratic potentials. 

The damage of the polymer, modeled by weakening the inter-particle forces results 

in slight lean of the feature, illustrated in Figure 32 for the nano-scale model, and in 

Figure 31, for the macro-scale model. The displacement fields are similar in both 

nano-scale and macro-scale simulations. 

 

Figure 31 X, Y and Z components of the displacement vector field for the interior modeled by 

linear elasticity with thermal expansion coefficient 
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Figure 32 Results of the non-linear model allowing for large deformations, with quadratic 

potentials 

 

Figure 33 3D mesh for multi-scale simulations. The blue color denotes the macro-scale domain 

with FEM model, the red color denotes the nano-scale domain with MS model 

To conclude this section, let us look at the comparison of the execution times of the 

graph transformation based multi-frontal solver executed with and without the reuse 

technique. The computations have been performed sequentially on a cluster node 

with Dual-Core AMD Opteron processor clocked at 2.6 GHz with 32 GB using a 

Fortran 90 implementation. 

The results are presented in Figure 34-Figure 35. The horizontal axis denotes 

different polynomial orders of approximations utilized over the macro-scale domain 

(p parameter). Different lines correspond to different number of elements in each 

direction (n parameter). The resulting speedup of the reuse solver algorithm is 

presented in Figure 35. 
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Figure 34 Top panel: Execution time of the solver without reuse Bottom panel: Execution time of 

the solver with reuse 

 

Figure 35 Speedup of the reuse solver  
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2.7 ADAPTIVE ALGORITHM OF AUTOMATIC SCALE CHAN GE FOR MULTI-SCALE 

METHODS  

In papers [D7, D12] (and also [D20, D28, B3, D25, D26]) I have developed an 

algorithm of multiscale modelling with the use of dynamic change of model scales. 

The algorithm proposed in [C6] was implemented and tested for one- and three-

dimensional problems. In particular, work [D7] illustrates, on a simple example, the 

proof of concept, whereas [D12] tackles the same problem in 3D.  

The idea of multiscale modeling is presented below on an example of elastic 

deformation of a substrate in the process of lithography by the method of Step-and-

Flash Imprint Lithography specified in [C9]. In this problem, substrate deforms as a 

result of irradiation with UV rays and takes shape of the template applied thereto.  

2.7.1 ON E DI MEN SION AL MULTI -S CALE MODEL OF ST EP-AN D-FLAS H IMP RINT  

L ITHO GR AP HY  

 

Figure 36 The scheme of problem domain division between applicable models 

In [D7] we used spot interface, domain division between models is presented in 

Figure 36. It is worth mentioning, that it is not the only method of joining models of 

different scales. In particular, better results, regarding the problem of linear elasticity, 

have been achieved with the use of Arlequin Interface proposed in [C13].  

2.7.2 DEFINI NG DIS CR EET  PR O BLEM  

Discreet model, which shows interaction between polymer and template, constitutes 

one of the foundations applied to multiscale model. The model assumes square 

potentials shown by formula:  

               
 
                  (28) 
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between each pair of interacting elements, which results in linear forces. Model 

parameters (the distance between elements          and elastic modulus      ) 

were extracted from [C7]. The interaction force between ith and i+1th equals:  

                               
    (29) 

where         is an elastic modulus for the model of ‘spring’ between the ith and i+1th 

element, whereas       
   is a equilibrium length for the ‘spring’. 

In one-dimension, movement between adjacent layers of molecules triggers an 

additional force, which is described in formula: 

                       (30) 

where constant c stands for maximum horizontal deviation. 

Second Newton’s law implies that for each cell the following balance equations can 

be formulated: 

                       (31) 

which, after substitution of the definition of intermolecular forces (3), leads to the 

following equation: 

                                                           
  

             
  

       (32) 

   are unknown equlibrium positions of individual elements. Of course, the locations 

of boundary elements are given:  

              (33) 

2.7.3 DEFINI TION  O F CO NTIN U OUS  P ROBLEM  

Alternatively, polymer deformation in a template can be explained with the 

following continuous problem. We start with standard linear elasticity problem (C12) 

with external force   

  
 

  
   

  

  
    (34) 

where   represents Young modulus, whereas   stands for cross section area. 

Therefore, modulus boundary conditions on the interface equals: 
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            (35) 

where       is the effective intermolecular force between molecules 9 and 10, whereas 

          is force between molecules      and    . When we substitute discreet 

problem, we get: 

   
      

  
                     

    

   
       

  
                                 

    (36) 

Moreover, in this model the molecules are identified in discreet displacements field, 

with values   ,    equivalent to coefficients in the first row shape functions on the 

domain’s boundary, where continuous problem is modeled with finite elements 

method.  

                          (37) 

The strong formula presented above leads to the following weak (variational) 

formula: 

          
   

  
                                                    

   

  
   (38) 

which is correct for each test function                 , while   stands for a coefficient 

of thermal expansion that satisfies       
   

  
                . 

When we substitute interface conditions, we get: 

         
   

  

                                
         

                    
         

        
   

  
                  (39) 

2.8 ADAPTIVE ALGORITHM OF  AUTOMATIC SCALE CHAN GE FOR MULTISCALE 

MODELS  

Adaptive algorithm of automatic scale change for multiscale models can be 

summarized in the form of pseudo-code presented in Algorithm 8. 
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1 function adaptive_multiscale_fem(initial_mesh, desired_err, coef) 

2 coarse_mesh = initial_mesh with all macro-scale elements 

3 repeat 

4  coarse_u = solve the problem on coarse_mesh  using the solver algorithm 

with re-use of identical branches 

5  fine_mesh = copy coarse_mesh 

6  divide each element K of fine mesh into 8 new elements (K1 .. K8) 

7  increase polynomial order of shape functions on each element of fine 

mesh by 1 

8  fine_u = solve the problem on fine_mesh using the solver algorithm with 

re-use of identical branches 

9   max_err = 0 

10  for each element K of fine mesh do 

11   K_err = compute relative decrease error rate on K  

12   if K_err > max_err then 

13    max_err = K_err 

14   end if 

15  end do 

16  adapted_mesh = new empty_mesh 

17   for each element K of coarse_mesh do 

18   if K_err > coef * max_err then 

19    execute h refinement of element K  

20       if size of new element < scale threshold then 

21     change the element scale from macro-scale to nano-scale 

22       end if 

23   else 

24    add K from coarse_mesh to adapted_mesh 

25   end if 

26  end do 

27  coarse_mesh = adapted_mesh 

28  output fine_u 

29 until max_err < desired_err 

30 return (fine_u, fine_mesh) 

Algorithm 8 Adaptive algorithm for automatic scale change 

Proposed algorithm of automatic scale change prevents application of macro-scale 

models in circumstances, where size of a local element requires nano-scale model.  

The object-oriented implementation of the algorithm is discussed in Appendix C. We 

have generated the Java code from the discussed UML diagrams, and implemented  

the bodies of class methods manually. We conclude the presentation with the 
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numerical experiments presenting the solution of the multi-scale problem defined in 

the “Problem formulation” section. First, we have solved the problem in the meso-

scale, to provide the “exact” solution presented on the first panel in Figure 47. Then, 

the internal part of the domain has been modeled by the macro-scale linear elasticity 

formulation (13), while the external parts of the domain keep the meso-scale model, 

to express the interactions of the polymer with the template. This fully multi-scale 

problem has been solved on the manually designed non-uniform hp mesh, with the 

order of approximation varying from p=1 to p=5, as it is presented on second panel 

in Figure 47. 

 

Figure 37 The solutions of the multi-scale problem. The red lines denote the solution, the blue 

lines denote the order of approximation on the FEM domain. First panel: The solution obtained 

with the meso-scale model defined over the entire domain. Second panel: The solution obtained 

over the manually hp refined mesh.  
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3 CONCLUSIONS  

In this dissertation I have proposed a family of algorithms that - in my opinion - 

taken together contribute considerably to the field of numerical computer science, 

allowing for effective processing of boundary problems for which material data are 

given in a non-continuous way (e.g. with an MRI scan bitmap). The algorithms 

considered included: 

 an application of three dimensional fully automatic adaptive algorithms for 

generation of continuous representation of material data based on three 

dimensional MRI scans, 

 a linear computational cost adaptive algorithms for generation of continuous 

representation of material data based on three dimensional MRI scans, using 

projection based interpolation algorithm, 

 a projection based interpolation algorithm for the case of three dimensional 

hexahedral and tetrahedral grids, 

 an algorithm that re-uses identical parts of the mesh, with identical material data 

I have expressed also expressed the multi-frontal solver algorithm allowing for reuse 

techniques with graph grammar productions which allow for dynamic construction 

of elimination trees for multi-scale problems. 

For the proposed algorithms I have evaluated their performance and relative trade-

offs: 

 I have performed a number of numerical experiments showing how generation of 

continuous representation of material data improves the convergence of the finite 

element method. 

 I have also proposed a framework for automatic switching of the scales from 

macro-scale to nano-scale during multi-scale simulations. 

In my opinion these results are significant enough to prove the initial thesis behind 

this work. 
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Appendix A. DERIVATION OF LINEAR ELASTICITY MODEL WITH 

THERMAL EXPANSION CO EFFICIENT  

A.1 STRONG FORM  

Let: 

 iu  be the displacement vector 

 jiu ,  - displacement gradients 

  jiu ,  - a symmetric part of the displacement gradients 
 

2

,,
,

ijji
ji

uu
u




 

  jiu ,  -  a skew-symmetric part of the displacement gradients 
 

2

,,
,

ijji
ji

uu
u




 

    jijiji uuu ,,, 
 

 ij  be a strain tensor defined as the symmetric part of the displacement gradient

 
2

,,
,

ijji
jiij

uu
u




 

 ij  stress tensor, defined in terms of the generalized Hooke’s law

  0
ijklklijklij c  

 

where 

 ijklc  elastic coefficients (known for a given material) 

 0
ij  initial stress 

 0
ij  initial strain 

 klkl  0

 

  temperature 

 kl  thermal expansion coefficients 

Strong form of the boundary-value problem 

Given   Rxgxg iDi i
 0: , , kl  and 0

ij , find Rui :  such that 

 in   

ii gu   in 
iD  





0, jij
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where 
  0

ijklklijklij c  
 

A.2 WEAK FORM  

Let us multiply  by ii Vw   and integrate over   
0, 



dw jiji

  

(integration by parts) 

0,  


dnwdw jijiijji 

 (   ijjiijji ww  ,,   since ij  is symmetric tensor ) 

  0,  


dnwdw jijiijji 
 ( 0iw  on   ) 

  0, 


dw ijji 

 (
  0

ijklklijklij c  
) 

       


dwdcwdcw ijjiklijkljiklijklji
0

,,, 

 (  jiij u ,
 ) 

         


dwdcwducw ijjiklijkljilkijklji
0

,,,, 

 

Weak form of the boundary-value problem 

Given 
  Rxgxg iDi i

 0:
, , kl  and 

0
ij

, find ii Vu   such that 

     


dwdcwducw ijjiklijkljilkijklji
0

,),(,),(   for all ii Vw   

A.3 IMPLEMENTATION ISSUES  

Let us introduce the following abstract notation: 

Given hg,f,  find Vu  such that      wΣwΑuw,a   for all Vw   

     


ducw lkijklji ,),(uw,a

 

   


dcw klijklji  ),(wΑ

 

   


dw ijji
0

),( wΣ

 

 




















1,22,1

2,2

1,1

uu

u

u

uε

 

0, jij
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 GPaE 1  is Young modulus 

 3.0  is Poisson ratio 
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I assume   Rxgxg iDi i
 0: , 1  (temperature gradient), 

  













 06115.00

006115.0
2,1,lkkl  and 00 ij  (zero initial stress). 
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Appendix B. STEP-AND-FLASH IMPRINT LITHOGRAPHY  

Step-and-Flash Imprint Lithography (SFIL) constitutes an important patterning framework 

used in silicon industry [D5]. The process consists of the following phases, decapitated in 

Figure B.1.  

 

Figure B1. Steps of SFIL  

 

Figure B.2 Shrinkage of the feature after removal of the template. the picture courtesy of prof. Grant C. 

Wilson from University of Texas at Austin  

 

Figure B.3 A pair of interacting particles  
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 dispense - depositing a low viscosity silicon containing photocurable etch barrier 

onto a substrate,  

 imprint - bringing the template into contact with the etch barrier,  

 expose - exposing the etch barrier to UV in order to cure it,  

 separate - releasing the template,  

 breakthrough etch - a short, halogen etch,  

 transfer etch - an anisotropic reactive ion etch to yield high aspect ratio.  

Photopolymerization is often accompanied by densification. The interaction potential 

between photopolymer precursors undergoing free radical polymerization changes 

from van der Waals’ to covalent. The average distance between molecules decreases 

and causes volumetric contraction. Densification of the SFIL photopolymer (the etch 

barrier) may affect both the cross sectional shape of the feature and the placement of 

relief patterns. The exemplary shrinkage of the feature measured after removing the 

template is presented in Figure B.2.  

The macro-scale part of the computational domain is modeled by the linear elasticity 

with thermal expansion coefficient. Following [C23] the strong and weak 

formulations for the linear elasticity problem with thermal expansion coefficient are 

given as follows.  

B.1 STRONG FORMULATION  

Given                      ,   and    , find the displacement vector field 

      
                       , such that 

               (B.1) 

              (B.2) 

where     is the stress tensor, defined in terms of the generalized Hook’s law 

                       (B.3) 

here       are elastic coefficients (known for given material),  is the temperature,     

are the thermal expansion coefficients, and            
          

 
 is the strain tensor, 
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where      are displacement gradients. 

B.2 WEAK FORMULATION  

The weak formulation is obtained by multiplying (1) by test functions      
     

and integrating by parts over  :  

             
            

     (B.4) 

Since     is symmetric tensor, then                 and 

              
     (B.5) 

where we have also used the fact that      on  . Finally, by utilizing (3) we get 

                       
                     

   (B.6) 

B.3 REFORMULATION FOR THE SFIL  MODELING  

For the convenient implementation of the algorithm, we utilize the following equivalent weak 

formulation. Find    , such that 

                    (B.7) 

                     
 

   (B.8) 

                 
 

  (B.9) 

Where             
 
              , and    is defined as the bottom of the 3D cube.  

Here 

       

 

 
 
 

    
    
    

         
         
          

 
 
 

  (B.10)  
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  (B.11) 

The linear elasticity with thermal expansion coefficient can be applied to SFIL 

process modeling with the Young modulus          and Poisson ratio        , as 

provided by [C24]. We also assume that                     (the feature is fixed 

at the bottom and the other sides are treated as either free boundary conditions for 

the simulations outside the template or as the nano-scale model interface for the 

simulations inside the template),       (the thermal expansion coefficient α 

expresses the volumetric contraction of the feature when the temperature gradient is 

equal to     ),           where           is based on inverse analysis [C25]. 

B.4 MOLECULAR STATICS MOD ELS  

We consider a regular rectangular 3D grid with interacting particles, as presented in 

Figure B.3. Each particle interacts with its 26 neighbors. For each pair of interacting 

particles   and   we can distinguish their initial configurations   ,    and 

(unknown) equilibrium configurations   ,    (compare Figure B.3).  

Over the nano-scale domain, we employ a non-linear model assuming large 

deformations and quadratic potentials for networks of particles forming polymer 

chains [C7]. In this model the force between pair of interacting particles   and   is 

given by  

                     
  

       

       
  (B.12) 

where     is the spring stiffness coefficient,                  is the length of 

the sprig in the equilibrium configuration,   ,    represent the (unknown) 

equilibrium configuration of particles,    
  is the length of the unscratched spring and 

  ,    represent the initial configuration of particles.  
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The remaining interactions of particles (not along the polymer chain) are given by a 

non-linear model assuming large deformations and Lennard-Jones potential. In this 

model the force between pair of interacting particles   and   is given by  

           
   

   
 
   

  
   

   
 
   

  (B.13) 

where    ,     and     are parameters of the potential and the inter-particle forces 

are computed with  

          
         

  
  (B.14) 

Large deformations are observed here, which implies the direction of the inter-

particle forces along the resulting spring alignments      . The Molecular Statics 

problem consists in finding the equilibrium configuration of particles satisfying  

          (B.15) 

for        (total number of particles). More mathematical details of the molecular statics 

model formulation are presented in [C7]. 

B.5 COUPLING MACRO-SCALE AND NANO-SCALE MODELS   

Macro-scale and nano-scale models are coupled by identifying the particles located 

on the interface of the nano-scale domain with the corresponding nodes of the FEM 

mesh, located on the interface.  

In such case, we solve Molecular Statics equations inside the nano-scale domain, and 

Linear Elasticity with Thermal Expansion coefficient discretized by FEM inside the 

macro-scale domain, while the interface between macro- and nano-scales is treated in 

the special way. The nodes of the FEM mesh, from the viewpoint of the nano-scale 

model are identified with particles represented by their positions   , while from the 

viewpoint of the macro-scale model, the nodes are understood in the traditional way 

as the degrees of freedom, representing the displacements   . It implies the 

additional coupling equations  

               –     (B.16) 
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for each particle (FEM mesh node)   located on the interface between nano- and 

macro-scales.  

In practice, it is not necessary to add the coupling equation (16) to the system, but 

only to aggregate the FEM and MS equations to the same global matrix.  
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Appendix C. DESIGN OF THE OBJECT-ORIENTED APPLICATION 

FOR MULTI-SCALE SIMULATIONS  

In this appendix, we focus on the particular aspects of the O-O design of the hp-FEM 

application. The Unified Modeling Language [C41] is utilized as a tool for the 

description of the modeled system.  

C.1 MESH –  CONCEPT  

The major part of the problem domain is solved with the finite element method. For 

this purpose the domain is divided into numerous finite elements creating a mesh. A 

mesh is being built according to the Euler’s model. The model assumes that the 

element consists of many nodes. A node is such a part of mesh on which we can 

define a shape function. Vertices are the most primitive kind of them. An edge is 

delimited by two vertices, a face – by four edges, an interior – by six faces and so on, 

depending on the domain’s dimension. By the order of the node we mean the 

polynomial order of approximation utilized over the node, An element contains 

several first order vertex nodes. 1D element contains one higher order node, 

associated with an edge, 2D element contains four higher order edge nodes, and one 

higher order interior node, and so on.  

C.2 MESH –  IMPLEMENTATION  

Mesh is implemented quite straightforward: there are separate classes for each kind 

of node, all of them  derived from the abstract base class Node, as illustrated in Figure 

C.1. All nodes but vertices are called refinable – they can undergo the h-adaptation 

process. Node classes are designed in such a way, that no matter the dimension of 

the problem is, the core of hp-FEM code remains the same. Not surprisingly, the 

basic difference lies in the way of storing of nodes coordinates. For this reason there 

is an extra subclass of Point class, for each spatial dimension. The Element class stays 

unchanged too, thanks to the polymorphic calls of the highestOrderNode’s methods. 
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Figure C.1. Mesh class diagrams. 

C.3 SHAPE FUNCTIONS -  CONCEPT  

The solution of the variational problem is approximated in the base of so called 

global shape functions. Global shape functions are associated with some nodes and 

have support over one or several neighboring elements. Global shape function’s 

restriction into a single finite element is called a local shape function. These single 

multi-dimensional polynomials (no longer splines) are, in contrast, linked to finite 

elements (not nodes). Typically in 1D we use shape functions of orders up to 9. Shape 

functions are related with node objects. Each vertex node has associated one global 

shape function that restricts into one local shape function over each element having 

the vertex. Each edge node has associated one or more global shape functions, that 

restrict into one local shape function for each element having the edge. All higher 

order nodes (faces or interiors in 2D and 3D) has associated one or more global shape 

functions, that restrict to one local shape function over each element having the node. 
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C.4 SHAPE FUNCTIONS –  IMPLEMENTATION  

Our application is dedicated to the special kind of hierarchical shape functions, 

defined in [C12], where subsequent functions are tensor product of the previous 

ones. The one-dimensional shape functions are defined as  

  ))()()(()()1()()(1)( 121321   nn  (C.1) 

Two-dimensional shape functions are defined as tensor products of the 1D shape 

functions. Here we present some examples, e. g. the shape function of the left-bottom 

element vertex: 

  212211212 )1()()(),(    (C.2) 

shape functions of the bottom edge: 

  
1,...,1),()(),( 1211221,5   pjjj 

     (C.3) 

and bubble shape functions 

  
1,...,1,1,...,1),()(),( 221221,9   vhjiij pjpi

  (C.4) 

The full definition for all shape functions can be found in [C12]. 

LocalShapeFunction2D is composed of LocalShapeFunction1Ds to reflect the fact that 

each multi-dimensional polynomial originates from the tensor product of simple 

polynomials. This dependence is illustrated in Figure C.2. Note analogical 

composition in the Point class hierarchy. LocalShapeFunctions and 

GlobalShapeFunctions are required in our O-O implementation. The 

globalParent/localMemebers mapping is crucial in the process of equation generation. 

In the O-O implementation, it is most natural to define the LocalShapeFunctions and 

GlobalShapeFunctions objects, since all procedures, like computing the derivative of 

the function, or value of the function at given point, are located inside these objects. 

Also, the higher dimension shape function objects can be composed by tensor 

products of lower dimension shape function, which can be directly expressed on the 

UML diagrams. The design of the O-O application is different from the procedural 

approach. 
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Figure C.2. Shape functions class diagrams. 

C.5 COLLECTIONS  

All the introduced objects are kept inside the Mesh class, in several collections. Nodes 

are stored in a set, which helps identifying those with the same coordinates (only one 

object exists for each combination of coordinates). Note that there is no need to keep 

LocalShapeFunction objects in separate collection, since these objects are accessed only 

from Elements. 

C.6 ADAPTATION  

The quality of hp-FEM solution can be improved in two ways: p-adaptation – by 

increase of the maximal order of shape functions defined on an element, and h-

adaptation – by breaking selected elements (and though – nodes). 
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Figure C.3. Dependencies between particle classes of different types. 

C.7 P-ADAPTATION  

The key idea behind the p-adaptation is to extend number of the shape functions for 

the adapted element. Thanks to the increase of the polynomial approximation level 

in the base, the solution becomes smoother. In our code the p-adaptation is as simple 

as creating a new LocalShapeFunction object of an appropriate order and registering it 

with the element. 

C.8 H-ADAPTATION  

The error of the approximate solution can be also decreased by breaking some 

elements into smaller elements (by increasing the number of elements, or by 

reducing their sizes). Some sensitive places may require a lot of elements for accurate 

approximation of the solution, whereas relatively sparse mesh is acceptable form 

some other places. The key factor in achieving the satisfactory results is to find these 

sensitive places, which demand to be approximated with the use of more elements. 

In can be done manually by predicting solution features or automatically by refining 

some elements based on the evaluation of the error decrease rate [C12].  

C.9 MOLECULAR STATICS PART (MESO-SCALE) 

In some places, which normally would require very intensive adaptation (because of 

enormous error rate of the FEM), it is much more sensible to switch from the macro-

scale to the meso-scale. This leads to the formulation of the computational problem in 
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terms of the particle interaction models. Considering the number of particles in the 

average problem domain it is usually impossible to solve the whole problem in such 

a way, however it turns out perfect when it comes to some local peculiarities. 

Fortunately, molecular computations do not mean any profound changes in our 

model. It is enough to adapt some of the existing components to their new roles and 

introduce several new ones. 

In addition to the classes already introduced for the hp-FEM model, we have created 

the Particle class tree, which – similarly to the Mesh class inherits from the 

EquationEntrySet abstract class. The tree is illustrated in Figure C.3. Its aim is to add 

some additional information to the EquationContributor interface, pointing its precise 

location in the equation matrix. There are several types of Particles, depending on 

where the particle is located: 

StandardParticle located inside the meso-scale part, with the following attributes 

req, k – interparticle interaction coefficients, with unknown location xi  

ConnectingParticle – located on the macro- / meso- scales interface. These particles 

have to manage both macro-scale and meso-scale variables, thus the location variable 

(from the meso-scale) and the displacement degrees of freedom (for the macro-scale) 

must be stored in such particles. The macro- / meso- scale interface condition is 

stored in a form of AbstractBoundaryCondition subclass 

BoundaryParticle which represents the Dirichlet boundary condition enforced on the 

non-scale level. In such the particles, the location xi of the particles is fixed, with 

nothing to be computed 

All of the equations are stored in the common matrix. Given the solution vector, we 

have to transform the meso-scale results, defined as the location of particular 

particles, into the displacement field, utilized in the macro-scale computations. 

C.10 GENERALIZATION TO HIGHER DIMENSIONS  

C.10.1  O-O  HI ERAR CHI CAL DATA S T R UCTUR ES  

The computational mesh is designed based on the Euler's hierarchical model. Higher 

dimension objects are composed with several lower dimension objects, as it is 
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presented in Figure 6. An edge consists in two vertices, a face consists in four edges, an 

interior consists in six faces. Technically speaking Vertex2D is not the same as 

Vertex1D, since e.g. it contains more coordinates. However, the general spatial 

dimension independent Vertex template can be created, and dimension dependent 

object can be created by parameterizing the general template. The Element object 

consists in several Node objects, stored at NodesList object  as it is presented in Figure 

C.6. The Element1D consists in two vertices and one edge, the Element2D consists in 

four vertices, four edges and one face, the Element3D consists in eight vertices, twelve 

edges, six faces and one interior. There are also ParticleElements classes representing a 

nano-scale elements filled with particles. All vertices, edges and interiors inherit from 

the Node object. 

 

Figure C.4. Class diagram illustrating relations between nodes: vertices, edges, faces and interiors.  

 

Figure C.5. Class diagram illustrating general relation between Element and Node classes. 

The solution of the variational problem is approximated in the base of so called global 

shape functions. Global shape functions are associated with nodes and have supports 

over one or several neighboring elements. A restriction of a global shape function 
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into an element is called local shape function. For the purpose of the UML project we 

utilize special kind of hierarchical local shape functions [C14], where higher spatial 

dimension functions are tensor products of several lower dimension functions. The 

basic 1D shape functions are defined by the following recursive formulae: 

    1)(1 ,  )(2 , 
 )1()(3 

, 
))()()(()( 121   nn  (C5) 

We distinguish 1  and 2  as VertexLocalShapeFunction1D, and n  n>=3 as  

EdgeLocalShapeFunction1D. The VertexLocalShapeFunction2D are defined as tensor 

products of two VertexLocalShapeFunction1D 

  )1)(1()()(),( 212111211   , )1()()(),( 212112212    (C6) 

  212212213 )()(),(  
, 212211214 )1()()(),(    

The EdgeLocalShapeFunction2D are defined as tensor products of one 

VertexLocalShapeFunction1D, and one VertexLocalShapeFunction1D. 

  
)()(),( 211221,5  jj 
 j=1,…p1-1; 

)()(),( 221221,6  jj 
 j=1,…p2-1; (C7) 

 
)()1(),( 211221,7    jj  j=1,…p3-1; 

)1()(),( 221121,8    jj  j=1,…p4-1 

where pk is the polynomial order of approximation over an edge. The 

FaceLocalShapeFunction2D are defined as tensor products of two 

EdgeLocalShapeFunction1D 

  )()(),( 221221,9  jiij   i=1,…,ph-1,  j=1,…,pv-1 (C8) 

The relations are expressed in the class diagram presented in Figure C.7. The local 

shape functions are again created by instantiating template LocalShapeFunction, as it is 

presented in Figure C.9. 

C.10.2  H IER ARCHI CAL ALGO RI TH MS  

In the proposed UML project, the basic objects are created by instantiating general 

templates. Thus, they methods must be defined within these templates as spatial 

dimension independent. The exemplary dimension independent algorithm for 
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computing a value of the shape function is listed below. The N stands for the spatial 

dimension, and Value stands for either double precision or complex arithmetic. 

template <int N, class Value> 

class LocalShapeFunction{ 

LocalShapeFunction1D mLocalShapeFunction1D[N]; 

Value GetValue(Point<N> P){ 

   value=1.0; 

   for(int i=1; i<=N; ++i) 

 value*=mLocalShapeFunction1D[i].GetValue(P[i]); 

We have analyzed algorithms utilized in [C14] in the existing procedural version of 

1D, 2D and 3D hp-FEM. Most of the algorithms are actually designed in a hierarchical 

manner, since they call procedures implemented for lower spatial dimension objects. 

Let us discuss the issue on the h adaptation algorithm example.  The process of 

refining e.g. a 2D face consists in two processes of refining 1D edges and then linking 

them to make a new faces. The process of refining an edge is, consequently described 

as the process of making new vertices and linking them into new edges. Newly 

created nodes are linked on father / sons lists from existing nodes, as it is presented 

in Figure C.8. The active finite elements are dynamically reconstructed after the 

refinement process is finished. In addition to the classes already introduced, we have 

created the Particle class, which is a special kind of node, storing the nano-scale 

particle, utilized during modeling of the inter-particle interactions in the nano-scale. 

The particles are collected within element objects. Thus, there are macro-scale 

elements collecting multiple Nodes, and nano-scale elements, collecting multiple 

particles, as it has been already illustrated in Figure C.5. 

C.10.3  NODE-BASED SOLVER  

The next essential part of the multiscale application is an efficient multi-frontal 

solver. We have developed a node based solver, suitable for the adaptive multi-

physics computations, utilizing the hyper-matrix, working on the level of Nodes, 

independent on the spatial dimension and the polynomial order of approximation. 

The new solver has been described in [C42] based on the previous version [C43]. 
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Figure C.6 Class diagrams illustrating general relations between local shape function and node 

classes. 

 

Figure C.7 Class diagram illustrating relations between father and son nodes in the refinement 

tree 
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Figure C.8 Class diagram illustrating relations between father and son nodes in the refinement 

tree 
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Figure 1. Base functions in the interval [0,1] 

Figure 2. Base functions connected with vertices of the element 

Figure 3. Base functions connected with edges of the element 

Figure 4. Base functions connected with faces of the element 

Figure 5. Base functions connected with interior of the element 

Figure 6. 3D balls problem: mesh after the sixth iterations and solution over the mesh 

Figure 7. Sequence of meshes generated by the adaptive algorithm for continuous 

representation of human head 

Figure 8. Computations sequence from particular simulation steps of human head 

heated by the phone 

Figure 9. Digital representation of a two-phase material 

Figure 10. The conventional two-stage workflow that uses an h-FEM approach 

Figure 11. The modified workflow, a new intermediate stage marked in orange 

Figure 12. Scale used in subsequent figures 

Figure 13. X component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

Figure 14. Y component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

Figure 15. Z component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 (last 4 iterations of a pure h-FEM algorithm) 

Figure 16. Error decrease for pure h-FEM 
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Figure 18. X component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 for h-PBI + FEM 

Figure 19. Y component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 for h-PBI + FEM 

Figure 20. Z component of the thermal deformation vector of the squeezed dual 

phase material from Figure 9 for h-PBI + FEM 

Figure 21. Microstructure images used for computations 

Figure 22. Mesh density and p-refinement levels after 10 and 20 iterations for the first 
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Figure 23. Mesh density and p-refinement levels after 10 and 20 iterations for the 

second microstructure 

Figure 24. Mesh density and p-refinement levels after 30 iterations for the third 
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Figure 26. The approximation of material data after 20 iterations for the second 
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Figure 27. The solution to the heat transfer problem over that mesh (temperature 

scalar field). 

Figure 28. The approximation of material data after 20 iterations for the third 

microstructure. 

Figure 29. The solution to the linear elasticity problem (norm of the displacement 

vector) over a further refined mesh. 

Figure 30. Convergence curves, nrdof – number of degrees of freedom, error – 

absolute error decrease rate in terms of H1 norm. 

Figure 31. Computation sequence for projection pre-processor algorithm for the 

function with maximum at one corner of the cube 
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Figure 32. Execution of the solver over the regular cubic mesh results in identical 

sub-branches of the elimination tree 

Figure 33. Naming convention for an element 

Figure 34. Theoretical estimations of a proportion of computational time saved 

thanks to the subtree reuse optimization on the exemplary problem 

Figure 35. Theoretical estimations of a proportion of memory usage saved thanks to 

the subtree reuse optimization on the exemplary problem 

Figure 36. Exemplary graph transformations for generating of the structure of the 

mesh 

Figure 37. Derivation of eight finite element mesh 
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Figure 41. X, Y and Z components of the displacement vector field for the interior 

modeled by linear elasticity with thermal expansion coefficient 

Figure 42. Results of the non-linear model allowing for large deformations, with 

quadratic potentials 

Figure 43. 3D mesh for multi-scale simulations. The blue color denotes the macro-
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model 

Figure 44. Top panel: Execution time of the solver without reuse Bottom panel: 

Execution time of the solver with reuse 

Figure 45. Speedup of the reuse solver 

Figure 46. The scheme of problem domain division between applicable models 
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Figure 47. The solutions of the multi-scale problem. The red lines denote the solution, 

the blue lines denote the order of approximation on the FEM domain. First panel: 

The solution obtained with the meso-scale model defined over the entire domain. 

Second panel: The solution obtained over the manually hp refined mesh. 

Figure B.1. Steps of SFIL 

Figure B.2. Shrinkage of the feature after removal of the template. the picture 

courtesy of prof. Grant C. Wilson from University of Texas at Austin 

Figure B.3. A pair of interacting particles 

Figure C.1. Mesh class diagrams. 

Figure C.2. Shape functions class diagrams. 

Figure C.3. Dependencies between particle classes of different types. 

Figure C.4. Class diagram illustrating relations between nodes: vertices, edges, faces 

and interiors. 

Figure C.5. Class diagram illustrating general relation between Element and Node 

classes. 

Figure C.6. Class diagrams illustrating general relations between local shape function 

and node classes. 

Figure C.7 Class diagram illustrating relations between father and son nodes in the 

refinement tree 

Figure C.8 Class diagram illustrating relations between father and son nodes in the 

refinement tree 
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Algorithm 1. Algorithm of source data adaptive pre-processor 

Algorithm 2. Modification of lines 4 and 9 in the algorithm of source data adaptive 
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