
Akademia Górniczo-Hutnicza
im. Stanisława Staszica w Krakowie

Wydział Informatyki, Elektroniki i Telekomunikacji

Katedra Informatyki

Praca doktorska

Maciej Woźniak

Solwery izogeometryczne dla różnych architektur
maszyn równoległych bazujące na teorii śladów

Promotor:
dr hab. Maciej Paszyński
prof. nadzwyczajny AGH

Kraków 2017

AGH
University of Science and Technology in Krakow

Faculty of Computer Science, Electronics and Telecommunications

Department of Computer Science

Dissertation for the degree of
Doctor of Philosophy

Maciej Woźniak

Trace theory based isogeometric solvers for different
parallel architectures

Supervisor:
Maciej Paszyński, Ph.D.
Associate Professor

Krakow 2017

2

Acknowledgements

I would like to express my deepest gratitude to Professor
Maciej Paszyński for supporting me in my research efforts.
All his guidance, assistance and persistence that were key
to successful completion of my research concluded with this
thesis. This research was supported by the National Science
Centre, Poland grants OPUS no. DEC-2012/07/B/ST6/01229
"Adaptive and isogeometric parallel strategies for the efficient,
accurate solution of difficult non-stationary problems" and
PRELUDIUM no. DEC-2014/15/N/ST6/04662 "Alternating
directions parallel solver for isogeometric L2 projection", and by
Dean’s grants from Faculty of Computer Science, Electronics,
and Telecommunication. I would also like to acknowledge prof.
Victor Calo for supporting my visits at King Abdullah University
of Science and Technology (KAUST), prof. Keshav Pingali and
prof. Leszek Demkowicz for supporting my visits at Institue for
Computational and Engineering Science (ICES), The University
of Texas at Austin.

M. Woźniak Isogeometric solvers

Dedicated to my parents, wife
Kamila, and children.

5

Streszczenie

W niniejszej pracy zaprezentowano teoretyczne oszacowanie kosztu obliczeniowego dokładnego solwera
wielofrontalnego dla izogeometrycznej metody elementów skończonych uruchamianego na maszynach
równoległych z pamięcią rozproszoną. Teoretyczne szacowanie zarówno kosztu obliczeniowego jak i kosztu
komunikacji solwera dokładnego zostało wykonane dla przypadków 2D oraz 3D, z zachowaniem globalnej
ciągłości Cp−1 dla rozwiązania izogeometrycznego.

Następnie zaprezentowano wersję równoległą algorytmu zmienno-kierunkowego solwera izogeometrycz-
nego L2 projekcji (ADS) do rozwiązywania problemów niestacjonarnych zmiennych w czasie. Algorytm
ten został opisany za pomocą pseudokodu. Zaprezentowane są również teoretyczne szacowania kosztu obli-
czeniowego oraz komunikacji pojedynczego kroku czasowego dla algorytmu równoległego. Przedstawiona
jest analiza całkowania dla izogeometrycznej metody elementów skończonych.

W szczególności pokazano, że dla solwerów izogeometrycznych, dla B-spline-ów wyższych rzędów,
znaczącym kosztem przy wykonywaniu sekwencyjnym na CPU jest generacja macierzy frontalnych.
Algorytm całkowania zaprezentowany został za pomocą sekwencji podstawowych niepodzielnych zadań
oraz relacji zależności pomiędzy nimi. Te podstawowe zadania zdefiniowane są dla poszczególnych kroków
całkowania dla zadanych punktów całkowania. Zaprezentowany został sposób przygotowywania zestawów
niezależnych zadań, które mogą być wykonywane niezależnie na kracie graficznej. Do tego celu został
użyty graf pokazujący zależności pomiędzy poszczególnymi zadaniami algorytmu całkowania.

Teoretyczne szacowania dla solwera wielofrontalnego zostały zweryfikowane poprzez wykonanie szeregu
eksperymentów z wykorzystaniem trzech równoległych solwerów wielofrontalnych: MUMPS, PaStiX oraz
SuperLU, dostępnych w pakiecie obliczeniowym PETIGA, rozszerzającym PETSc. Teoretyczne szacowania
dla algorytmu ADS zostały porównane z wynikami eksperymentów wykonanych dla linuxowym klastrze
LONESTAR z Texas Advanced Computing Center przy wykorzystaniu 1728 procesorów. Zaprezentowano
również zastosowanie algorytmu ADS do rozwiązania wymagającego problemu przepływu nieliniowego
w wysoce niejednorodnych ośrodkach porowatych. Algorytm całkowania został zaimplementowany na
kartę graficzną oraz przetestowany na szeregu danych numerycznych. Czas obliczeń algorytmu całkowania
równoległego na karcie graficznej został porównany z czasem obliczeń algorytmu całkowania sekwencyjnego
na CPU. Wszystkie wyniki zostały również porównane z oszacowaniami teoretycznymi.

Abstract

In this thesis we present a theoretical estimation of the computational costs for isogeometric multi-
frontal direct solver executed on parallel distributed memory machines. We estimate theoretically both
the computational cost and the communication cost of a direct solver for the two-dimensional (2D) case,
and for the three-dimensional (3D) case for the Cp−1 global continuity of the isogeometric solution.

Later we present a parallel version of the alternating directions isogeometric L2 projections algorithm
(ADS) for solving non-stationary time dependent problems. The algorithm is described in pseudo-code.
The theoretical estimations on the computational and communication complexities for a single time step
of the parallel algorithm are presented. We analyze the integration for isogeometric finite element method
solvers.

In particular, we show that isogeometric solvers with higher order B-splines spend significant amount
of time for generation of the element frontal matrices when executed sequentially on CPU. The integration
algorithm is represented as a sequence of basic undividable computational tasks and the dependency
relation between them is identified. The basic tasks are defined for particular steps of the integration

M. Woźniak Isogeometric solvers

6

algorithm, for given integration points. We show how to prepare independent sets of tasks that can be
automatically scheduled and executed concurrently in a GPU card. This is done with the help of the
graph expressing the dependency between tasks, constructed for the integration algorithm.

The theoretical estimates for multi-frontal solver are verified with numerical experiments performed
with three parallel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available through PETIGA
toolkit built on top of PETSc. The theoretical estimates for ADS are compared with numerical experiments
performed on the LONESTAR Linux cluster from Texas Advanced Computing Center, using 1728 processors.
We also present the application of the method for numerical solution of the challenging problem of nonlinear
flows in highly-heterogeneous porous media. The integration algorithm is implemented on GPU and tested
on a sequence of numerical examples. The execution time of the concurrent GPU integration is compared
with the sequential integration executed on CPU. All resuls have been compared with the theoretical
estimates.

M. Woźniak Isogeometric solvers

Table of contents

1. Introduction ... 9

1.1. Motivation... 9

1.2. Purpose of this book ... 10

1.2.1. Main thesis .. 10

1.2.2. Structure of this book ... 10

1.3. State of the art.. 11

1.3.1. Isogeometric finite element method ... 11

1.3.2. Direct and iterative solvers.. 11

1.3.3. Generation of element matrices for finite element method computations.................... 12

1.3.4. Alternating directions solver for isogeometric L2 projections...................................... 12

1.3.5. Isogeometric L2 projection for time dependent problems.. 13

1.3.6. Open problems .. 13

1.3.7. Main scientific results .. 15

2. Computational complexities of classical parallel multi-frontal solver for distributed
memory cluster .. 16

2.1. Schur Complement .. 16

2.2. The multi-frontal solver .. 17

2.3. Summary of the estimates... 22

3. Parallel alternating direction algorithm for isogeometric L2 projections........................ 23

3.1. Parallel Isogeometric L2 Projection Algorithm... 23

3.2. Complexity analysis .. 24

3.2.1. Integration over one element ... 24

3.2.2. Integration over all elements ... 25

3.2.3. Solve .. 25

3.2.4. Gathering data .. 26

3.2.5. Reorder data.. 26

3.2.6. Scattering data .. 26

3.2.7. Total complexity.. 26

4. Trace theory based analysis of concurrency of the integration for IGA-FEM 28

4.1. The integration algorithm... 28

4.1.1. Linear basis functions.. 29

4.1.2. Quadratic basis functions .. 31

7

TABLE OF CONTENTS 8

4.1.3. Higher order basis functions .. 32

4.2. Selection of tasks and construction of tasks graph for the integration algorithm 33

4.2.1. Linear basis functions.. 33

4.2.2. Higher order basis functions .. 34

4.3. Parallel OpenMP implementation... 35

5. Numerical results .. 38

5.1. Classical parallel multi-frontal solver for distributed memory cluster................................... 38

5.1.1. Two-dimensional case .. 38

5.1.2. Strong scaling efficiency... 40

5.1.3. O
(
Np2) cost ... 44

5.1.4. Three-dimensional case.. 47

5.1.5. O
(
N4/3p2) cost... 50

5.2. Parallel isogeometric L2 projection for distributed memory machines.................................. 53

5.3. Integration and solve proportions ... 59

5.4. Comparison of GPU and CPU integration time ... 61

5.5. OpenMP.. 64

5.6. Non-linear flow in heterogenous media ... 66

6. Conclusions and future work .. 71

Appendix A. Alternating directions for isogeometric L2 projections 74

Appendix B. Complexity analysis of the sequential isogeometric L2 projection algorithm 80

B.0.1. Integration over one element ... 80

B.0.2. Integration over all elements ... 81

B.0.3. Solution ... 81

B.0.4. Reorder data.. 81

B.0.5. Total complexity.. 81

Appendix C. Derivation of element matrices and right-hand-side vector for the isoge-
ometric L2 projection problem ... 83

List of figures... 84

List of tables .. 87

Abbreviations .. 88

Bibliography .. 89

M. Woźniak Isogeometric solvers

Chapter 1
Introduction

1.1. Motivation

The key motivation for this work is:

1. Computing finite element method (just like with any other mesh-based methods) requires generation
of two or three-dimensional computational meshes, along with material functions. Classical methods
use different polynomials for basis functions to represent geometry and numerical results. We
intend to use the isogeometric finite elements method [3, 12, 13, 16, 17], which allows using same
functions (B-splines) both for geometry description and solving the numerical problem. We plan
to use isogeometric finite elements method to generate the continuous approximation of non-linear
parabolic equations. The isogeometric representation allows performing computations for problems
requiring higher continuity of basis functions than traditional finite elements method. Current
methods of solving nonlinear parabolic problems are very expensive. We expect that using a parallel
version of the Alternating Direction Solver (ADS), a recent direct solver algorithm [43], with explicit
Euler scheme, will reduce the computational cost significantly. We plan to develop a parallel version of
the alternating direction solver, for simulations of nonlinear parabolic problems and their non-linear
extensions, using explicit Euler scheme with isogeometric finite elements method.

2. Based on the initial test on isogeometric algorithms in different parallel implementations, we expect
that a parallel version of the code for shared memory architecture might be required. Massively
parallel model for shared memory is planned. To derive an efficient parallel implementation, we
plan to make a formal analysis of the problem concurrency using graph dependency between tasks,
based on the practical application of trace theory [35, 61, 78]. We also plan to perform analysis
of concurrency of isogeometric solver using PCAM (Partitioning, Communication, Agglomeration,
Mapping) methodology [42, 65] targeting distributed memory parallel machines. Additionally, we
would like to target hybrid architecture parallel machines, as a result of cascade of the two above
models.

3. We plan to estimate the computational and communication complexities of parallel isogeometric
solver algorithm on parallel distributed memory machines. We are going to determine the convergence
and scalability of the two and three-dimensional model projection algorithms for different input data
experimentally, with the application of the simulations of extraction of oil and gas formations in the
ground [4, 55].

9

1.2. Purpose of this book 10

1.2. Purpose of this book

1.2.1. Main thesis

The main thesis of this book may be summarized as follows:

It is possible to develop new effective direct solver algorithms for Isogeometric Finite Element Method
based on concurrency analysis conducted by trace theory. Developed solvers will have better scalability
compared to existing direct solvers.

The goal of this dissertation is to propose a parallel trace theory-based algorithm for the isogeometric
L2 projections. The algorithm will allow performing fast simulations with explicit dynamics. They involve
a sequence of the isogeometric L2 projections to be executed in every time step. Our algorithm will deliver
an almost ideal scalability on hybrid memory Linux cluster as a result of merging:

(a) parallel Alternating Directions Solver delivering almost ideal parallel scalability on distributed
memory Linux cluster and

(b) parallel trace-theory based integration delivering almost ideal parallel scalability on shared memory
Linux node and GPGPU

1.2.2. Structure of this book

This book is devided into six chapters and three appendices.
Chapter 2 contains Introduction to sparse matrix multifrontal solvers (Sections 2.1 and 2.2). This is
followed by theoretical computational cost estimates (Section 2.3).

Chapter 3 comprises one of two main theoretical parts of this thesis- a parallel version of algorithm
from Appendix A. At the beginning (Section 3.1) we present the parallel algorithm itself. It is followed by
complexity analysis (Section 3.2) and theoretical cost estimates.

Chapter 4 contains second main theoretical part of this thesis- a new parallel integration algorithm
based on trace theory analysis. Section 4.1 introduces integration algorithm, with some details described
in Appendix C. Further different types of basis functions are discussed in subsections: in 4.1.1- linear basis
functions, quadratic basis functions in 4.1.2 and higher order basis functions in 4.1.3. Selection of tasks
and construction of task graph is discussed in Section 4.2. Finally parallel OpenMP implementation is
discussed in Section 4.3.

Chapter 5 shows numerical results of algorithms presented in this thesis. Parallel different multi-frontal
solvers for IGA-FEM are included in Section 5.1, both in 2D (5.1.1) and 3D (5.1.4). They are followed
by parallel isogeometric L2 projection with ADS algorithm (Section 5.2). Section 5.3 shows proportions
between integration and total solution time for both multi-frontal (chapter 2) and ADS (3) solvers. Later
we introduce numerical results for comparison of integration time on both GPU and CPU in Section 5.4
as well as OpenMP integration time in Section 5.5. Finally we show application of previous algorithms for
solving non-liear flow in heterogeneous media in Section 5.6.

Chapter 6 contains the evaluation of all the obtained results and outlines the potential for future
research.

M. Woźniak Isogeometric solvers

1.3. State of the art 11

1.3. State of the art

1.3.1. Isogeometric finite element method

Classical higher-order finite element methods (FEM) using hierarchical basis functions [33, 34] maintain
C0-continuity between particular finite elements. The isogeometric analysis (IGA) has been introduced,
where B-splines are used as basis functions, and thus, IGA delivers Ck global continuity even on the
interfaces between particular finite elements [30].

The higher continuity obtained at element interfaces allows IGA to attain optimal convergence rates
for high polynomial orders of approximation, with a low number of degrees of freedom than classical FEM
methods [13]. IGA methods allow obtaining the solution of higher-order partial differential equations
(PDE) with elegance.

The IGA method has been applied to deformable shell theory [17], phase field modeling [31, 32], phase
separation simulations with either Cahn-Hilliard [49] or Navier-Stokes-Korteweg higher order models
[50]. The IGA methods have been also succesfully applied for solution of non-linear problems, such
as wind turbine aerodynamics [54], incompressible hyper-elasticity [38], turbulent flow simulations [26],
transportation of drugs in arterials [53] or the blood flow simulations [14, 23].

Nevertheless, the price to pay for the usage of higher order IGA methods is the higher computational
cost of solvers, since the IGA methods produce denser matrices [24, 28]. This is true for all implementations
of direct solvers [39, 40], including MUMPS solver [6], modern implementations for adaptive and higher
order methods [47] or graph-grammar based approach [67, 68, 69, 70].

1.3.2. Direct and iterative solvers

There are two most popular methods for solving a linear system of equations:

– direct

– iterative

The direct methods deliver an exact solution of the system of linear equations. The only source of error is
the round-off error resulting from execution of floating point operations. The iterative methods provide an
approximation of the solution, up to the prescribed accuracy. The computational cost of iterative solvers is
usually lower then the one of the direct solvers. However, the iterative solvers have several disadvantages:

– They often involve severe convergence problems. Thus, different solvers and different preconditioners
are needed for different application, see e.g. [41] for elasticity simulations, [52] for the propagation of
electromagnetic waves, [8] for fluid dynamics simulations, [15, 22, 25, 27, 46] for isogeometric finite
element method.

– In addition to the convergence problems, iterative solvers may be slower than direct solvers when
we solve a problem with multiple right-hand-sides. This is because once we have LU factorized the
problem within the direct solver; each new right-hand-side requires just one forward and backward
substitution.

– Iterative solvers may also be slower than direct solvers when several matrices with a common set of
rows and columns need to be solved, as it occurs in mesh-based methods when local grid refinements
are performed [2, 48, 64].

– Moreover, direct solvers are the main building block of most iterative solvers, e.g. multi-grid solvers.

M. Woźniak Isogeometric solvers

1.3. State of the art 12

Thus, direct solvers become essential in many applications.

There exist several direct methods for the solution of a linear system of equations. The fastest method
is LU factorization, also known as Gaussian elimination. State-of-the-art implementations of the LU
factorization algorithm for sparse matrices include the frontal [39, 56] and multi-frontal solvers [40, 47].
The latest trends in this area include efficient parallelization techniques (see e.g., [7, 60]). Moreover,
application-specific implementations take advantage of the data-structures of the Galerkin method, such
as the works of [19, 68, 69, 70, 79].

The system of linear equations generated for IGA simulations is usually solved with either multifrontal
direct solvers or iterative solvers, such as the ones available through PETSc library [9, 10, 11]. There
are also some modern linear computational cost solvers utilizing the concept of H-matrices, delivering
approximate solutions [72, 73]. However they work for eliptic positive definite problems only.

In this dissertation, we focus on the isogeometric L2 projection, which is a numerical kernel for explicit
dynamics simulations, and we show how to obtain fast parallel solver for distributed and hybrid memory
machines.

1.3.3. Generation of element matrices for finite element method computa-
tions

Before we call any solver, either direct or iterative, we need to generate a system of linear equations. It
is done by integrating some basis functions over particular finite elements. The formula for the integral
changes with the problem being solved, but the structure of the algorithm is the same.

The integration for higher order basis functions executed sequentially on a CPU is often expensive
[33, 34]. In general, for higher order basis functions, there are O(p) functions per single element in
one-dimensional problems (1D), and the integration requires O(p3) operations. In two-dimensions (2D)
integration requires O(p6) operations moreover, in three-dimensions (3D), it requires O(p9) operations
over a single element.

1.3.4. Alternating directions solver for isogeometric L2 projections

The alternating direction method was introduced to speed up the solution process of time-dependent
problems with Laplace equations solved using the finite difference method [20, 37, 71, 77]. The idea
was to introduce an intermediate time step and split the Laplace operator into separate operators, the
differentiations along particular axes. The similar method has been recently proposed for the case of
the computations of the L2 projections using the isogeometric finite element method [43]. The idea is
to utilize the tensor product structure of the B-spline basis functions and to express the projection
matrix (equivalent to the mass matrix) as the multiplication of the matrices with B-splines defined along
particular axes. The method is described with all the details in Appendix A. This method can also be
generalized to curvilinear geometries, by utilizing the conjugate gradient solver with the direction splitting
for the preconditioner [44]. Marcin Łoś has estimated the computational complexity of the sequential
alternating direction solver for isogeometric L2 projections in his Master Thesis. We summarize this result
in Appendix B.

M. Woźniak Isogeometric solvers

1.3. State of the art 13

1.3.5. Isogeometric L2 projection for time dependent problems

The isogeometric L2 projections can be applied for solution of time-dependent problems of the following
form:

∂u

∂l
− L(u) = f(x, t) in Ω× (0, T) (1.1)

u(x, 0)=u0(x) in Ω (1.2)

We transform the time dependent problem into the weak form:(
v,
∂u

∂t

)
Ω
−(v, L(u))Ω = (v, f)Ω ∀v ∈ V (1.3)

where
(f1, f2)Ω =

∫
Ω

f1f2dx (1.4)

Finally we can utilize Forward Euler scheme
∂u

∂t
≈ ut+1 − ut

∆t (1.5)(
v,
ut+1 − ut

∆t

)
Ω
− (v, L(ut))Ω = (v, ft)Ω ∀v ∈ V (1.6)

(v, ut+1)Ω = (v, ut + ∆t[L(ut) + ft])Ω (1.7)

The Euler scheme is actually equivalent to execution of the sequence of isogeometric L2 projections. Thus,
the parallel alternating directions method for isogeometric L2 projections can be applied as a fast solver
for explicit dynamics.

1.3.6. Open problems

In this dissertation, we plan to solve the following list of open problems, related to the development of
efficient direct solvers for three-dimensional simulations of non-stationary parabolic problems of the form

∂u(x)
∂t

−∇ ◦ (K(x)∇u) = h(x) (1.8)

as well as their non-linear modifications where parameterK(x) is a non-linear function, defined
over regular as well as curvilinear computational domain, using isogeometric finite element method
[3, 12, 13, 16, 17]. In other words, we have Lu = ∇ ◦ (k(x)∇u), however our results can be also applied to
other kind of L.

1. There exists the Alternating Direction Solver (ADS) sequential algorithm [45] for solutions of
particular time steps of the non-stationary problems of the above form Using the Euler scheme and
isogeometric finite element method with linear O(N) computational cost. However, this algorithm
does not have an efficient parallel version so far, targeting distributed memory parallel machine.

2. Difficult problems of non-linear flows in heterogeneous media, like the one presented in [4, 55] having
the applications to the simulations of extractions of oil and gas formations in the ground, required
solution of system of linear equations with several million unknowns (degrees of freedom), to be
solved in thousands of time steps. Execution of such the simulations requires the possibility of the
solution of systems of linear equations with 107 − 109 unknowns within several seconds - several
minutes. It is necessary to develop a fast parallel version of the ADS solver working over parallel
machines (shared memory nodes, Linux clusters with distributed memory, with local shared memory
nodes, GPU cards or clusters of GPU cards with hybrid memory). Only such efficient parallel solver
will enable accurate and cost-effective solutions for such applications.

M. Woźniak Isogeometric solvers

1.3. State of the art 14

3. The ADS direct solver algorithm works only in the case when the geometry is regular, the Jacobian is
constant, and the resulting projection problem is separable [45]. This is related to the case when the
geometry of the computational problem is regular and is equal to the three-dimensional cube [0, 1]3

[46]. In a case of solving the computational problem over three-dimensional non-regular domains,
with curvilinear shapes, defined employing B-splines or NURBS, the Jacobian is a complicated
function, which additionally changes from one-time step to the other. In such a case the ADS
algorithm can be applied as a preconditioner for iterative solver [35], to reduce the number of
iterations of the solver significantly. The only problem is to interface the parallel ADS solver with
several parallel iterative solvers. This can be done through interfacing the ADS solver with PETIGA
toolkit build on top of PETSc library [1].

4. Classical direct solvers, such as multifrontal direct solver executed on three-dimensional problems
has computational cost O(N2p3) in sequential mode and O(N4/3p2) in parallel mode, for the case
of Linux cluster with distributed memory [81] and similar computational cost for shared memory
GPU cards [79]. These computational costs are too large to be able to apply the multifrontal direct
solver for large three-dimensional non-stationary problems like the one considered in this work.

5. The development of an efficient parallel version of the ADS solver is necessary for the accurate,
efficient solution of a class of three-dimensional non-stationary computational problems considered
in this proposal. In particular, the simulations of non-linear flows in heterogeneous media performed
so far by using classical methods requires substantial simplifications and rough approximations of
input data [4, 55], due to the huge computational cost of direct methods.

6. The B-Spline basis functions of order p have their support over (p+ 1)d finite elements, where d is
the spatial dimension. This results in (p+ 1)d basis functions over each element. Thus generation of
element matrices is expensive and it requires some special parallelization techniques.

The main motivation of this dissertation is to obtain a fast, efficient parallel algorithm for the solution
of the non-stationary parabolic equations. In particular, we would like to solve the problem of non-
linear flow in heterogeneous media [4, 55] using isogeometric finite element method, a modern numerical
technique for solving stationary and non-stationary problems [3, 12, 13, 16, 17]. The problem of non-linear
flow is important in many geoengineering problems [4, 55], in particular to those related to reservoir
characterization and for location and extraction of oil and gas (including shell gas) bearing formations in
the ground.

In particular, we aim to solve the following equation

∂u(x)
∂t

−∇ ◦ (K(x, u, µ)∇u) = h(x) (1.9)

where u - pressure, K - permeability, h - forcing, domain D = [0, 1]3

K(x, u, µ) = Kq(x)e10u (1.10)

h(x) = 1 + sin(2πx1)sin(2πx2)sin(2πx3) (1.11)

where Kq is in range [1, 10]3. The values of Kq are presented in Figure 1.1. These values have been
generated according to the real data obtained from [4].

We solve the above problem by using Euler scheme in the weak form,

(ut+1, v)L2 = (ut + ∆t[∇ ◦ (Kq(x)e10u∇ut) + h(x)], v)L2∀v ∈ V (1.12)

M. Woźniak Isogeometric solvers

1.3. State of the art 15

where V is a space generated by three-dimensional B-spline basis functions. Kq and h are non-uniform
in space but constant in time. Initial condition u0 is three-dimensional ball with maximum value = 2 at
point (0.5, 0.5, 0.5), radius=0.33. The time step size is ∆t = 10−6 (in the dimensionless formulation, to
satisfy the Courant–Friedrichs–Lewy (CFL) condition of stability).

We would like to develop a fast, efficient parallel alternative direction solver for fast solution of this
computational problem.

Figure 1.1: Distribution of values of Kq material data over the computational domain.

1.3.7. Main scientific results

The main scientific results of the dissertation are the following:

1. We propose an efficient parallel algorithm of the isogeometric L2 projection for distributed memory
machines, using the trace theory approach.

2. We estimate the computational and communication complexities of state of the art parallel multi-
frontal solvers executed over the distributed memory parallel machines

3. We estimate the computational and communication complexities of isogeometric L2 projections
executed over the distributed memory parallel machines

4. We propose efficient algorithm of integration for isogeometric finite element method with B-splines
and NURBS for shared memory machines, using the trace theory approach

5. We provide an efficient implementation of the parallel isogeometric L2 projection for distributed
memory parallel machines

6. We provide an efficient implementation of integration for isogeometric finite element method for
shared-memory parallel machines

M. Woźniak Isogeometric solvers

Chapter 2
Computational complexities of classical
parallel multi-frontal solver for distributed
memory cluster

The main goal of this chapter is to present theoretical estimates of computational complexity for an
isogeometric multifrontal direct solver for distributed memory architecture. We derive estimates for the
complexity of the number of floating point operations (FLOPS) required to solve a system of linear
equations using a direct multifrontal solver on distributed memory parallel machine for two-dimensional
and three-dimensional problems.

2.1. Schur Complement

At the very beginning, we analyse cost of Shur Complement operation, since it is the main part of
multifrontal solver. By noticing, that Schur Complement is equivalent to partial forward elimination we
can estimate FLOPS.

We have a matrix M with q rows to be eliminated (we call these rows “fully assembled rows”) from
the matrix of size (q + r)× (q + r). We call the remaining r rows the “non-fully assembled rows”.

q

r

Figure 2.1: Visual explanation of q and r

16

2.2. The multi-frontal solver 17

To perform such elimination we have to eliminate q rows from a matrix with size (q+ r), so we have to:

– eliminate of the first row- (q + r)2 subtractions

– eliminate of the second row- (q + r − 1)2 subtractions

– . . .

– eliminate of the last row- (r + 1)2 subtractions

By subtractions we mean the following three things. First, we divide the row by diagonal entry. Next,
we subtract the eliminated row from it multiplied by the value from the column below the diagonal of
the eliminated row. The exact number of floating-point operations in equation 2.1 involves 3(m + r)2

operations instead of (m+ r)2 operations since for each entry we perform a multiplication, a division, and
subtraction. Then the total number of operations required for partial elimination S(q, r) is:

S(q, r) =
q∑

m=1
3(m+ r)2 = 3((r + 1)2 + (r + q)2)q

2 = O(q3 + q2r + qr2) (2.1)

Since we focus on parallel distributed memory machine we assume, that we can use one core per
processor. With this assumption in our estimate we can use term “cores” instead of “processors”. We also
assume that we have as many processors as row subtractions, thus we can perform all subtractions in
parallel and reduce the sequential cost S(q, r) to concurrent cost C(q, r) like

C(q, r) =
q∑

m=1
3(m+ r) = 3((r + 1) + (r + q))q

2 = O
(
q2 + qr

)
(2.2)

2.2. The multi-frontal solver

In order to estimate the computational cost of multi-frontal solver, let us notice that in isogeometric
finite element method, B-spline basis functions spread over multiple elements. Let us focus on quadratic
B-splines, in 2D, as presented in Figure 2.2.

Figure 2.2: Two-dimensional cubic B-Splines spead over (p+ 1)2 = 32 = 9 elements.

M. Woźniak Isogeometric solvers

2.2. The multi-frontal solver 18

Multi-frontal solver merges matrices related to patches of elements. Rows and columns in these matrices
are related to B-splines. A single row can be eliminated , if its B-spline is fully assembled. In other words,
a single B-spline can be eliminated, if all elements on which it has support, have been processed (merged),
and the corresponding matrices have been merged. Let decide that each computational domain contains
a cluster of Np elements. For IGA each patch is a set of p elements in each direction. To simplify let’s
assume, that the number of clusters in computational domain is (2s)d, where s ∈ Z and d is the spatial
dimension of the problem. Even without satisfying this assumption, the final limiting result that we derive
here is still true.

The idea of multifrontal solver is to eliminate unknowns related to interior nodes of each cluster, then
join each 2d clusters into one to produce (2s−1)d new clusters and continue with the elimination-join
procedure until the last 2d clusters are joint into one.

1 for i = 0, s− 1 :
2 Np = Np(i) = (2s−i)d

3 if i = 0, define Np(0) clusters.
4 else join old Np(i− 1) clusters to define Np(i) new clusters.
5 endif
6 Eliminate interior unknowns of each patch.
7 end for
8 Solve dense boundary problem.

In the parallel setup, the clusters are created on different sub-domains, and the merging process
mentioned in step 4 requires inter-processor communications.

An example of the algoritm is ilustrated in Figure 2.3 for the two-dimensional case with C1 quadratic
B-splines, (2s)d with s = 3 and d = 2, that is (23)2 = 64 clusters, each one with pd = 22 = 4 elements.

– In the first step depicted in Figure 2.3a, we define Np(0) = (23)2 = 64 clusters of elements. Nothing
is eliminated in this step.

– In the second step presented in Figure 2.3b we merge sets of four clusters from previous step to
create Np(1) = (22)2 = 16 clusters of 16 elements. We eliminate four basis functions from the interior
(noted with gray color).

– In the third step displayed in Figure 2.3c we join sets of four clusters from the previous step to
create Np(2) = (21)2 = 4 clusters. Next we eliminate 20 basis functions from the interior (noted in
Figure 2.3c by dark gray color), and we are left with an interface problem.

– We solve the dense interface problem.

Figure 2.4 ilustrates the algorithm for the three-dimensional case with quadratic B-Splines, (2s)d =
(22)3 = 64 clusters, each one with pd = 23 = 8 elements.

– In the first step depicted in Figure 2.4a we have Np(0) = 4× 4× 4 = 64 patches of 2× 2× 2 = 8
elements. We do not eliminate anything.

– In the second step presented in Figure 2.4b we have Np(1)− 2× 2× 2 = 8 patches of 4× 4× 4 = 64
elelemnts obtained from merging 8 patches. We can eliminate 2× 2× 2 = 8 basis functions from
interior

– Last step concerns one big patch and elimination of remaining 3D cross shape unknowns, plus the
boundary. See Figure 2.4c

M. Woźniak Isogeometric solvers

2.2. The multi-frontal solver 19

(a)
White and light gray colors denote different clusters of
four elements. We have defined here Np(0) = (23)2 = 64.
Nothing is eliminated in this step.

(b)
Merging of four clusters, two denoted by white and
two denoted by light gray color into new clusters of
16 elements. Dark gray colors denote elements whose
central B-splines are eliminated. We have created here
Np(1) = (22)2 = 16 clusters. We have eliminated 4 basis
functions from the interior (noted with grey color).

(c)
Merging of four clusters, into new clusters of 64 ele-
ments. We have created Np(2) = (21)2 = 4 clusters here.
Middle-gray color denotes elements whose B-splines
have been already eliminated. Dark gray color denotes
elements whose B-splines are eliminated at this step.

(d)
Merging of four clusters into new clusters of 256
elements. Central light gray color denotes elements
whose B-splines are eliminated at this step.

Figure 2.3: The scheme of the multi-frontal solver algorithm execution over a two-dimensional grid for
quadratic B-splines. Each element contains the entire support of one B-spline with its maximum value
attained at its center.

M. Woźniak Isogeometric solvers

2.2. The multi-frontal solver 20

(a)
White and light gray colors denote
different clusters of eight elements.

(b)
Merging of eight clusters, four de-
noted by white and four denoted
by light gray color into new clu-
sters of 64 elements. Dark gray co-
lors denote elements whose central
B-splines are eliminated.

(c)
Merging of eight clusters into new
clusters of 512 elements. Dark gray
color denotes elements whose B-
splines have been already elimi-
nated. Light gray color denotes a
3D cross with elements whose B-
splines are eliminated at this step.

Figure 2.4: The scheme of the multifrontal solver algorithm execution over a three-dimensional grid for
quadratic B-splines. Each element contains the entire support of one B-spline with its maximum value
attained at its center.

As shown in [28], the number of FLOPs required by sequential version of the shown algorithm can be
expressed as:

s−1∑
i=0

Np(i) · S(i) (2.3)

where S(i) is the cost of Shur compelement at i-th step, and s = log2(N1/d), and Np(i) is number of
patches in step i. Following notation of section 2.1 on the Shur complement, we define the number of
interior unknowns at the i-th step as q = q(i) and the number of interactiong unknowns at the i-th step
as r = r(i).

To estimate the computational and communication costs for the parallel distributed memory version
of the multifrontal solver, we assume that we have enough processors available on our Linux cluster and
that we have enough memory available on each node. For the estimation of the communication cost we
notice that the amount of data exchanged during the communication phase is dominated by the size of
the Schur complement matrices exchanged between processors.

M. Woźniak Isogeometric solvers

2.2. The multi-frontal solver 21

Under the given assumptions, the computational cost of parallel solver can be estimated as:

s−1∑
i=0

C(i)tcomp (2.4)

where tcomp denotes the time of performing a single FLOP operation, C(i) is the cost (in terms of FLOPs)
required to perform concurrent Schur complement computations at the i-th step, with concurrent row
subtractions executed simultaneously for all the matrices from the current i-th step. The number of
patches Np(i) is not present in 2.4 since we assume that all the patches can be processed in parallel (that
we have enough processors available).

The communication cost can be estimated as
s−1∑
i=0

(tinit + C(i)tcomm) (2.5)

where tinit denotes the initialization time of a single message, and tcomm denotes the time of communicating
single floating point data, and the amount of exchanged data is equal to the number of entries in the
matrix, which is equal to C(i). The number of patches Np(i) is not present in 2.5 since we assume that we
can perform all the communications over one level at the same time (that we have enough communication
channels).

Now we can estimate the computational and communication complexities for both sequential and
parallel version in the following way:

q(0) r(0) q(i) , i>0 r(i) , i>0 Np(i) Ssequential(i) Sparallel(i) C(i)

2D-IGA Cp−1 O(1) O(p2) O(2ip2) O(2ip2) O((2s−i)2) O(23ip6) O(22ip4) r(i)2

3D-IGA Cp−1 O(1) O(p3) O(22ip3) O(22ip3) O((2s−i)3) O(26ip9) O(24ip6) r(i)2

Table 2.1: Number of interior and interacting unknowns at each step of the multi-frontal solver.

– q(0) stands for number of interior unknowns in the first smallest patch of elements. In 2D these are
2× 2 patches, in 3D these are 2× 2× 2 patches.

– r(0) defines the number of interacting unknowns in the first smallest patch.

– q(i), i > 0 is the number of interior unknowns in the following steps, after merging 4 patches from
previous level.

– r(i), i > 0 is the number of interface unknowns (B-spline basis functions whose support is not
contained inside the patch).

– Np(i) stands for the number of patches at step i.

In general in 2D we have O(2ip2) unknowns on the interface and interior, and in 3D we have O(22ip3).
For the parallel version, we distribute at the i-th step all Np(i) patches over Nproc processors, and if
Nproc > Np(i), the cost S(i) over each patch will be further subdivided among the available processors
per patch. Now refering to table 2.1 and equation 2.1 we have q = q(i) and r = r(i) and the cost of
elimination of interior unknowns is:

S(i) = O(q(i)3

min{Nproc(i), q(i)}
+ q(i)r(i)2

min{Nproc(i), r(i)}
), where Nproc(i) = max{1, Nproc

Np(i)
} (2.6)

M. Woźniak Isogeometric solvers

2.3. Summary of the estimates 22

Notice, that for sufficiently large number of processors Nproc, the number of FLOPS reduces to:

S(i) = O(q(i)2 + q(i)r(i)) (2.7)

while for serial implementation the number of FLOPS remains:

S(i) = O(q(i)3 + q(i)r(i)2) (2.8)

2.3. Summary of the estimates

– 2D IGA:

FLOPs =
s−1∑
i=0

Np(i) · S(i) = Np(0) · S(0) +
s−1∑
i=1

Np(i) · S(i)

= 22sp4 +
s−1∑
i=1

22(s−i)23ip6 = O(22sp4 + 23sp6)

= O(N3
pp

6) = O(N1.5p3)

Parallel cost =
s−1∑
i=0

C(i)comp +
s−1∑
i=0

(tinit + C(i)tcomm)

= r(0)2tcomp +
s−1∑
i=1

C(i)comp + tinit + r(0)2tcomm +
s−1∑
i=1

(tinit + C(i)tcomm)

= tinit+p4tcomp +
s−1∑
i=1

22ip4tcomp + p4tcomm+
s−1∑
i=1

(
tinit + 22ip4tcomm

)
= O(p4tcomp + 22sp4tcomp + stinit + p4tcomm+22sp4tcomm)

= O(Np2tcomp + log(N0.5)tinit +Np2tcomm)
(2.9)

– 3D IGA:

FLOPs =
s−1∑
i=0

Np(i) · S(i) = Np(0) · S(0) +
s−1∑
i=1

Np(i) · S(i)

= 23sp6 +
s−1∑
i=1

23(s−i)26ip9 = O(23sp6 + 26sp9)

= O(N3
pp

6 +N6
pp

9) = O(N2p3)

Parallel cost =
s−1∑
i=0

C(i)comp +
s−1∑
i=0

(tinit + C(i)tcomm)

= r(0)2tcomp +
s−1∑
i=1

C(i)comp + tinit + r(0)2tcomm +
s−1∑
i=1

(tinit + C(i)tcomm)

= tinit+p6tcomp +
s−1∑
i=1

24ip6tcomp + p6tcomm+
s−1∑
i=1

(
tinit + 24ip6tcomm

)
= O(p6tcomp + 24sp6tcomp + stinit + 24sp6tcomm)

= O(N4/3p2tcomp + log(N1/3)tinit +N4/3p2tcomm)
(2.10)

From our estimates, it implies that both computation and communication complexities are of the order
of O(Np2) (2D IGA-FEM) and O(N4/3p2) (3D IGA-FEM). These are relatively high computation and
communication complexities, and thus there is a need to design and efficient parallel for isogeometric L2
projections, that can be used in parallel explicit dynamics simulations of nonlinear flow in heterogenous
media. One possibility is to develop a parallel version of L2 projections algorithm described in Appendix
A. This is a subject of next chapter.

M. Woźniak Isogeometric solvers

Chapter 3
Parallel alternating direction algorithm for
isogeometric L2 projections

In this section we perform a classical Partitioning, Communication, Agglomeration, and Mapping (PCAM)
[42] analysis of the computational and communication complexities of the parallel alternating direction
algorithm for isogeometric L2 projections.

3.1. Parallel Isogeometric L2 Projection Algorithm

The sequential version of ADS is described in Appendix A. We propose a parallel version of the
algorithm [80], targeting distributed memory Linux cluster parallel machines.

The parallel variant of the isogeometric L2 projection algorithm generates data distributed in a uniform
way over a three-dimensional cube of processors, as depicted in Figure 3.1. There are three steps of the
algorithm where the data are gathered into OYZ, OXZ and OXY faces, respectively. The local 1D banded
problems are solved there, using the LAPACK library. The data are scattered into a cube of processors,
to proceed with the next step. The algorithm can be summarized as shown in Figure 3.1. The algorithm
performs isogeometric L2 projection over a cube domain with tensor product of Nx×Ny×Nz 1D B-spline
basis functions along x, y and z directions.

0 Integration

1a Gather within every row of processors into OYZ face
1b Solve NyNz 1D problems with Nx right hand sides
1c Scatter results onto cube of processors
1d Reorder right hand sides

2a Gather within every row of processors into OXZ face
2b Solve NxNz 1D problem with Ny right hand sides
2c Scatter results onto cube of processors
2d Reorder right hand sides

3a Gather in every row of processors into OXY face

23

3.2. Complexity analysis 24

3b Solve NxNy 1D problem with Nz right hand sides
3c Scatter results onto cube of processors
3d Reorder right hand sides

This algorithm is dedicated for distributed memory Linux cluster nodes. Later in Chapter 4, we will
show that by using the trace theory approach we can improve the scalability of the algorithm by one or
two orders of magnitude when switching to the hybrid memory parallel machines (namely the distributed
memory Linux cluster with all the nodes equipped with GPGPU).

Figure 3.1: Gathering and scattering data into three faces of the three-dimensional cube of processors

3.2. Complexity analysis

Complexity analysis is similar to the one presented in Appendix B.

3.2.1. Integration over one element

Every element is approximated by a set of polynomials in each direction where p is the order, and
there are p+ 1 B-splines over the element. We denote px as the degree in x direction and py and pz as
degrees in other directions.

The integration of the right hand side requires using Gaussian quadrature with (px + 1)(py + 1)(pz + 1)
points. The integral over each element is:

(px+1)(py+1)(pz+1)∑
m=1

wmB
i
x(xm)Bjy(ym)Bkz (zm)f(xm, ym, zm)dxdydz (3.1)

where wm denotes the Gaussian quadrature weights, Bix, Bjy, Bkz denote the B-spline basis functions
in x, y, and z directions respectively, computed at xm, ym, zm Gaussian quadrature points, and we
have i = 1, . . . , px + 1, j = 1, . . . , py + 1 and k = 1, . . . , pz + 1 entries to compute. Assume that for
d = 1, . . . , (px + 1)(py + 1)(pz + 1) counting value at given point for given element and function f costs
Φf ((px + 1)2(py + 1)2(pz + 1)2) arithmetic operations where Φf is the function depending on f .
The formula for Φf depends on the form of f . If f is given by a prescribed formula, then cost of computing
a value of f is constant and Φf is constant. Otherwise when f is given by a combination of B-splines

f =
px+1∑
o=1

py+1∑
q=1

pz+1∑
r=1

BoxB
q
yB

r
zfoqr (3.2)

M. Woźniak Isogeometric solvers

3.2. Complexity analysis 25

then

Φf (xm) = (px + 1)(py + 1)(pz + 1) (3.3)

and total cost will be

(px + 1)3(py + 1)3(pz + 1)3 (3.4)

In the following part of the paper we assume that f is described by a given formula, and so the cost of
computation a value of f at given point is constant.

3.2.2. Integration over all elements

Since we have a mesh of Nx ×Ny ×Nz elements (where Nx, Ny, Nz denotes the number of elements
in the x, y and z direction, respectively) the total cost of integration will be

(px + 1)2(py + 1)2(pz + 1)2NxNyNzΦf (3.5)

We can do every integration with zero communication cost. When we have cuboid of cxcycz cores it can
be done in:

(px + 1)2(py + 1)2(pz + 1)2NxNyNzΦf

cxcycz
(3.6)

with computational complexity of

O(
p2
xp

2
yp

2
zNxNyNz

cxcycz
) (3.7)

3.2.3. Solve

In each step of the algorithm we LU factorize a banded matrix resulting from one dimensional B-spline
basis function of order p. We do it on a face of the three-dimensional cuboid of processors. Let N be the
number of elements in one direction. Then, the banded matrix MN of size N with 2p+ 1 diagonal blocks
can be LU factorized in O(p2N) steps.
When solving problem in the x direction we have to LU factorize matrix MNx of size Nx with 2px + 1
diagonal blocks and we have Ny

cy
× Nz

cz
right hand sides, each one of size Nx. The communication cost

is zero since we have cy × cz CPUs solving sequentially at the same time. Solving in x direction using
Thomas algorithm over each of these processors results in a computational complexity

O
(
Nxp

2
x

Ny
cy

Nz
cz

)
(3.8)

The solution complexity over y and z directions can be estimated in analogous way as

O
(
Nyp

2
y

Nx
cx

Nz
cz

)
(3.9)

and

O
(
Nzp

2
z

Nx
cx

Ny
cy

)
(3.10)

this results in computational complexity

O

(
(p2
xcx + p2

ycy + p2
zcz)(NxNyNz)

cxcycz

)
(3.11)

M. Woźniak Isogeometric solvers

3.2. Complexity analysis 26

3.2.4. Gathering data

While collecting data in x direction we need to collect information from cxcycz − cycz CPUs into cycz
CPUs. Each processor has Nx

cx

Ny

cy

Nz

cz
data. We apply a torus communication structure available on a linux

cluster. This implies linear communication complexity in each row of processors in each direction and
gives us communication complexity of:

O
(
Nx

Ny
cy

Nz
cz

)
(3.12)

Additionally, the gathering data along y and z directions results in the communication complexity of:

O
(
Ny

Nx
cx

Nz
cz

)
(3.13)

and
O
(
Nz

Nx
cx

Ny
cy

)
(3.14)

Summing, the total communication complexity of gathering data is equal to

O
(

(cx + cy + cz)NxNyNz
cxcycz

)
(3.15)

3.2.5. Reorder data

After processing data in the x-direction we need to perform the reorder of data over each CPU before
processing data along the y direction. Similar reordering applies after processing data in the y-direction
and before processing data in the z-direction. The computational complexity of each of the two reorders,
executed over each processor is equal to

O
(
NxNyNz
cxcycz

)
(3.16)

3.2.6. Scattering data

Scatter is just an inverse of the gather, and its communication complexity is the same as the cost of
the gather operation

O
(

(cx + cy + cz)(NxNyNz)
cxcycz

)
(3.17)

3.2.7. Total complexity

From the discussion above, we conclude that we can construct isogeometric projection solver with the
total cost (

p2
xp

2
yp

2
zNxNyNz

cxcycz

)
tcomp +

(
(p2
xcx + p2

ycy + p2
zcz)(NxNyNz)

cxcycz

)
tcomp+

+
(
NxNyNz
cxcycz

)
tcomp +

(
(cx + cy + cz)NxNyNz

cxcycz

)
tcomm

(3.18)

for arbitrary polynomial orders px, py, pz, dimension sizes Nx, Ny, Nz and processors numbers cx, cy,
cz, where tcomp is the cost of processing a single floating point operation, and tcomm is the cost of
communicating a single byte.

Assuming
Nx = Ny = Nz = N1/3, px = py = pz = p, cx = cy = cz = c1/3 (3.19)

M. Woźniak Isogeometric solvers

3.2. Complexity analysis 27

we have the following cost (
p6N

c
+ p2N

c2/3
+ p3N

c

)
tcomp +

(
N

c2/3

)
tcomm (3.20)

which implies the computational complexity

O
(
p6N

c

)
(3.21)

and communication complexity

O
(
N

c2/3

)
(3.22)

The most expensive part of the algorithm is the integration, but the good news is that it is almost
perfectly parallelizable on distributed, shared and hybrid memory architectures, as we will show in the
next chapters.

M. Woźniak Isogeometric solvers

Chapter 4
Trace theory based analysis of concurrency of
the integration for IGA-FEM

The purpose of this chapter is to present trace theory based analysis of concurrency of the integration,
which is the most expensive part of the alternating direction solver for isogeometric L2 projections. We
refer to Appendix C for the derivation of the element matrices and right-hand-sides for the isogeometric
projection problem. We focus on 2D problem for simplicity, but this result is extendedible to 3D case as
well.

4.1. The integration algorithm

We start from the element matrices and right hand sides for the isogeometric L2 projection problem
as defined in Appendix C.∑

i=1,...,Nx,j=1,...,Ny

ai,j(Bi,j;p, Bk,l;p) = (F,Bk,l;p) k = 1, . . . , Nx, l = 1, . . . , Ny (4.1)

Using Gaussian quadrature, the definition of Bk,l;p(x1, x2) = Nk;p(x1)Nl;p(x2), and the definition
of the scalar product we can see that the integration over the domain can be presented by a weighted
summation over Gaussian points.

∫
Ω
Ni;p(x1)Nj;p(x2)Nk;p(x1)Nl;p(x2)dx1dx2 =

∑
n
wnNi;p(xn1)Nj;p(xn2)Nk;p(xn1)Nl;p(xn2)

∀i, k = 1, . . . , Nx, j, l = 1, . . . , Ny
(4.2)

and

∫
Ω
Nk;p(x1)Nl;p(x2)dx1dx2 =

∑
n
wnNk;p(xn1)Nl;p(xn2)

∀k = 1, . . . , Nx, l = 1, . . . , Ny
(4.3)

for a given p, where (x1
n, x

2
n) and wn denotes the Gaussian quadrature integration points and weights.

For interfacing with either a direct or an iterative solver, an alternating directions solver, the mesh is
partitioned into “elements”, as illustrated in Figure 4.1. Next, element frontal matrices are generated by
performing the integration over particular elements.

28

4.1. The integration algorithm 29

Figure 4.1: Partition of the computational mesh into elements

4.1.1. Linear basis functions

For linear basis functions, we take 2 ∗ 2 = 4 two-dimensional B-splines, each of which is the tensor
product of two one-dimensional B-splines. This is illustrated in Figure 4.2.

Figure 4.2: Supports of linear B-spline basis functions over a single element

(Bk−1,l−1;1, Bk−1,l−1;1) (Bk,l−1;1, Bk−1,l−1;1) (Bk−1,l;1, Bk−1,l−1;1) (Bk,l;1, Bk−1,l−1;1)

(Bk−1,l−1;1, Bk,l−1;1) (Bk,l−1;1, Bk,l−1;1) (Bk−1,l;1, Bk,l−1;1) (Bk,l;1, Bk,l−1;1)

(Bk−1,l−1;1, Bk−1,l;1) (Bk,l−1;1, Bk−1,l;1) (Bk−1,l;1, Bk−1,l;1) (Bk,l;1, Bk−1,l;1)

(Bk−1,l−1;1, Bk,l;1) (Bk,l−1;1, Bk,l;1) (Bk−1,l;1, Bk,l;1) (Bk,l;1, Bk,l;1)

Table 4.1: Frontal matrix with linear basis functions and the corresponding tasks names

A frontal matrix for the case of linear basis functions is illustrated in Table 4.1. The frontal matrix
is obtained from integration over a single finite element Ek,l, where four basis functions have non-zero
support, namely Bk−1,l−1;1, Bk,l−1;1, , Bk−1,l;1, Bk,l;1. Thus, the rows and columns of the frontal matrix
correspond to the four basis functions, moreover, its entries contain scalar products of all the combinations
of the basis functions. In other words, indices k, k− 1, l, l− 1 are used for element Ek,l relative numbering
of basis functions. The considerations presented here are identical for all elements Ek,l. Each entry of the

M. Woźniak Isogeometric solvers

4.1. The integration algorithm 30

frontal matrix is obtained by summing up the values of the scalar products at Gaussian integration points.
The computational tasks of evaluating the value of the scalar product at Gaussian integration point is
presented in Table 4.2 and denoted by t1i,j;k,l.

t1k−1,l−1;k−1,l−1 = t1k,l−1;k−1,l−1 =

(Bk−1,l−1;1(x1, x2), Bk−1,l−1;1(x1, x2)) (Bk,l−1;1(x1, x2), Bk−1,l−1;1(x1, x2))

t1k−1,l;k−1,l−1 = t1k,l;k−1,l−1 =

(Bk−1,l;1(x1, x2), Bk−1,l−1;1(x1, x2)) (Bk,l;1(x1, x2), Bk−1,l−1;1(x1, x2))

t1k−1,l−1;k,l−1 = t1k,l−1;k,l−1 =

(Bk−1,l−1;1(x1, x2), Bk,l−1;1(x1, x2)) (Bk,l−1;1(x1, x2), Bk,l−1;1(x1, x2))

t1k−1,l;k,l−1 = t1k,l;k,l−1 =

(Bk−1,l;1(x1, x2), Bk,l−1;1(x1, x2)) (Bk,l;1(x1, x2), Bk,l−1;1(x1, x2))

t1k−1,l−1;k−1,l = t1k,l−1;k−1,l =

(Bk−1,l−1;1(x1, x2), Bk−1,l;1(x1, x2)) (Bk,l−1;1(x1, x2), Bk−1,l;1(x1, x2))

t1k−1,l;k−1,l = t1k,l;k−1,l =

(Bk−1,l;1, Bk−1,l;1(x1, x2)) (Bk,l;1, Bk−1,l;1(x1, x2))

t1k−1,l−1;k,l = t1k,l−1;k,l =

(Bk−1,l−1;1(x1, x2), Bk,l;1(x1, x2)) (Bk,l−1;1(x1, x2), Bk,l;1(x1, x2))

t1k−1,l;k,l = t1k,l;k,l =

(Bk−1,l;1(x1, x2), Bk,l;1(x1, x2)) (Bk,l;1(x1, x2), Bk,l;1(x1, x2))

Table 4.2: Computational tasks responsible for evaluation of the values of scalar products of two-dimensional

linear basis functions over element Ek,l at Gaussian quadrature points.

In such case, it is necessary to compute 2 ∗ 2 = 4 linear basis functions at Gaussian integration points,
as presented in Table 4.3. Again, in this table, we have named particular tasks by t1i,j .

t1k,l = Bk,l;1(x1, x2) = Nk;1(x1)Nl;1(x2)

t1k,l−1 = Bk,l−1;1(x1, x2) = Nk;1(x1)Nl;1(x2)

t1k−1,l = Bk−1,l;1(x1, x2) = Nk−1;1(x1)Nl;1(x2)

t1k−1,l−1 = Bk−1,l−1;1(x1, x2) = Nk−1;1(x1)Nl;1(x2)

Table 4.3: Computational tasks responsible for evaluation of the values of two-dimensional linear basis
functions over element Ek,l at Gaussian quadrature points.

The computational tasks of evaluating the linear basis functions involve tensor products of 2 + 2 = 4
one-dimensional linear B-splines. This is represented in Table 4.4, where we have named particular tasks
by t1i .

M. Woźniak Isogeometric solvers

4.1. The integration algorithm 31

t1k = t1k−1 =

Nk;1(x1) Nk−1;1(x1)

t1l = t1l−1 =

Nl;1(x2) Nl−1;1(x2)

Table 4.4: Computational tasks responsible for evaluation of the values of one dimensional linear basis
functions over element Ek,l at Gaussian quadrature points.

4.1.2. Quadratic basis functions

For quadratic basis functions, we have 3 ∗ 3 = 9 tensor products of two one-dimensional B-splines. This
is illustrated in Figure 4.3.

Figure 4.3: Quadratic B-splines over a single element

A frontal matrix for the case of quadratic basis functions is illustrated in Table 4.5. The frontal matrix
is obtained from integration over a single finite element Ek,l, where nine basis functions have non-zero
support, namely Bk−2,l−2;2, . . . , Bk,l;1. Thus, the rows and columns of the frontal matrix correspond to the
nine basis functions, and its entries contain scalar products of all the combinations of the basis functions.
In other words, indices k, k − 1, k − 2 and l, l − 1, l − 2 are used for element Ek,l relative numbering
of basis functions. The considerations presented here are identical for all elements Ek,l. The polynomial
order of approximation p = 2 is fixed. Each entry of the frontal matrix is obtained by summing up the
values of the scalar products at Gaussian integration points. The computational tasks of computing the
value of the scalar product at Gaussian integration point is presented in Table 4.6 and denoted by t2i,j;k,l.

In such case, it is necessary to compute 3 ∗ 3 = 9 quadratic basis functions at Gaussian quadrature
points, presented in Table 4.7, with tasks t2i,j .

The computational tasks of computing the quadratic basis functions involve tensor products of 3+3 = 6
one-dimensional quadratic B-splines at the points, as presented in Table 4.8. The tasks are named as t2i .

M. Woźniak Isogeometric solvers

4.1. The integration algorithm 32

(Bk−2,l−2;2, Bk−2,l−2;2) . . . (Bk,l;2, Bk−2,l−2;2)

.

(Bk−2,l−2;2, Bk,l;2) . . . (Bk,l;2, Bk,l;2)

Table 4.5: Frontal matrix with quadratic basis functions

t2k−2,l−2;k−2,l−2 = . . . t2k,l;k−2,l−2 =

(Bk−2,l−2;2(x1, x2), Bk−2,l−2;2(x1, x2)) (Bk,l;2(x1, x2), Bk−2,l−2;2(x1, x2))

.

t2k−2,l−2;k,l = . . . t2k,l;k,l =

(Bk−2,l−2;2(x1, x2), Bk,l;2(x1, x2)) (Bk,l;2(x1, x2), Bk,l;2(x1, x2))

Table 4.6: Computational tasks responsible for evaluation of the values of scalar products of two-dimensional
quadratic basis functions over element Ek,l at Gaussian quadrature points.

t2k,l = Bk,l;2(x1, x2) t2k,l−1 = Bk,l−1;2(x1, x2) t2k,l−2 = Bk,l−2;2(x1, x2)

= Nk;2(x1)Nl;2(x2) = Nk;2(x1)Nl−1;2(x2) = Nk;2(x1)Nl−2;2(x2)

t2k−1,l = Bk−1,l;2(x1, x2) t2k−1,l−1 = Bk−1,l−1;2(x1, x2) t2k−2,l−1 = Bk−1,l−2;2(x1, x2)

= Nk−1;2(x1)Nl;2(x2) = Nk−1;2(x1)Nl−1;2(x2) = Nk−1;2(x1)Nl−2;2(x2)

t2k−2,l = Bk−2,l;2(x1, x2) t2k−2,l−1 = Bk−2,l−1;2(x1, x2) t2k−2,l−2 = Bk−2,l−2;2(x1, x2)

= Nk−2;2(x1)Nl;2(x2) = Nk−2;2(x1)Nl−1;2(x2) = Nk−2;2(x1)Nl−2;2(x2)

Table 4.7: Computational tasks responsible for evaluation of the values of two-dimensional quadratic basis
functions over element Ek,l at Gaussian quadrature points.

t2k = Nk;2(x1) t2k−1 = Nk−1;2(x1) t2k−2 = Nk−2;2(x1)

t2l = Nl;2(x2) t2l−1 = Nl−1;2(x2) t2l−2 = Nl−2;2(x2)

Table 4.8: Computational tasks responsible for evaluation of the values of one dimensional quadratic basis
functions over element Ek,l at Gaussian quadrature points.

4.1.3. Higher order basis functions

The scheme presented in subsection 4.1.1 and 4.1.2 for linear and quadratic basis functions, respectively,
can be generalized for arbitrary higher order basis functions.

In particular, over a single element Ek,l = [ξK , ξK+1]× [ηL, ηL+1] there are (p+1)(p+1) basis functions
defined as tensor products of one dimensional B-splines of order p

{Bm,n;p(x1, x2)}m=k−p,...,k;n=l−p,...,l = {Nm;p(x1)Nn;p(x2)}m=k−p,...,k;n=l−p,...,l (4.4)

so, it is necessary to compute their values at Gaussian quadrature integration points.

M. Woźniak Isogeometric solvers

4.2. Selection of tasks and construction of tasks graph for the integration algorithm 33

4.2. Selection of tasks and construction of tasks graph for the
integration algorithm

4.2.1. Linear basis functions

Let us focus first on the linear basis functions case. We identify basic computational tasks for the
integration algorithm and construct the alphabet of defined tasks as the computations performed by these
tasks on actual data, in our case, on the integration points. The analysis presented in this section follows
the theoretical plot given by the trace theory [35].

Definition 1. The alphabet of tasks for linear B-spline based basis functions consists of the particular
computational tasks executed during the integration process for linear B-spline basis functions, for a given
data, namely for a given integration point:

– Computations of the entries of the frontal matrix, e.g. t1k,l;k,l = (Bk,l;1, Bk,l;1) as expressed in Table
4.2,

– Computations of the values of linear basis functions at Gaussian integration points, e.g. t1k,l =
Bk,l;1(x1, x2) as expressed in Table 4.3,

– Computations of the values of one dimensional B-spline basis functions values at Gaussian integration
points, e.g. t1k = Nk;1(x1) as expressed in Table 4.4.

The generation of the frontal matrix involves the computation of the values of scalar products
(Bk,l;1, Bm,n;1) for k,m = 1, . . . , Nx; l, n = 1, . . . , Ny. It involves evaluation of the values of the mul-
tiplication of the two basis functions at Gaussian integration points. This operation is denoted by
t1k,l;k,l = Bk,l;1(x1, x2)Bm,n;1(x1, x2). This operation, in turn, can be expressed as multiplication of two
operations, namely computing the value of Bk,l;1(x1, x2; 1) and Bm,n;1(x1, x2). We have denoted these
basic operations as t1k,l and t1m,n. Finally, evaluation of the value of two-dimensional B-spline at Gaussian
quadrature point can be expressed as multiplication of Nk;1(x1) and Nl;1(x2). We have denoted these tasks
by t1k, t1l . We can plot the graph presenting the dependency between these tasks. The graph presented
in Figure 4.4 can be understood as a Dickert graph in the sense of the trace theory (compare [35]).
The graph can be obtained by considering the representation of a trace, in the sense of the action of

Figure 4.4: Dickert graph between tasks expressing the integration with linear basis functions

M. Woźniak Isogeometric solvers

4.2. Selection of tasks and construction of tasks graph for the integration algorithm 34

computation of the value at prescribed Gaussian quadrature point. By symbol “. . . ” we denote the fact
that we present only a small part of the graph. This is because the graph is huge since it involves all the
Gaussian quadrature points and all the basis functions.

Finally, by executing the coloring of the Dickert graph (compare [35]), we obtain the sets of tasks that
can be performed in parallel. In particular, all the 16 tasks can be executed concurrently.

4.2.2. Higher order basis functions

For higher order basis functions, the analysis is similar to the one performed for the linear case.
However, we now need the help of the recursive Cox-de-Boor formulae, presented in Figure 4.5, expressing
the higher order B-splines as a linear combination of lower order B-splines. By using this formulae, we can
express the higher order B-splines as multiplications and additions of lower order B-splines and extend
our analysis to higher order cases.

Figure 4.5: Cox-de-Boor formulae

Let us focus on the quadratic basis functions case and perform the task identification again, utilizing
the Cox-de-Boor formulae. In other words, we identify the alphabet of tasks, understood as computational
tasks performed at given integration points.

Definition 2. The alphabet of tasks for quadratic B-spline based basis functions consists of:

– Computations of the entries of the frontal matrix, e.g. t2k,l;k,l = (Bk,l;2, Bk,l;2) as expressed in Table
4.6,

– Computations of the values of quadratic basis functions at Gaussian integration points, e.g. t2k,l =
Bk,l;2(x1, x2) as expressed in Table 4.7,

– Computations of the values of one dimensional second order B-spline basis functions at Gaussian
integration points, e.g. t2k = Nk;2(x1) as expressed in Table 4.8.

M. Woźniak Isogeometric solvers

4.3. Parallel OpenMP implementation 35

– Computations of the values of one dimensional first order B-spline basis functions at Gaussian
integration points, e.g. t1k = Nk;1(x1) as expressed in Table 4.4.

Again, we introduce the dependency relation between tasks and display a Dickert graph (compare
[35]), see Figure 4.6. At the last level, there are 9 ∗ 9 = 81 tasks, and we only show 9 of them for simplicity
of the presentation. The Dickert graph can be colored to obtain the sets of tasks that can be executed in
parallel, including all the 81 tasks from the last level in one final set. Now, the parallel integration can be
performed with the scheduling according to colors of the tasks.

Figure 4.6: Dickert graph between tasks expressing the integration with quadratic basis functions

4.3. Parallel OpenMP implementation

The standard algorithm for integration and aggregation in all the mentioned cases is identical. In
general, the generation of the matrices for finite element method computations involves nested loops,
starting from the elements, Gaussian integration points, through test basis functions, to trial basis functions.
Our parallelization of the integration process is based on the decomposition of loops concerning local
basis functions and Gaussian quadrature points. Below we present the OpenMP pseudo-code algorithm
responsible for the integration of the element matrices.

use omp_lib

!$OMP PARALLEL DO

M. Woźniak Isogeometric solvers

4.3. Parallel OpenMP implementation 36

!$OMP& DEFAULT (SHARED)
!$OMP& FIRSTPRIVATE(ix , ex , ey , ez , tempA , nr_nonzeros , J , ax , ay , az ,
!$OMP& ax1 , ay1 , az1 , ind , ind1 ,W, value , kx , ky , kz , threadID)

do iy=1,miy
ez=modulo (iy −1,nelemz)
ix=(iy−ez)/ nelemz+1
ey=modulo (ix −1,nelemy)
ex=(ix−ey)/ nelemy+1
threadID=OMP_GET_THREAD_NUM()+1
i f (a s s o c i a t ed (tempA)) then ; e l s e
tempA=>AllArr (threadID)
nr_nonzeros=0

end i f
J = Jx (ex)∗ Jy (ey)∗ Jz (ez)
do ax = 0 ,px

do ay = 0 ,py
do az = 0 , pz

do ax1 = 0 ,px
do ay1 = 0 ,py

do az1 = 0 , pz
ind = (Ox(ex)+ax)+(Oy(ey)+ay)∗ (nx+1)+

. (Oz(ez)+az)∗ (ny+1)∗(nx+1)+1
ind1 =(Ox(ex)+ax1)+(Oy(ey)+ay1)∗ (nx+1)+

. (Oz(ez)+az1)∗ (ny+1)∗(nx+1)+1
i f (ind . gt . ind1) cy c l e
nr_nonzeros=nr_nonzeros+1
tempA%IRN(nr_nonzeros)=ind
tempA%JCN(nr_nonzeros)=ind1
value = 0 . d0
do kx = 1 , ngx

do ky = 1 , ngy
do kz = 1 , ngz
W = Wx(kx)∗Wy(ky)∗Wz(kz)∗J
value = value +

. NNx(0 , ax , kx , ex)∗

. NNy(0 , ay , ky , ey)∗

. NNz(0 , az , kz , ez)∗W ∗

. NNx(0 , ax1 , kx , ex)∗

. NNy(0 , ay1 , ky , ey)∗

. NNz(0 , az1 , kz , ez)
end do

end do
end do
tempA%A(nr_nonzeros)=value
i f (tempA%a r r s i z e . eq . nr_nonzeros) then

M. Woźniak Isogeometric solvers

4.3. Parallel OpenMP implementation 37

tempA%i=nr_nonzeros
a l l o c a t e (tempA%next)
tempA=>tempA%next
a l l o c a t e (tempA%A(nr_nonzeros))
a l l o c a t e (tempA%IRN(nr_nonzeros))
a l l o c a t e (tempA%JCN(nr_nonzeros))
tempA%A = 0 . d0
tempA%a r r s i z e=nr_nonzeros
tempA%i = 0
nr_nonzeros=0

end i f
end do

end do
end do

end do
end do

end do
tempA%i=nr_nonzeros

end do
!$OMP END PARALLEL DO

M. Woźniak Isogeometric solvers

Chapter 5
Numerical results

The main goal of this chapter is to present numerical scalability of algorithms presented in this book. We
measure computational cost of algorithms presented in chapters: 2, 3 and 4. We refer to section 1.3.5 for
results of simulation from section 5.6.

5.1. Classical parallel multi-frontal solver for distributed me-
mory cluster

The goal of this section is to verify the computational complexities for parallel version of multi-frontal
solver derived in chapter 2 in equation 2.10. The numerical experiments were performed on STAMPEDE
[76], a Linux cluster hosted by the Texas Advanced Computing Center. The simulations were performed
with PETIGA [18], and utilized parallel MUMPS solver [5, 6, 7] with parallel Scalapack [21] dense solver,
parallel SuperLU solver [58, 59], and parallel PaStiX solver [51] available from PETSc library [9, 10, 11].
In the experiments, we utilized one core per Linux cluster node to maximize the amount of available
memory per node. The only exception are the two experiments with 512 cores for linear B-splines in
three-dimensional case, where we utilize two cores per node.

5.1.1. Two-dimensional case

The experiments have been performed, for mesh sizes with 1282, 2562, 5122, 10242 and 20482 elements,
for some numbers of processors from 1 to 256. It is not possible to solve any larger problem for two-
dimensional IGA on STAMPEDE with direct solvers since all the solvers run out of memory. Alternative
option would be to go for out-of-core, but this slows down the solution time by order of magnitude [66].

Weak scaling efficiency

We start illustrating the weak scaling efficiency for the three different direct solvers executed for
two-dimensional IGA problem. The weak efficiency is computed using the formula Eweak = Tweak

1
Tweak

c
∗ 100,

where Tweak1 denotes the execution time of a single core processing a single workload, and Tweakc is the
execution time of c cores processing c workloads, one workload per core. The weak scaling efficiency results
are presented in Figures 5.1-5.3, for MUMPS, PasTiX and SuperLU, for linear, quartic and octic B-splines,
with C0, C3 and C7 global continuity, respectively.

38

5.1. Classical parallel multi-frontal solver for distributed memory cluster 39

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

MUMPS 128 2

MUMPS 256 2

MUMPS 512 2

PasTiX 128 2

PasTiX 256 2

PasTiX 512 2

SuperLU 128 2

SuperLU 256 2

SuperLU 512 2

Figure 5.1: Weak scaling efficiency of the direct solvers for two-dimensional IGA with linear B-splines, C0

global continuity.

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

PasTiX 128 2

PasTiX 256 2

PasTiX 512

SuperLU 512 2

SuperLU 256 2

MUMPS 128 2

MUMPS 256 2

MUMPS 512 2

SuperLU 128 2

2

Figure 5.2: Weak scaling efficiency of the direct solvers for two-dimensional IGA with quartic B-splines,
C3 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 40

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

MUMPS 128 2

MUMPS 256 2

MUMPS 512 2
SuperLU 512 2

PasTiX 128 2
PasTiX 256 2

PasTiX 512 2

SuperLU 128 2

SuperLU 256 2

Figure 5.3: Weak scaling efficiency of the direct solvers for two-dimensional IGA with octic B-splines, C7

global continuity.

5.1.2. Strong scaling efficiency

Let us focus now on strong scaling efficiency of the MUMPS solver executed for two-dimensional IGA
problem. The strong scaling efficiency is computed based on formula Estrong = T strong

1
c∗T strong

c
∗ 100 where

T strong1 denotes the execution time of a single core processing workload of size N , and T strongc is the
execution time of c cores still processing the workload of size N , now distributed into c processors.

The strong scaling efficiency results are presented in Figures 5.4, 5.5 and 5.6, for linear, quartic and
octic B-splines, with C0, C3 and C7 global continuity, respectively. The experiments have been performed
for different mesh sizes, namely 1282, 2562, 5122, 10242 and 20482 elements.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 41

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

1282

2562 512
10242

20482

2

Figure 5.4: Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with linear B-splines,
with C0global continuity.

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

1282
2562 5122

10242

Figure 5.5: Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with quartic B-splines,
with C3 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 42

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

5122

10242

1282

2562

Figure 5.6: Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with octic B-splines,
with C7 global continuity.

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

2256
2

1024

2048

128
512

2

2

2

Figure 5.7: Parallel speedup of the MUMPS direct solver for two-dimensional IGA with linear B-splines,
with C0global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 43

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

5122

10242

12822562

Figure 5.8: Parallel speedup of the MUMPS direct solver for two-dimensional IGA with quartic B-splines,
with C3 global continuity.

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

10242

512
2562

1282

Figure 5.9: Parallel speedup of the MUMPS direct solver for two-dimensional IGA with octic B-splines,
with C7 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 44

5.1.3. O (Np2) cost

Figures 5.10 and 5.11 illustrate the parallel scalability of MUMPS, PaStiX and SuperLU solvers
executed on 8 and 32 nodes, one core per node. They display the execution time divided by the p2 factor.
Thus, a horizontal line represents the ideal p2 growth of the solver; a descending line denotes a growth
better than p2, solvers an ascending line denotes a growth worse than p2. As predicted by our model, the
solver’s scale like p2, especially when we increase the number of processors to 32.

Finally, we display the execution times of the parallel MUMPS solver for the two-dimensional IGA
model problem, for increasing problem size N and fixed p, and execute the curve fitting algorithm to
estimate the exponent factor in formula const ∗Nα . The execution times as a function of N are presented
in Figure 5.12 for linear B-splines and C0 global continuity; in Figure 5.13 for quartic B-splines and C3

global continuity; in Figure 5.14 for octic B-splines and C7 global continuity.
The curve fitting algorithm estimated the α exponent factor as summarized in Table 5.1 for linear

B-splines, in Table 5.2 for quartic B-splines and in Table 5.3 for octic B-splines, all with Cp−1 global
continuity. In all cases, the exponent factor converges to 1, which results in linear O(N) computational
cost for fixed p, as predicted by the theory.

0.03

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

0.03

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

0.03

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

MUMPS

PaStiX

SuperLU

Figure 5.10: Execution time divided by p2 measured for parallel MUMPS, SuperLU and PaStiX solvers
executed over distributed memory machine, for two-dimensional problem with 256× 256 elements, for
continuity Cp−1 for different p, one core per node, with eight nodes.

Nrcores 1 2 4 8 16 32 64 128 256

α 1,2847 1,3057 1,3066 1,266 1,3071 1,1922 1,1712 0,9771 0,9562

Table 5.1: Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with linear B-splines, C0 continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 45

0.02

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

0.02

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

0.02

0.1

0.5

1

1.5

 1 2 3 4 5 6 7 8

F
ac

to
ri

za
tio

n
tim

e
 /

 p
2

Polynomial order of approximation p

MUMPS

PaStiX

SuperLU

Figure 5.11: Execution time divided by p2 measured for parallel MUMPS, SuperLU and PaStiX solvers
executed over distributed memory machine, for two-dimensional problem with 256× 256 elements, for
continuity Cp−1 for different p, one core per node, with thirty two nodes.

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

(1024+1) 2 (2048+1) 2 (4096+1) 2

T
im

e
(s

)

Problem size

1 processor
2 processors

4 processors
8 processors

16 processors
32 processors

64 processors

128 processors
256 processors

Figure 5.12: Execution times for the MUMPS direct solver for two-dimensional IGA with linear B-splines,
C0 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 46

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(512+4) 2 (1024+4) 2 (2048+4) 2

T
im

e
(s

)

Problem size

1 processor

2 processors

4 processors
8 processors

16 processors

32 processors
64 processors

128 processors

256 processors

Figure 5.13: Execution times for the MUMPS direct solver for two-dimensional IGA with quartic B-splines,
C3 global continuity.

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

 1

 10

 100

 1000

(256+8)2 (512+8)2 (1024+8)2

T
im

e
(s

)

Problem size

1 processor
2 processors

4 processors

8 processors

16 processors

32 processors
64 processors

128 processors

256 processors

Figure 5.14: Execution times for the MUMPS direct solver for two-dimensional IGA with octic B-splines,
C7 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 47

Nrcores 1 2 4 8 16 32 64 128 256

α 1,4256 1,4373 1,4404 1,4361 1,4503 1,3574 1,323 1,2286 1,0049

Table 5.2: Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with quartic B-splines, C3 continuity.

Nrcores 1 2 4 8 16 32 64 128 256

α 1,5232 1,4925 1,4692 1,4385 1,4477 1,3693 1,3519 1,3498 1,0937

Table 5.3: Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with octic B-splines, C7 continuity.

5.1.4. Three-dimensional case

Weak scaling efficiency

We start illustrating the weak scaling efficiency of MUMPS solver executed for three-dimensional
IGA problem. The weak scaling efficiency results are presented in Figures 5.15 and 5.16 for linear and
quartic B-splines, with C0 and C3 global continuity, respectively. The experiments have been performed
for different mesh sizes, namely 163, 323, 643 and 1283 elements.

For octic B-splines with C7 continuity, we run out of memory.

10

16

32

64

100

1 2 4 8 16 32

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16 32

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

16 3

32 3

Figure 5.15: Weak scalability of the MUMPS direct solver for three-dimensional IGA with linear B-splines,
C0 global continuity. Different lines correspond to various problems sizes.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 48

10

16

32

64

100

1 2 4 8 16

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

10

16

32

64

100

1 2 4 8 16

W
ea

k
sc

al
ab

ili
ty

 e
ffi

ci
en

cy

Nr cores

16 3

32 3

Figure 5.16: Weak scalability of the MUMPS direct solver for three-dimensional IGA with quartic B-splines,
C3 global continuity. Different lines correspond to various problems sizes.

Strong scaling efficiency

Let us focus now on strong scaling efficiency of the MUMPS solver executed for three-dimensional IGA
problem. The efficiency results are presented in Figures 5.17 and 5.18, for linear and quartic B-splines,
with C0 and C3 global continuity, respectively. The speedup results are presented in Figures 5.19 and
5.20, for linear and quartic B-splines, with C0 and C3 global continuity, respectively. The experiments
have been performed for different mesh sizes, namely 163, 323, 643 and 1283 elements.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

16 3

32 3 64 3

128 3

Figure 5.17: Parallel efficiency of the MUMPS direct solver for three-dimensional IGA with linear B-splines,
C0 global continuity. Different lines represents different sizes of the mesh.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 49

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128 256

E
ffi

ci
en

cy

Nr cores

16 3

32 3

64 3

Figure 5.18: Parallel efficiency of the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity. Different plots represents different sizes of the mesh.

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

323

643

1283

Figure 5.19: Parallel speedup of the MUMPS direct solver for three-dimensional IGA with linear B-splines,
C0 global continuity. Different lines represents different sizes of the mesh.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 50

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64 128 256

S
pe

ed
up

Nr cores

163

323

643

Figure 5.20: Parallel speedup of the MUMPS direct solver for three-dimensional IGA with quartic B-splines,
C3 global continuity. Different plots represents different sizes of the mesh.

5.1.5. O
(
N4/3p2

)
cost

We display the execution times of the parallel MUMPS solver for the three-dimensional IGA model
problem, as we increase problem size N for fixed p, moreover, execute the curve fitting algorithm to
estimate the exponent factor in const ∗Nα . The execution times as a function of N1/3 are presented in
Figure 5.21 for linear B-splines with C0 global continuity; in Figure 5.22 for quartic B-splines with C3

global continuity.

The curve fitting algorithm estimated the α exponent factor as summarized in Table 5.4 for linear
B-splines, and in Table 5.5 for quartic B-splines, all with Cp−1 global continuity. We do not display the
curve fitting on the octic B-splines case because we do not have enough data. In these two cases, the
exponent factor converges to 4/3, which results in O(N4/3) computational cost for fixed p, as predicted
by theory.

Nrcores 1 2 4 8 16 32 64 128 256

α 1,8596 1,7234 1,6501 1,8237 1,7273 1,7573 1,6738

Table 5.4: Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for three-dimensional IGA with linear B-splines, C0 continuity.

Finally, we display the execution times of the parallel MUMPS solver for the three-dimensional IGA
model problem, for increasing continuity p and fixed N , divide the execution time by N4/3, moreover,
execute the curve fitting algorithm to estimate the exponent factor in formula O

(
const ∗ pβ

)
. The execution

times as a function of p are presented in Figure 5.23 for quartic B-splines, C3 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 51

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(32+1) 3 (64+1) 3 (128+1) 3 (256+1) 3

T
im

e
(s

)

Problem size

1 processor

2 processors

4 processors

8 processors

16 processors

32 processors

64 processors

128 processors

256 processors

Figure 5.21: Execution times for the MUMPS direct solver for three-dimensional IGA with linear B-splines,
C0 global continuity.

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

 0.1

 1

 10

 100

 1000

 10000

(16+4) 3 (32+4) 3 (64+4) 3 (128+4) 3

T
im

e
(s

)

Problem size

1 processor

2 processors

4 processors

8 processors

16 processors

32 processors

64 processors

128 processors

256 processors

Figure 5.22: Execution times for the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity.

M. Woźniak Isogeometric solvers

5.1. Classical parallel multi-frontal solver for distributed memory cluster 52

Nrcores 1 2 4 8 16 32 64 128 256

α 2,1818 2,1309 2,0827 1,9195 1,7393 1,7002 1,5704 1,364

Table 5.5: Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for three-dimensional IGA with quartic B-splines, C3 continuity.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

2 3 4 5 6

E
xe

cu
tio

n
tim

e
d

ev
id

ed
 b

y
N

4/
3

Polynomial order of approximation p

1 processor
2 processors

4 processors

8 processors

16 processors

32 processors

64 processors

128 processors
256 processors

Figure 5.23: Execution times for the MUMPS direct solver for three-dimensional IGA, for fixed 323

elements, divided by N4/3.

Nrcores 1 2 4 8 16 32 64 128 256

β 2,905 2,849 2,8429 2,7434 2,7818 2,6344 2,3794 2,0905 1,8205

Table 5.6: Exponent factors β from const ∗ pβ curve fitting based on execution times of MUMPS solver
for three-dimensional IGA with quartic B-splines, C3 continuity, for fixed N , divided byN4/3.

The curve fitting algorithm estimated the β exponent factor as summarized in Table 5.6 for quartic
B-splines with C3 global continuity. The exponent factor converges to 2, which results in O(p2) growth
for fixed N , as predicted by the theory.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 53

5.2. Parallel isogeometric L2 projection for distributed memory
machines

The model has been verified by comparing with numerical experiments performed on the LONESTAR
Linux cluster, with N = 512 or N = 1024 degrees of freedom in each direction, with p = 3. The
comparison of the total execution time is given in Figures 5.24 and 5.25. We can draw the following
conclusions from these Figures. There is a quite good agreement between the theoretical estimates and
numerical experiments for both 5123 and 10243 cases with cubic polynomials. Good scalability of the
solver is maintained up to 1, 000 of processors. We can solve 134, 217, 728 unknowns resulting from the
three-dimensional cube of 5123 elements with cubic B-splines within 20 seconds using 1000 processors. We
can also solve 1, 073, 741, 824 unknowns resulting from the three-dimensional cube of 10243 elements with
cubic B-splines within 3 minutes by using 1000 processors.

Figures 5.26 and 5.27 present the comparison of the experimental and theoretical integration times.
We can draw the following conclusions from these Figures. Again, there is a quite good agreement between
the theoretical estimates and experimental results for the integration execution time. The integration
time is dominating the solution time significantly. In other words, the generation of the projection data
takes much more time than the isogeometric L2 projections using alternating direction solver itself, and
it means that our solver algorithm performs very well (usually the solution takes much more time than
integration). There is a need for our fast parallel trace theory based integration algorithm.

Figures 5.28 and 5.29 present the comparison of the experimental and theoretical solution times. We
measure three solution phases, corresponding to steps 1b, 2b, and 3b of the general algorithm. We can
draw the following conclusions from these Figures. There is still the quite good agreement between the
theoretical estimates and experimental results for the solution times. The solution time takes around 1
percent of the total solver time. In our solver, we utilize multiple 1D sequential block diagonal multifrontal
solvers with many right-hand sides working on the faces of the cube of three-dimensional processors.
Possible improvement of the algorithm is to utilize parallel block-diagonal solvers (e.g. designed using
the trace-theory based approach, working within rows of processors (10 processors per solver in 1000
processors case). However, the solution time contributes only 1% to overall computation time, and further
improvement would not be beneficial.

Figures 5.30 and 5.31 present the comparison of the experimental and theoretical gather times. We
measure three gathering phases, corresponding to steps 1a, 2a, and 3a of the general algorithm. We can
draw the following conclusions from these Figures. There is a good agreement between the theoretical
and experimental gather times for second and third gather. However, the first gather takes less time than
predicted by the model. Our second and third gather times include the data reorder phase, while the first
gather is just the communication itself.

Figures 5.32 and 5.33 present the comparison of the experimental and theoretical scatter times. We
measure three scattering phases, corresponding to steps 1c, 2c, and 3c of the general algorithm. We can
draw the following conclusions from these Figures. There is a quite good agreement between the theoretical
and experimental scatter times for all the phases. The experimental scatters becoming little slower when
we increase the number of processors. However, the difference is very small, less than 0.1 second.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 54

20

100

1000

2300

23 33 43 63 83 103

T
im

e[
s]

Nr cores

20

100

1000

2300

23 33 43 63 83 103

T
im

e[
s]

Nr cores

theoretical total

experimental total

Figure 5.24: Comparison of total experimental and theoretical execution time for N = 512 for p = 3 for
different number of processors 23, . . . , 103 = 8, . . . , 1000.

100

300

1000

2500

5500

33 43 53 73 103 123

T
im

e[
s]

Nr cores

100

300

1000

2500

5500

33 43 53 73 103 123

T
im

e[
s]

Nr cores

theoretical total

experimental total

Figure 5.25: Comparison of total experimental and theoretical execution time for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 55

10

100

1000

3000

23 33 43 63 83 103

T
im

e[
s]

Nr cores

10

100

1000

3000

23 33 43 63 83 103

T
im

e[
s]

Nr cores

theoretical integration

experimental integration

Figure 5.26: Comparison of experimental and theoretical integration time for N = 512 for p = 3 for
different number of processors 23, . . . , 103 = 8, . . . , 1000.

70

100

300

1000

2500

6000

33 43 53 73 103 123

T
im

e[
s]

Nr cores

70

100

300

1000

2500

6000

33 43 53 73 103 123

T
im

e[
s]

Nr cores

theoretical integrationtheoretical integration

experimental integration

Figure 5.27: Comparison of total experimental and estimated integration time for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 56

0.05

0.1

0.3

1

2

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.05

0.1

0.3

1

2

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.05

0.1

0.3

1

2

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.05

0.1

0.3

1

2

23 33 43 63 83 103

T
im

e[
s]

Nr cores

theoretical solve

experimental solve 1

experimental solve 2

experimental solve 3

Figure 5.28: Comparison of experimental and theoretical solution times for N = 512 for p = 3 for different
number of processors 23, . . . , 103 = 8, . . . , 1000

.

0.25

1

3

10

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.25

1

3

10

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.25

1

3

10

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.25

1

3

10

33 43 53 73 103 123

T
im

e[
s]

Nr cores

theoretical solve

experimental solve 1

experimental solve 3

experimental solve 2

Figure 5.29: Comparison of total experimental and estimated solution times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 57

0.03

0.1

1

10

30

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

1

10

30

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

1

10

30

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

1

10

30

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

1

10

30

23 33 43 63 83 103

T
im

e[
s]

Nr cores

experimental gather 1

theoretical gather 1

theoretical gather 2,3

experimental gather 2

experimental gather 3

Figure 5.30: Comparison of experimental and theoretical gather times for N = 512 for p = 3 for different
number of processors 23, . . . , 103 = 8, . . . , 1000.

0.15

1

10

70

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.15

1

10

70

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.15

1

10

70

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.15

1

10

70

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.15

1

10

70

33 43 53 73 103 123

T
im

e[
s]

Nr cores

experimental gather 1

theoretical gather 1

theoretical gather 2,3theoretical gather 2,3

experimental gather 2

experimental gather 3

Figure 5.31: Comparison of total experimental and estimated gather times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728.

M. Woźniak Isogeometric solvers

5.2. Parallel isogeometric L2 projection for distributed memory machines 58

0.03

0.1

0.3

1

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

0.3

1

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

0.3

1

23 33 43 63 83 103

T
im

e[
s]

Nr cores

0.03

0.1

0.3

1

23 33 43 63 83 103

T
im

e[
s]

Nr cores

theoretical scatter

experimental scatter 1

experimental scatter 2
experimental scatter 3

Figure 5.32: Comparison of experimental and theoretical scatter times for N = 512 for p = 3 for different
number of processors 23, . . . , 103 = 8, . . . , 1000.

0.2

0.5

1

2

5

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.2

0.5

1

2

5

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.2

0.5

1

2

5

33 43 53 73 103 123

T
im

e[
s]

Nr cores

0.2

0.5

1

2

5

33 43 53 73 103 123

T
im

e[
s]

Nr cores

model scatter

experimental scatter 1

experimental scatter 2

experimental scatter 3

Figure 5.33: Comparison of total experimental and estimated scatter times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 8, . . . , 1728.

M. Woźniak Isogeometric solvers

5.3. Integration and solve proportions 59

5.3. Integration and solve proportions

This section presents experimental results comparing proportions of integration and solve cost with
different solvers for three-dimensional L2 projection problem. The measurements concern the execution
time and FLOPS for sequential integration algorithm and sequential MUPS solver as well as sequential
isogeometric L2 projections. Linear, quadratic, cubic and quartic B-splines were used for comparison.

The numerical results were obtained on SkyFall Linux workstation equpied with Intel Core i7-4820K
processor and 64 GB of RAM memory. Both applications were compiled with Intel compiler with highest
level of optimization and MKL library. Latest version of MUMPS was used.

The comparison of results for classical approach is presented in Figures 5.34 and 5.35, respectively.
Solution part quickly becomes dominant part of total time, while integration is negligible for larger
problems. Relatively small problems can be solved in 3D due to memory consuming MUMPS solver.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

43 83 163 323 643 1283

in
te

gr
at

io
n

F
LO

P
S

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

43 83 163 323 643 1283

in
te

gr
at

io
n

F
LO

P
S

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

43 83 163 323 643 1283

in
te

gr
at

io
n

F
LO

P
S

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

43 83 163 323 643 1283

in
te

gr
at

io
n

F
LO

P
S

Problem size

integration FLOPS p=1

integration FLOPS p=2

integration FLOPS p=3

integration FLOPS p=4

Figure 5.34: Proportion of integration FLOPS to total computation cost with MUMPS solver.

The comparison of results for Alternating Directions Solver is presented in Figures 5.36 and 5.37,
respectively. Integration part is dominant part of total time, while solution is negligible cost. Large
problems compared to MUMPS can be solved.

As we can easily notice- with Alternating Directions Solver- integration step becomes a bottleneck and
should be further accelerated.

M. Woźniak Isogeometric solvers

5.3. Integration and solve proportions 60

0%

10%

20%

30%

40%

50%

60%

70%

43 83 163 323 643 1283

in
te

gr
at

io
n

tim
e

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

43 83 163 323 643 1283

in
te

gr
at

io
n

tim
e

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

43 83 163 323 643 1283

in
te

gr
at

io
n

tim
e

Problem size

0%

10%

20%

30%

40%

50%

60%

70%

43 83 163 323 643 1283

in
te

gr
at

io
n

tim
e

Problem size

integration time p=1

integration time p=2

integration time p=3

integration time p=4

Figure 5.35: Proportion of integration time to total computation cost with MUMPS solver.

90%

92%

94%

96%

98%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

F
LO

P
S

Problem size

90%

92%

94%

96%

98%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

F
LO

P
S

Problem size

90%

92%

94%

96%

98%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

F
LO

P
S

Problem size

90%

92%

94%

96%

98%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

F
LO

P
S

Problem size

integration FLOPS p=1

integration FLOPS p=2
integration FLOPS p=3

integration FLOPS p=4

Figure 5.36: Proportion of integration FLOPS to total computation cost with ADS solver.

M. Woźniak Isogeometric solvers

5.4. Comparison of GPU and CPU integration time 61

70%

75%

80%

85%

90%

95%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

tim
e

Problem size

70%

75%

80%

85%

90%

95%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

tim
e

Problem size

70%

75%

80%

85%

90%

95%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

tim
e

Problem size

70%

75%

80%

85%

90%

95%

100%

43 83 163 323 643 1283 2563 5123 10243

in
te

gr
at

io
n

tim
e

Problem size

integration time p=1

integration time p=2

integration time p=3
integration time p=4

Figure 5.37: Proportion of integration time to total computation cost with ADS solver.

5.4. Comparison of GPU and CPU integration time

This section presents experimental results for linear, quadratic and cubic B-splines, for two-dimensional
isogeometric L2-projection problem. The measurements concern the execution time for sequential integra-
tion algorithm executed by CPU and concurrent trace theory based integration algorithm executed over a
shared memory GPU.

The numerical results have been obtained on GeForce GTX 780 graphic card equipped with 3 gigabytes
of memory and 2304 cores, as well as on NVIDIA Tesla K20c device, which has 5 gigabytes of memory
and 2496 cores.

Computations for CPU integration were executed on a SkyFall Linux workstation with Intel Core
i7-4820K processor using the latest version of PETIGA compiled with Intel compiler with the highest
level of optimization. The CPU computations have been performed using state-of-the-art PETIGA toolkit
with efficient implementation of the integration algorithm. Computations for GTX GPU integration were
done on a SkyFall Linux workstation with ASUS GTX-780-DC2OC-3GD5 GeForce GTX 780 graphics
card compiled with standard nvcc with standard gcc beneath and the highest level of optimization.
Computations for Tesla GPU integration were performed on a Merlin Linux server with NVidia Tesla
K20c graphics card compiled with standard nvcc with standard gcc beneath and the highest level of
optimization.

The comparison of the results for linear, quadratic and cubic B-splines is presented in Figures 5.38,
5.39 and 5.40, respectively.

The concurrent trace theory based integration performed in a shared memory graphic card is between
one to two orders of magnitude faster than the integration over a single CPU. When we have more cores
available then the problem size, we obtain O(logN) integration time, compare “GPU integration” in
Figures 5.38, 5.39 and 5.40. However, when the problem size grows, we obtain the same linear O(N) trend
for the trace theory-based implementation as for the sequential integration. However we can efficiently

M. Woźniak Isogeometric solvers

5.4. Comparison of GPU and CPU integration time 62

0.00001

0.0001

0.001

0.01

0.1

1

10 2 10 3 10 4 10 5 10 6

T
im

e[
s]

Problem size

0.00001

0.0001

0.001

0.01

0.1

1

10 2 10 3 10 4 10 5 10 6

T
im

e[
s]

Problem size

0.00001

0.0001

0.001

0.01

0.1

1

10 2 10 3 10 4 10 5 10 6

T
im

e[
s]

Problem size

CPU total

Tesla

GTX

Figure 5.38: Comparison of GPU and CPU integration time for linear B-splines

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

CPU

Tesla

GTX

Figure 5.39: Comparison of GPU and CPU integration time for quadratic B-splines

M. Woźniak Isogeometric solvers

5.4. Comparison of GPU and CPU integration time 63

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

CPU

Tesla

GTX

Figure 5.40: Comparison of GPU and CPU integration time for cubic B-splines

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 2 10 3 10 4 10 5

T
im

e[
s]

Problem size

CPU

Tesla

GTX

Figure 5.41: Comparison of GPU and CPU integration time for quartic B-splines

M. Woźniak Isogeometric solvers

5.5. OpenMP 64

utilize all the cores, the constant in front of the cost estimates for the trace theory based implementation
is one or two orders of magnitude smaller than in the sequential implementation, compare GTX and Tesla
plots in Figures 5.38, 5.39 and 5.40, for two different GPU’s, respectively.

5.5. OpenMP

In this section, we present the scalability of the parallel integration using a single Linux cluster node.
Namely, the numerical experiments have been performed on the shared-memory node with four Intel R
XeonR CPU E7-4860 processors, each possessing ten physical cores (for a total of 40 cores). We utilize
quadratic, cubic, and quartic B-splines over a patch of 40× 40× 40 finite elements. We report in Figures
5.42-5.44 the total execution time, parallel efficiency and speedup. From the presented experiments in
implies that our OpenMP integration scales well up to 15 cores, for quadratic B-splines, up to 20 cores for
cubics, for quartics up to 25 cores, and for quintic the efficiency grows up to 35 cores. Higher number of
cores results in efficiency below 60 percent.

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

C
o

m
p

ut
at

io
n

tim
e

Nr cores

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

C
o

m
p

ut
at

io
n

tim
e

Nr cores

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

C
o

m
p

ut
at

io
n

tim
e

Nr cores

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

C
o

m
p

ut
at

io
n

tim
e

Nr cores

p=2, Ne=41

p=3, Ne=42

p=4, Ne=43

p=5, Ne=44

Figure 5.42: Execution time of the parallel integration algorithm in 3D, when increasing number of cores.

M. Woźniak Isogeometric solvers

5.5. OpenMP 65

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

E
ffi

ci
en

cy

Nr cores

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

E
ffi

ci
en

cy

Nr cores

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

E
ffi

ci
en

cy

Nr cores

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 10 15 20 25 30 35 40

E
ffi

ci
en

cy

Nr cores

p=2, Ne=41

p=3, Ne=42

p=4, Ne=43

p=5, Ne=44

Figure 5.43: Parallel efficiency of the parallel integration algorithm in 3D.

 5

 10

 15

 20

 5 10 15 20 25 30 35 40

S
pe

ed
up

Nr cores

 5

 10

 15

 20

 5 10 15 20 25 30 35 40

S
pe

ed
up

Nr cores

 5

 10

 15

 20

 5 10 15 20 25 30 35 40

S
pe

ed
up

Nr cores

 5

 10

 15

 20

 5 10 15 20 25 30 35 40

S
pe

ed
up

Nr cores

p=2, Ne=41

p=3, Ne=42

p=4, Ne=43

p=5, Ne=44

Figure 5.44: Parallel speedup of the parallel integration algorithm in 3D.

M. Woźniak Isogeometric solvers

5.6. Non-linear flow in heterogenous media 66

5.6. Non-linear flow in heterogenous media

Below we provide results performed with sequential isogeometric L2 projection algorithm executed over
a cube of n = 163 finite elements with quadratic B-spline basis functions, providing C1 global continuity
of the numerical solutions. We performed 1000 time steps. In Figures 5.45-5.51 we present snapshots
of the solution from time steps (size of domain is [0, 1]3 and 160 is the number of layers used by our
graphical tool). Additionally, to monitor the stability of the simulation, we present the relative error
estimations between simulations executed with two different time step ∆t = 10−5 and ∆t = 10−6. This is
dimensionless time step which corresponds to several seconds of real time. This is presented in Figures
5.52. For more details we refer to [75]. The plots present the pressure scalar field obtained from solution
of problem of nonlinear flow in heterogenous media (1.12). Namely, we assume that we have a formation
layers as presented in Figure 1.1 (oil formation mixed with sand, mud) we pump the fluid to the center of
the formation, and observe how the fluid propagates and push out the oil, which can be sucked out by
sinks.

We would like to emphasize that all the software and algorithm utilized to obtain this numerical
solution has been designed and implemented by us, without any usage of commercial software. The
sequential version of our solver needs days to generate such the numerical results (months including
debugging and restarting simulations). Our motivation for this work is to reduce the computational cost
down to minutes, by utilizing the parallel implementation of the parallel machine providing the best
compromise between the execution time and energy consumption.

Figure 5.45: Snapshots of the results of the simulations, initial state.

M. Woźniak Isogeometric solvers

5.6. Non-linear flow in heterogenous media 67

Figure 5.46: Snapshots of the results of the simulations, time step 20.

Figure 5.47: Snapshots of the results of the simulations, time step 100.

M. Woźniak Isogeometric solvers

5.6. Non-linear flow in heterogenous media 68

Figure 5.48: Snapshots of the results of the simulations, time step 200.

Figure 5.49: Snapshots of the results of the simulations, time step 300.

M. Woźniak Isogeometric solvers

5.6. Non-linear flow in heterogenous media 69

Figure 5.50: Snapshots of the results of the simulations, time step 500.

Figure 5.51: Snapshots of the results of the simulations, time step 1000.

M. Woźniak Isogeometric solvers

5.6. Non-linear flow in heterogenous media 70

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

0 100 200 300 400 500

R
el

at
iv

e
er

ro
r

time step

Figure 5.52: Relative error estimation between solutions obtained by different time steps.

M. Woźniak Isogeometric solvers

Chapter 6
Conclusions and future work

In this dissertation we presented:

– theoretical and experimental analysis of the performance of parallel multi-frontal direct solvers on
distributed memory parallel machines

– a fast parallel the alternating directions isogeometric L2 projections solver

– theoretical and experimental analysis of performance of parallel isogeometric L2 projection using
alternating directions approach

– trace theory based analysis of the parallel integration algorithm with higher order B-spline basis
functions

The theoretical estimates assumed sufficiently large number of processors to perform concurrent row
subtractions during the local factorizations. We proved that the computational cost of the parallel direct
solvers grows as p2 when increasing the global continuity and N is fixed. Additionally, for fixed p, we
showed that the 2D parallel direct solver delivers linear computational and communication costs . In 3D,
the computational and communication costs of the parallel solvers grows in terms of the problem size
N as O(N4/3) when executed on distributed memory parallel machines. The obtained computational
costs estimated for the distributed memory parallel direct solver are similar to those obtained for shared
memory parallel machines [79]. The difference in the derivation is that here it appears an additional term
related to the communication cost. The theoretical estimates were verified with numerical experiments.

Our parallel alternating direction solver will be available through PETIGA library [18]. The computa-
tional complexity of the parallel algorithm is of the order O

(
p6N
c

)
and the communication complexity

is of the order O
(
N
c2/3

)
, where p denotes the order of the B-spline basis with Cp−1 global continuity, N

denotes the number of elements and c the number of processors over the 3D hypercube. The theoretical
estimates were verified by numerical experiments performed over the LONESTAR linux cluster from Texas
Advanced Computing Center. In particular we showed that we can solve the 3D isogeometric L2 projection
problem with 5123 = 134, 217, 728 unknowns within 20 seconds and 10243 = 1, 073, 741, 824 = O(109)
unknowns within 3 minutes by using 1000 processors from the LONESTAR Linux cluster. We are not
aware of any other solver delivering such fast solution for 100− 1000 millions of unknowns.

The sequential alternating direction isogeometric solver was applied for solution of non-stationary
problem of nonlinear flows in highly-heterogeneous porous media. The solver performed 1000 time steps
in order to simulate the flow through the entire domain. The correctness of the solution was verified by
checking the relative error for two simulations with different time steps as well as by controlling the energy
of the solution in particular time steps.

71

72

We provided sets of tasks that can be automatically scheduled and executed concurrently, set by set, on
GPU. The concurrent integration algorithm executed on CPU was compared with the integration algorithm
execution on GPU. The algorithms were tested on the exemplary two-dimensional L2-projection problems,
however, the construction of the concurrent algorithm remains the same if we replace the L2-projection
problem with any other two-dimensional elliptic problem. The concurrent integration executed on GPU
is between one and two orders of magnitude faster than sequential integration performed on CPU, for
two-dimensional problems up to one million degrees of freedom.

The future work may involve replacement of c2 sequential solves over a face of the 3D cube by c2 parallel
solves executed within rows of a cube of processors, utilizing the parallel multi-frontal one dimensional
isogeometric solver [57]. This however will not affect the general scalability of the solver, since at this
point the integration time is dominating the entire solution. An alternative way of improvement of the
solver scalability would be to consider some fast integration schemes for B-spline basis functions. It may
also include generalization of the method to non-uniform adapted grids with T-splines technique [36]. We
also consider expression of the alternating direction algorithm by graph grammar productions and Petri
nets, as it has been done for two and three-dimensional finite element method [62, 63, 74, 75]. Concurrent
integration algorithm on GPU can be extended to 3D case.

M. Woźniak Isogeometric solvers

Appendices

73

Appendix A
Alternating directions for isogeometric L2

projections

Following [45, 46] we describe the L2 alternating direction solver that reduces the two-dimensional or
three-dimensional L2 projection problem into 2 or 3 1D problems with multiple right-hand sides. The
projection problem can be summarized as min||

∑
i=1

biBi − f ||l2 which is equivalent to




∫
Ω

(By1Bx1)(By1Bx1) . . .
∫
Ω

(By1Bx1)(By1BxNx
)

...
. . .

...∫
Ω

(By1BxNx
)(By1Bx1) . . .

∫
Ω

(By1BxNx
)(By1BxNx

)

 . . .


∫
Ω

(By1Bx1)(ByNy
Bx1) . . .

∫
Ω

(By1Bx1)(ByNy
BxNx

)

...
. . .

...∫
Ω

(By1BxNx
)(ByNy

Bx1) . . .
∫
Ω

(By1BxNx
)(ByNy

BxNx
)


...

. . .
...

∫
Ω

(ByNy
Bx1)(ByNy

Bx1) . . .
∫
Ω

(ByNy
Bx1)(By1BxNx

)

...
. . .

...∫
Ω

(ByNy
BxNx

)(ByNy
Bx1) . . .

∫
Ω

(ByNy
BxNx

)(By1BxNx
)

 . . .


∫
Ω

(ByNy
Bx1)(ByNy

Bx1) . . .
∫
Ω

(ByNy
Bx1)(ByNy

BxNx
)

...
. . .

...∫
Ω

(ByNy
BxNx

)(ByNy
Bx1) . . .

∫
Ω

(ByNy
BxNx

)(ByNy
BxNx

)







b1,1
...

b1,Nx


...

bNy,1
...

bNy,Nx





=




∫
Ω

(By1Bx1)f

...∫
Ω

(By1BxNx
)f


...

∫
Ω

(ByNy
Bx1)f

...∫
Ω

(ByNy
BxNx

)f




(A.1)

the two-dimensional B-spline bases are built from tensor products of two one dimensional bases Bx =
{Bx1 , . . . , BxNx

} and By = {By1 , . . . , B
y
Ny
}.

We notice that from the Fubini iterative integration method

74

75

∫
Ω

g1(x)g2(y) =
∫
x

∫
y

g1(x)g2(y) =
∫
x

g1(x)
∫
y

g2(y) (A.2)

we have




∫
y

(B
y
1 B

y
1)
∫
x

(Bx
1 Bx

1) . . .

∫
y

(B
y
1 B

y
1)
∫
x

(Bx
1 Bx

Nx
)

.

.

.
. . .

.

.

.∫
y

(B
y
1 B

y
1)
∫
x

(Bx
nx

Bx
1) . . .

∫
y

(B
y
1 B

y
1)
∫
x

(Bx
Nx

Bx
Nx

)

 . . .


∫
y

(B
y
1 B

y
Ny

)
∫
x

(Bx
1 Bx

1) . . .

∫
y

(B
y
1 B

y
Ny

)
∫
x

(Bx
1 Bx

Nx
)

.

.

.
. . .

.

.

.∫
y

(B
y
1 B

y
Ny

)
∫
x

(Bx
Nx

Bx
1) . . .

∫
y

(B
y
1 B

y
Ny

)
∫
x

(Bx
Nx

Bx
Nx

)


.
.
.

. . .
.
.
.

∫
y

(B
y
Ny

B
y
1)
∫
x

(Bx
1 Bx

1) . . .

∫
y

(B
y
Ny

B
y
1)
∫
x

(Bx
1 Bx

Nx
)

.

.

.
. . .

.

.

.∫
y

(B
y
Ny

B
y
1)
∫
x

(Bx
Nx

Bx
1) . . .

∫
y

(B
y
Ny

B
y
1)
∫
x

(Bx
Nx

Bx
Nx

)

 . . .


∫
y

(B
y
Ny

B
y
Ny

)
∫
x

(Bx
1 Bx

1) . . .

∫
y

(B
y
Ny

B
y
Ny

)
∫
x

(Bx
1 Bx

Nx
)

.

.

.
. . .

.

.

.∫
y

(B
y
Ny

B
y
Ny

)
∫
x

(Bx
Nx

Bx
1) . . .

∫
y

(B
y
Ny

B
y
Ny

)
∫
x

(Bx
Nx

Bx
Nx

)






 b1,1
.
.
.

b1,Nx


.
.
. bNy,1
.
.
.

bNy,Nx




=




∫
Ω

(B
y
1 Bx

1)f

.

.

.∫
Ω

(B
y
1 Bx

Nx
)f


.
.
.

∫
Ω

(B
y
Ny

Bx
1)f

.

.

.∫
Ω

(B
y
Ny

Bx
Nx

)f




(A.3)

Notice that our matrix is a multiplication of two matrices, one of the block diagonal matrix:

M. Woźniak Isogeometric solvers

76




∫
x

Bx
1 Bx

1 . . .
∫
x

Bx
1 Bx

Nx

...
. . .

...∫
x

Bx
Nx

Bx
1 . . .

∫
x

Bx
Nx

Bx
Nx


. . . 

∫
x

Bx
1 Bx

1 . . .
∫
x

Bx
1 Bx

Nx

...
. . .

...∫
x

Bx
Nx

Bx
1 . . .

∫
x

Bx
Nx

Bx
Nx







∫
y

By
1 By

1

. . . ∫
y

By
1 By

1

 . . .


∫
y

By
1 By

Ny

. . . ∫
y

By
1 By

Ny


...

. . .
...

∫
y

By
Ny

By
1

. . . ∫
y

By
Ny

By
1

 . . .


∫
y

By
Ny

By
Ny

. . . ∫
y

By
Ny

By
Ny








b1,1

...

b1,Nx


...

bNy,1

...

bNy,Nx




=




∫
Ω

(By
1 Bx

1)f

...∫
Ω

(By
1 Bx

Nx
)f


...

∫
Ω

(By
Ny

Bx
1)f

...∫
Ω

(By
Ny

Bx
Nx

)f




(A.4)

Also, please notice that the inverse of the block diagonal matrix is still a block diagonal matrix:


A

. . .

A



A−1

. . .

A−1

 =


I

. . .

I

 (A.5)

All sub-matrices are invertible, so we end up with several identical 1D problems with multiple right-hand
sides:

M. Woźniak Isogeometric solvers

77





∫
y

By1B
y
1

. . . ∫
y

By1B
y
1

 . . .



∫
y

By1B
y
Ny

. . . ∫
y

By1B
y
Ny


...

. . .
...

∫
y

ByNy
By1

. . . ∫
y

ByNy
By1

 . . .



∫
y

ByNy
ByNy

. . . ∫
y

ByNy
ByNy







b1,1
...

b1,Nx


...

bNy,1
...

bNy,Nx





=




∫
x

Bx1B
x
1 . . .

∫
x

Bx1B
x
Nx

...
. . .

...∫
x

BxNx
Bx1 . . .

∫
x

BxNx
BxNx



−1

. . . 
∫
x

Bx1B
x
1 . . .

∫
x

Bx1B
x
Nx

...
. . .

...∫
x

BxNx
Bx1 . . .

∫
x

BxNx
BxNx



−1






∫
Ω

(By1Bx1)f

...∫
Ω

(By1BxNx


· · ·

∫
Ω

(ByNy
Bx1)f

...∫
Ω

(ByNy
BxNx





=




∫
x

Bx1B
x
1 . . .

∫
x

Bx1B
x
Nx

...
. . .

...∫
x

BxNx
Bx1 . . .

∫
x

BxNx
BxNx



−1 
∫
Ω

(By1Bx1)f

...∫
Ω

(By1BxNx
)f


...

...
∫
x

Bx1B
x
1 . . .

∫
x

Bx1B
x
Nx

...
. . .

...∫
x

BxNx
Bx1 . . .

∫
x

BxNx
BxNx



−1 
∫
Ω

(ByNy
Bx1)f

...∫
Ω

(ByNy
BxNx

)f





=




t1,1
...

t1,Nx


...

tNy,1
...

tNy,Nx




(A.6)

Then, we complete the following re-ordering in the block system

M. Woźniak Isogeometric solvers

78




b1,1
...

b1,Nx


...

bNy,1
...

bNy,Nx





→




b1,1
...

bNy,1


...

b1,Nx

...

bNy,Nx








t1,1
...

t1,Nx


...

tNy,1
...

tNy,Nx





→




t1,1
...

tNy,1


...

t1,Nx

...

tNy,Nx





(A.7)

to get another block diagonal problem:





∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy


. . . 

∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy








b1,1
...

bNy,1


...

b1,Nx

...

bNy,Nx





=




t1,1
...

tNy,1


...

t1,Nx

...

tNy,Nx




(A.8)

which implies again several identical 1D problems with different right-hand-sides.




b1,1
...

bNy,1


...

b1,Nx

...

bNy,Nx





=





∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy



−1 
t1,1
...

tNy,1


...

...

∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy



−1 
t1,Nx

...

tNy,Nx





(A.9)

To complete our algebra, we denote

M. Woźniak Isogeometric solvers

79




d1,1
...

dNy,1


...

d1,Nx

...

dNy,Nx





=





∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy



−1 
t1,1
...

tNy,1


...

...

∫
y

By1B
y
1 . . .

∫
y

By1B
y
Ny

...
. . .

...∫
y

ByNy
By1 . . .

∫
y

ByNy
ByNy



−1 
t1,Nx

...

tNy,Nx





(A.10)

and reorder




b1,1
...

bNy,1


...

b1,Nx

...

bNy,Nx





back to




b1,1
...

b1,Nx


...

bNy,1
...

bNy,Nx





to get finally




b1,1
...

b1,Nx


...

bNy,1
...

bNy,Nx





=




d1,1
...

dNy,1


...

d1,Nx

...

dNy,Nx




This algorithm for two-dimensional L2 projection with N unknowns involves solutions of two one-

dimensional systems with N 1
2 unknowns and N 1

2 right hand sides. This algorithm for three-dimensional
L2 projection with N unknowns involves solutions of two one-dimensional systems with N 1

3 unknowns
and N 1

3 right hand sides.

M. Woźniak Isogeometric solvers

Appendix B
Complexity analysis of the sequential
isogeometric L2 projection algorithm

B.0.1. Integration over one element

Every element is approximated by a set of polynomials in each direction where p is the order, and
there are p+ 1 B-splines over the element. We denote px as the degree in x direction and py and pz as
degrees in other directions. The integration of the right hand side requires using Gaussian quadrature
with (px + 1)(py + 1)(pz + 1) points. The integral over each element is:

(px+1)(py+1)(pz+1)∑
m=1

wmB
i
x(xm)Bjy(ym)Bkz (zm)f(xm, ym, zm)dxdydz (B.1)

where wm denotes the Gaussian quadrature weights, Bix, Bjy, Bkz denotes the B-spline basis functions
in x, y, and z directions, respectively, computed at xm, ym, zm Gaussian quadrature points, and we
have i = 1, . . . , px + 1, j = 1, . . . , py + 1 and k = 1, . . . , pz + 1 entries to compute. Assume that for
d = 1, . . . , (px + 1)(py + 1)(pz + 1) counting value at given point for given element and function f costs
Φf ((px + 1)2(py + 1)2(pz + 1)2) arithmetic operations where Φf is the function depending on f .
The formula for Φf depends on the form of f . If f is given by a prescribed formula, then cost of computing
a value of f is constant and Φf is constant. Otherwise when f is given by a combination of B − splines

f =
px+1∑
o=1

py+1∑
q=1

pz+1∑
r=1

BoxB
q
yB

r
zfoqr (B.2)

then

Φf (xm) = (px + 1)(py + 1)(pz + 1) (B.3)

and total cost will be

(px + 1)3(py + 1)3(pz + 1)3 (B.4)

In the following part of the paper we assume that f is prescribed by a given formula, and so the cost of
computation a value of f at given point is constant.

80

81

B.0.2. Integration over all elements

Since we have a mesh of Nx ×Ny ×Nz elements (where Nx, Ny, Nz denotes the number of elements
in the x, y and z direction, respectively) the total cost of integration will be

(px + 1)2(py + 1)2(pz + 1)2NxNyNzΦf (B.5)

with computational complexity of
O(p2

xp
2
yp

2
zNxNyNz) (B.6)

B.0.3. Solution

In each step of the algorithm we LU factorize a banded matrix resulting from one dimensional B-spline
basis function of order p. Let N be the number of elements in one direction. Then, the banded matrix
MN of size N with 2p+ 1 diagonal blocks can be LU factorized in O(p2N) steps.
When solving problem in the x direction we have to LU factorize matrix MNx of size Nx with 2px + 1
diagonal blocks and we have Ny ×Nz right hand sides, each one of size Nx.

O
(
Nxp

2
xNyNz

)
(B.7)

The solution complexity over y and z directions can be estimated in analogous way as

O
(
Nyp

2
yNxNz

)
(B.8)

and
O
(
Nzp

2
zNxNy

)
(B.9)

this results in computational complexity

O
(
(p2
x + p2

y + p2
z)(NxNyNz)

)
(B.10)

B.0.4. Reorder data

After processing data in the x-direction we need to perform the reorder of data processing along the y
direction. Similar reordering applies after processing data in the y-direction and before processing data in
the z-direction. The computational complexity of each of the two reorders is equal to

O (NxNyNzpxpypz) (B.11)

B.0.5. Total complexity

From the discussion above, we conclude that we can construct isogeometric projection solver with the
total cost(

p2
xp

2
yp

2
zNxNyNz

)
tcomp +

(
p2
x + p2

y + p2
z

)
(NxNyNz) tcomp + + (pxpypzNxNyNz) tcomp (B.12)

for arbitrary polynomial orders px, py, pz, dimension sizes Nx, Ny, Nz where tcomp is the cost of processing
a single FLOAT.

Assuming
Nx = Ny = Nz = N1/3, px = py = pz = p (B.13)

M. Woźniak Isogeometric solvers

82

we have the following cost (
p6N + p2N + p3N

)
tcomp (B.14)

which implies the computational complexity

O
(
p6N

)
(B.15)

M. Woźniak Isogeometric solvers

Appendix C
Derivation of element matrices and
right-hand-side vector for the isogeometric L2

projection problem

This section presents a weak form of the classical L2 projection problem, used as a model problem to test
the efficiency of our parallel integration algorithm. The L2-projection problem in the weak form is the
following: We are looking for the u ∈ V ⊂ L2, being the orthogonal L2 projection of picewise constant
function F from L2(Ω) on the space of B-splines V , which results in the condition (F − u, v) = 0,∀v ∈ V ,
where (L2(Ω))2 3 (u, v)→

∫
Ω u vdx ∈ R stands for the scalar product in L2(Ω). Observing that V −u = V

we can obtain the L2-projection problem in the more convenient form:

(u, v) = (F, v) ∀v ∈ V, V = span{Bi,j;p}i=1,...,Nx,j=1,...,Ny
(C.1)

where Bi,j;p are B-spline basis functions of a given order p [29]. The B-spline order p is uniform, and
constant for all basis functions.

If we select a basis {Bi,j;p}i=1,...,Nx,j=1,...,Ny in V , then an arbitrary v ∈ V can be represented by
v =

∑
k=1,...,Nx,l=1,...,Ny

Bk,l;pbk,l and the L2-projection problem can be rewritten in the form

∑
k=1,...,Nx,l=1,...,Ny

bk,l(u− F,Bk,l;p) = 0 ∀{bk,l} (C.2)

Because {bk,l} is arbitrary, then (C.2) is satisfied if and only if RNxNy 3 (u − F,Bk,l;p) = 0 as the
unique vector in RNxNy orthogonal to all others. Then, we obtain a system of equations

(u,Bk,l;p) = (F,Bk,l;p) k = 1, . . . , Nx, l = 1, . . . , Ny (C.3)

moreover, finally using the representation of

u =
∑
i,j

Bi,j;pai,j (C.4)

we obtain

∑
i=1,...,Nx,j=1,...,Ny

ai,j(Bi,j;p, Bk,l;p) = (F,Bk,l;p) k = 1, . . . , Nx, l = 1, . . . , Ny (C.5)

83

List of figures

1.1 Distribution of values of Kq material data over the computational domain. 15

2.1 Visual explanation of q and r . 16

2.2 Two-dimensional cubic B-Splines spead over (p+ 1)2 = 32 = 9 elements. 17

2.3 The scheme of the multi-frontal solver algorithm execution over a two-dimensional grid
for quadratic B-splines. Each element contains the entire support of one B-spline with its
maximum value attained at its center. 19

2.4 The scheme of the multifrontal solver algorithm execution over a three-dimensional grid
for quadratic B-splines. Each element contains the entire support of one B-spline with its
maximum value attained at its center. 20

3.1 Gathering and scattering data into three faces of the three-dimensional cube of processors 24

4.1 Partition of the computational mesh into elements . 29

4.2 Supports of linear B-spline basis functions over a single element 29

4.3 Quadratic B-splines over a single element . 31

4.4 Dickert graph between tasks expressing the integration with linear basis functions 33

4.5 Cox-de-Boor formulae . 34

4.6 Dickert graph between tasks expressing the integration with quadratic basis functions . . 35

5.1 Weak scaling efficiency of the direct solvers for two-dimensional IGA with linear B-splines,
C0 global continuity. 39

5.2 Weak scaling efficiency of the direct solvers for two-dimensional IGA with quartic B-splines,
C3 global continuity. 39

5.3 Weak scaling efficiency of the direct solvers for two-dimensional IGA with octic B-splines,
C7 global continuity. 40

5.4 Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with linear B-splines,
with C0global continuity. 41

5.5 Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with quartic
B-splines, with C3 global continuity. 41

5.6 Parallel efficiency of the MUMPS direct solver for two-dimensional IGA with octic B-splines,
with C7 global continuity. 42

5.7 Parallel speedup of the MUMPS direct solver for two-dimensional IGA with linear B-splines,
with C0global continuity. 42

84

LIST OF FIGURES 85

5.8 Parallel speedup of the MUMPS direct solver for two-dimensional IGA with quartic B-splines,
with C3 global continuity. 43

5.9 Parallel speedup of the MUMPS direct solver for two-dimensional IGA with octic B-splines,
with C7 global continuity. 43

5.10 Execution time divided by p2 measured for parallel MUMPS, SuperLU and PaStiX solvers
executed over distributed memory machine, for two-dimensional problem with 256× 256
elements, for continuity Cp−1 for different p, one core per node, with eight nodes. 44

5.11 Execution time divided by p2 measured for parallel MUMPS, SuperLU and PaStiX solvers
executed over distributed memory machine, for two-dimensional problem with 256× 256
elements, for continuity Cp−1 for different p, one core per node, with thirty two nodes. . . 45

5.12 Execution times for the MUMPS direct solver for two-dimensional IGA with linear B-splines,
C0 global continuity. 45

5.13 Execution times for the MUMPS direct solver for two-dimensional IGA with quartic
B-splines, C3 global continuity. 46

5.14 Execution times for the MUMPS direct solver for two-dimensional IGA with octic B-splines,
C7 global continuity. 46

5.15 Weak scalability of the MUMPS direct solver for three-dimensional IGA with linear B-splines,
C0 global continuity. Different lines correspond to various problems sizes. 47

5.16 Weak scalability of the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity. Different lines correspond to various problems sizes. . . . 48

5.17 Parallel efficiency of the MUMPS direct solver for three-dimensional IGA with linear
B-splines, C0 global continuity. Different lines represents different sizes of the mesh. . . . 48

5.18 Parallel efficiency of the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity. Different plots represents different sizes of the mesh. . . . 49

5.19 Parallel speedup of the MUMPS direct solver for three-dimensional IGA with linear B-
splines, C0 global continuity. Different lines represents different sizes of the mesh. 49

5.20 Parallel speedup of the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity. Different plots represents different sizes of the mesh. . . . 50

5.21 Execution times for the MUMPS direct solver for three-dimensional IGA with linear
B-splines, C0 global continuity. 51

5.22 Execution times for the MUMPS direct solver for three-dimensional IGA with quartic
B-splines, C3 global continuity. 51

5.23 Execution times for the MUMPS direct solver for three-dimensional IGA, for fixed 323

elements, divided by N4/3. 52

5.24 Comparison of total experimental and theoretical execution time for N = 512 for p = 3 for
different number of processors 23, . . . , 103 = 8, . . . , 1000. 54

5.25 Comparison of total experimental and theoretical execution time for N = 1024 for p = 3
for different number of processors 33, . . . , 123 = 27, . . . , 1728. 54

5.26 Comparison of experimental and theoretical integration time for N = 512 for p = 3 for
different number of processors 23, . . . , 103 = 8, . . . , 1000. 55

5.27 Comparison of total experimental and estimated integration time for N = 1024 for p = 3
for different number of processors 33, . . . , 123 = 27, . . . , 1728. 55

M. Woźniak Isogeometric solvers

LIST OF FIGURES 86

5.28 Comparison of experimental and theoretical solution times for N = 512 for p = 3 for
different number of processors 23, . . . , 103 = 8, . . . , 1000 . 56

5.29 Comparison of total experimental and estimated solution times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728. 56

5.30 Comparison of experimental and theoretical gather times for N = 512 for p = 3 for different
number of processors 23, . . . , 103 = 8, . . . , 1000. 57

5.31 Comparison of total experimental and estimated gather times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 27, . . . , 1728. 57

5.32 Comparison of experimental and theoretical scatter times for N = 512 for p = 3 for different
number of processors 23, . . . , 103 = 8, . . . , 1000. 58

5.33 Comparison of total experimental and estimated scatter times for N = 1024 for p = 3 for
different number of processors 33, . . . , 123 = 8, . . . , 1728. 58

5.34 Proportion of integration FLOPS to total computation cost with MUMPS solver. 59

5.35 Proportion of integration time to total computation cost with MUMPS solver. 60

5.36 Proportion of integration FLOPS to total computation cost with ADS solver. 60

5.37 Proportion of integration time to total computation cost with ADS solver. 61

5.38 Comparison of GPU and CPU integration time for linear B-splines 62

5.39 Comparison of GPU and CPU integration time for quadratic B-splines 62

5.40 Comparison of GPU and CPU integration time for cubic B-splines 63

5.41 Comparison of GPU and CPU integration time for quartic B-splines 63

5.42 Execution time of the parallel integration algorithm in 3D, when increasing number of cores. 64

5.43 Parallel efficiency of the parallel integration algorithm in 3D. 65

5.44 Parallel speedup of the parallel integration algorithm in 3D. 65

5.45 Snapshots of the results of the simulations, initial state. 66

5.46 Snapshots of the results of the simulations, time step 20. 67

5.47 Snapshots of the results of the simulations, time step 100. 67

5.48 Snapshots of the results of the simulations, time step 200. 68

5.49 Snapshots of the results of the simulations, time step 300. 68

5.50 Snapshots of the results of the simulations, time step 500. 69

5.51 Snapshots of the results of the simulations, time step 1000. 69

5.52 Relative error estimation between solutions obtained by different time steps. 70

M. Woźniak Isogeometric solvers

List of tables

2.1 Number of interior and interacting unknowns at each step of the multi-frontal solver. . . . 21

4.1 Frontal matrix with linear basis functions and the corresponding tasks names 29

4.2 Computational tasks responsible for evaluation of the values of scalar products of two-
dimensional . 30

4.3 Computational tasks responsible for evaluation of the values of two-dimensional linear basis
functions over element Ek,l at Gaussian quadrature points. 30

4.4 Computational tasks responsible for evaluation of the values of one dimensional linear basis
functions over element Ek,l at Gaussian quadrature points. 31

4.5 Frontal matrix with quadratic basis functions . 32

4.6 Computational tasks responsible for evaluation of the values of scalar products of two-
dimensional quadratic basis functions over element Ek,l at Gaussian quadrature points. . 32

4.7 Computational tasks responsible for evaluation of the values of two-dimensional quadratic
basis functions over element Ek,l at Gaussian quadrature points. 32

4.8 Computational tasks responsible for evaluation of the values of one dimensional quadratic
basis functions over element Ek,l at Gaussian quadrature points. 32

5.1 Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with linear B-splines, C0 continuity. 44

5.2 Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with quartic B-splines, C3 continuity. 47

5.3 Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for two-dimensional IGA with octic B-splines, C7 continuity. 47

5.4 Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for three-dimensional IGA with linear B-splines, C0 continuity. 50

5.5 Exponent factors α from fitting the curve const ∗Nα based on execution times of MUMPS
solver for three-dimensional IGA with quartic B-splines, C3 continuity. 52

5.6 Exponent factors β from const∗pβ curve fitting based on execution times of MUMPS solver
for three-dimensional IGA with quartic B-splines, C3 continuity, for fixed N , divided byN4/3. 52

87

Abbreviations

1D One-dimensional

2D Two-Dimensional

3D Three-Dimensional

ADS Alternating Directions Solver

CAD Computer Aided Design

CAE Computer Aided Engineering

CPU Central Processing Unit

FEM Finite Element Method

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

IGA Isogeometric Analysis

MPI Message Passing Interface

MUMPS MUltifrontal Massively Parallel sparse direct Solver

PaStiX Parallel Sparse matriX package

PCAM Partitioning Communication Agglomeration Mapping

PETIGA A framework for high performance Isogeometric Analysis

PETSc Portable, Extensible Toolkit for Scientific Computation

TACC Texas Advanced Computing Center

88

Bibliography

[1] http://www.mcs.anl.gov/petsc.
[2] H. AbouEisha, M. Moshkov, V. Calo, M. Paszyński, D. Goik, and K. Jopek. Dynamic programming

algorithm for generation of optimal elimination trees for multi-frontal direct solver over h-refined
grids. Procedia Computer Science, 29:947–959, 2014.

[3] I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff. The role of continuity in
residual-based variational multiscale modeling of turbulence. Computational Mechanics, 41:371–378,
2008.

[4] M. Alotaibi, V. M. Calo, Y. Efendiev, J. Galvis, and M. Ghommem. Global-local nonlinear model
reduction for flows in heterogeneous porous media. Computer Methods in Applied Mechanics and
Engineering, 292:122–137, 2015.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully synchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23:15–41,
2001.

[6] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering, 184:501–520, 2000.

[7] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the parallel
solution of linear systems. Parallel Computing, 32:136–156, 2006.

[8] D. N. Arnold, R. S. Falk, and R. Winther. Multigrid in h(div) and h(curl). Numerische Mathematik,
85:197–217, 2000.

[9] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eij-
khout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, L. Curfman McInnes, K. Rupp,
B. Smith, S. Zampini, and H. Zhang. PETSc Users Manual. Argonne National Laboratory,
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf, 2013. Revision 3.7.

[10] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, and H. Zhang.
PETSc Web Page. http://www.mcs.anl.gov/petsc, 2014.

[11] S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith. Efficient management of parallelism
in object-oriented numerical software libraries. Modern Software Tools in Scientific Computing, pages
163–202, 1997.

[12] Y. Bazilevs, L. Beirao da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli. Isogeometric
analysis: Approximation, stability and error estimates for h-refined meshes. Mathematical Models
and Methods in Applied Sciences, 16:1031–1090, 2006.

89

BIBLIOGRAPHY 90

[13] Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational
multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows.
Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

[14] Y. Bazilevs, V. M. Calo, Y. Zhang, and T. J. R. Hughes. Isogeometric fluid-structure interaction
analysis with applications to arterial blood flow. Computational Mechanics, 38:310–322, 2006.

[15] Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale
modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched
meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–790, 2010.

[16] D. J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, and T. Belytschko.
A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to
xfem. International Journal for Numerical Methods in Engineering, 83:765–785, 2010.

[17] D. J. Benson, Y. Bazilevs, M.-C. Hsu, and T. J. R. Hughes. A large deformation, rotation-free,
isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200:1367–1378, 2011.

[18] L. M. Bernal, V. M. Calo, N. Collier, G. A. Espinosa, F. Fuentes, and J. C. Mahecha. Isogeometric
analysis of hyperelastic materials using petiga. Procedia Computer Science, 18:1604–1613, 2013.

[19] V. Bientinesi, P. amd Eijkhout, K. Kim, J. Kurtz, and van de Geijn R. Sparse direct factorizations
through unassembled hyper-matrices. Computer Methods in Applied Mechanics and Engineering,
199:430–438, 2010.

[20] G. Birkhoff, R. Varga, and Y. D. Alternating direction implicit methods. Advances in Computers,
3:189–273, 1962.

[21] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, 1997.

[22] A. Buffa, H. Harbrecht, A. Kunoth, and G. Sangalli. Bpx-preconditioning for isogeometric analysis.
Computer Methods in Applied Mechanics and Engineering, 265:63–70, 2013.

[23] V. M. Calo, N. F. Brasher, Y. Bazilevs, and T. J. R. Hughes. Multiphysics model for blood flow and
drug transport with application to patient-specific coronary artery flow. Computational Mechanics,
43:161–177, 2008.

[24] V. M. Calo, N. O. Collier, D. Pardo, and M. R. Paszyński. Computational complexity and memory
usage for multi-frontal direct solvers used in p finite element analysis. Procedia Computer Science,
4:1854–1861, 2011.

[25] V. M. Calo, H. Gomez, Y. Bazilevs, G. Johnson, and T. J. R. Hughes. Simulation of engineering
applications using isogeometric analysis. Proceedings of Tera Grid, 2008.

[26] K. Chang, T. J. R. Hughes, and V. M. Calo. Isogeometric variational multiscale large-eddy simulation
of fully-developed turbulent flow over a wavy wall. Computers & Fluids, 68:94–104, 2012.

[27] N. Collier, L. Dalcin, D. Pardo, and V. M. Calo. The cost of continuity: Performance of iterative
solvers on isogeometric finite elements. SIAM Journal on Scientific Computing, 35:A767–A784, 2013.

[28] N. Collier, D. Pardo, L. D. Dalcin, M. Paszyński, and V. M. Calo. The cost of continuity: A study of
the performance of isogeometric finite elements using direct solvers. Computer Methods in Applied
Mechanics and Engineering, 213-216:353–361, 2012.

[29] J. A. Cottrel, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD
and FEA. Wiley, 2009.

[30] J. A. Cottrell, T. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD
and FEA. John Wiley & Sons, 2009.

M. Woźniak Isogeometric solvers

BIBLIOGRAPHY 91

[31] L. Dedè, M. J. Borden, and T. J. R. Hughes. Isogeometric analysis for topology optimization with a
phase field model. Archives of Computational Methods in Engineering, 19:427–465, 2012.

[32] L. Dedè, T. J. R. Hughes, S. Lipton, and V. M. Calo. Structural topology optimization with
isogeometric analysis in a phase field approach. 16th US National Conference on Theoretical and
Applied Mechanics, 2010.

[33] L. Demkowicz. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1 One and Two
Dimensional Elliptic and Maxwell Problems. Chapman & Hall/CRC Applied Mathematics & Nonlinear
Science. Chapmann & Hall / CRC, 2006.

[34] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, and A. Zdunek. Computing with
hp-ADAPTIVE FINITE ELEMENTS: Volume 2 Frontiers: Three Dimensional Elliptic and Maxwell
Problems with Applications. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science.
Chapmann & Hall / CRC, 2007.

[35] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.
[36] M. Dőrfel, B. Júttler, and B. Simeon. Adaptive isogeometric analysis by local h-refinement with t-

splines. Computer Methods in Applied Mechanics and Engineering, 199:264–275, 2010. Computational
Geometry and Analysis.

[37] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems in two and
three space variables. Transactions of American Mathematical Society, 82:421–439, 1956.

[38] R. Duddu, L. L. Lavier, T. J. R. Hughes, and V. M. Calo. A finite strain eulerian formulation
for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements.
International Journal for Numerical Methods in Engineering, 89:762–785, 2012.

[39] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear. ACM
Transactions on Mathematical Software, 9:302–325, 1983.

[40] I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear equations. SIAM
Journal on Scientific and Statistical Computing, 5:633–641, 1984.

[41] A. El maliki, M. Fortin, N. Tardieu, and A. Fortin. Iterative solvers for 3d linear and nonlinear
elasticity problems: Displacement and mixed formulations. International Journal for Numerical
Methods in Engineering, 83:1780–1802, 2010.

[42] I. Foster. Designing and building parallel programs. 1995.
[43] L. Gao and V. Calo. Fast isogeometric solvers for explicit dynamics. Computer Methods in Applied

Mechanics and Engineering, 274:19–41, 2014.
[44] L. Gao and V. Calo. Preconditioners based on the alternating-direction-implicit algorithm for the 2d

steady-state diffusion equation with orthotropic heterogenous coefficients. Journal of Computational
and Applied Mathematics, 273:274–295, 2015.

[45] L. Gao and V. M. Calo. Fast isogeometric solvers for explicit dynamics. Computer Methods in Applied
Mechanics and Engineering, 274:19–41, 2014.

[46] L. Gao and V. M. Calo. Preconditioners based on the alternating-direction-implicit algorithm
for the 2d steady-state diffusion equation with orthotropic heterogeneous coefficients. Journal of
Computational and Applied Mathematics, 273:274–295, 2015.

[47] P. Geng, J. T. Oden, and R. A. van de Geijn. A parallel multifrontal algorithm and its implementation.
Computer Methods in Applied Mechanics and Engineering, 149:289–301, 1997.

[48] D. Goik, K. Jopek, M. Paszyński, A. Lenharth, D. Nguyen, and K. Pingali. Graph grammar based
multi-thread multi-frontal direct solver with galois scheduler. Procedia Computer Science, 29:960–969,
2014.

M. Woźniak Isogeometric solvers

BIBLIOGRAPHY 92

[49] H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. R. Hughes. Isogeometric analysis of the cahn-hilliard
phase-field model. Computer Methods in Applied Mechanics and Engineering, 197:4333–4352, 2008.

[50] H. Gomez, T. J. R. Hughes, X. Nogueira, and V. M. Calo. Isogeometric analysis of the isothermal
navier-stokes-korteweg equations. Computer Methods in Applied Mechanics and Engineering, 199:1828–
1840, 2010.

[51] P. Hénon, P. Ramet, and J. Roman. Pastix: A high-performance parallel direct solver for sparse
symmetric definite systems. Parallel Computing, 28:301–321, 2002.

[52] R. Hiptmair. Multigrid method for maxwell’s equations. SIAM Journal of Numerical Analysis,
36:204–225, 1998.

[53] S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes. Mathematical
modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary
artery walls. Computational Mechanics, 49:213–242, 2012.

[54] M.-C. Hsu, I. Akkerman, and Y. Bazilevs. High-performance computing of wind turbine aerodynamics
using isogeometric analysis. Computers & Fluids, 49:93–100, 2011.

[55] O. Iliev, R. Lazarov, and J. Willems. Variational multiscale finite element method for flows in highly
porous media. Multiscale Model. Simul., 9:1350–1372, 2011.

[56] B. M. Irons. A frontal solution program for finite-element analysis. International Journal for
Numerical Methods in Engineering, 2:5–32, 1970.

[57] K. Kuźnik, M. Paszyński, and V. Calo. Grammar based multi-frontal solver for isogeometric analysis
in 1d. Computer Science, 14:589–613, 2013.

[58] X. Li, J. Demmel, J. Gilbert, i. Grigori, M. Shao, and I. Yamazaki. SuperLU Users’ Guide. Lawrence
Berkeley National Laboratory, http://crd.lbl.gov/ xiaoye/SuperLU/, 1999.

[59] X. S. Li. An overview of superlu: Algorithms, implementation, and user interface. TOMS Transactions
on Mathematical Software, 31:302–325, 2005.

[60] L. Lin, C. Yang, J. Lu, L. Ying, and E. Weinan. A fast parallel algorithm for selected inversion of
structured sparse matrices with application to 2d electronic structure calculations. SIAM Journal on
Scientific Computing, 33:1329–1351, 2011.

[61] P. Obrok, P. Pierzchała, A. Szymczak, and M. Paszyński. Graph grammar-based multi-thread multi-
frontal parallel solver with trace theory-based scheduler. Procedia Computer Science, 1:1993–2001,
2010.

[62] A. Paszyńska, , E. Grabska, and M. Paszyński. A graph grammar model of the hp adaptive three
dimensional finite element method. part i. Fundamenta Informaticae, 114:149–182, 2012.

[63] A. Paszyńska, , E. Grabska, and M. Paszyński. A graph grammar model of the hp adaptive three
dimensional finite element method. part ii. Fundamenta Informaticae, 114:183–201, 2012.

[64] A. Paszyńska, M. Paszyński, K. Jopek, M. Woźniak, D. Goik, P. Gurgul, H. AbouEisha, M. Moshkov,
V. M. Calo, A. Lenharth, D. Nguyen, and K. Pingali. Quasi-optimal elimination trees for 2d grids
with singularities. Scientific Programming, 2015, 2015.

[65] M. Paszyński. On the parallelization of self-adaptive hp-finite element methods part ii. partitioning
communication agglomeration mapping (pcam) analysis. Fundamenta Informaticae, 93:435–457, 2009.

[66] M. Paszyński. Minimizing the memory usage with parallel out-of-core multi-frontal direct solver.
Computer Assisted Methods in Engineering and Science, 20:15–41, 2013.

[67] M. Paszyński, T. Jurczyk, and D. Pardo. Multi-frontal solver for simulations of linear elasticiy coupled
with acoustics. Computer Science, 12:85–102, 2011.

[68] M. Paszyński, D. Pardo, and A. Paszyńska. Parallel multi-frontal solver for p adaptive finite element
modeling of multi-physics computational problems. Journal of Computational Science, 1:48–54, 2010.

M. Woźniak Isogeometric solvers

BIBLIOGRAPHY 93

[69] M. Paszyński, D. Pardo, C. Torres-Verdín, L. Demkowicz, and C. V. M. A parallel direct solver for
self-adaptive hp-finite element method. Journal of Parallel and Distributed Computing, 70:270–281,
2010.

[70] M. Paszyński and R. Schaefer. Graph grammar-driven parallel partial differential equation solver.
Concurrency and Computation Practice and Experience, 22:1063–1097, 2010.

[71] D. W. Peaceman and J. H. H. Rachford, H. H. The numerical solution of parabolic and elliptic
differential equation. Journal of the Society for Industrial and Applied Mathematics, 3:28–41, 1955.

[72] P. G. Schmitz and L. Ying. A fast direct solver for elliptic problems on general meshes in 2d. Journal
of Computational Physics, pages 1314–1338, 2012.

[73] P. G. Schmitz and L. Ying. A fast multifrontal solver for 3d elliptic problems using hierarchical
matrices. Journal of Computational Physics, 2013. submitted.

[74] B. Strug, A. Paszyńska, M. Paszyński, and G. E. Using a graph grammar system in the finite element
method. International Journal of Applied Mathematics and Computer Science, 23:839–853, 2013.

[75] A. Szymczak, M. Paszyński, D. Pardo, and A. Paszyńska. Petri nets modeling of dead-end refinement
problems in a 3d anisotropic hp-adaptive finite element method. Computing and Informatics,
34:425–457, 2015.

[76] Texas Advanced Computing Center, https://portal.tacc.utexas.edu/user-guides/stampede. STAM-
PEDE User Guide, 2016.

[77] E. L. Wachspress and G. J. Habetler. An alternating-direction-implicit iteration technique. Journal
of Society of Industrial and Applied Mathematics, 8:403–423, 1960.

[78] M. Woźniak. Task dependency graph based scheduler for fast gpu integration for isogeometric finite
element method solvers. Journal of Computational Science, 11:145–152, 2015.

[79] M. Woźniak, K. Kuźnik, M. Paszyński, V. M. Calo, and D. Pardo. Computational cost estimates
for parallel shared memory isogeometric multi-frontal solvers. Computers & Mathematics with
Applications, 67:1864–1883, 2014.

[80] M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, and V. M. Calo. Parallel three dimensional isogeometric
l2 projection solver. accepted to CAI.

[81] M. Woźniak, M. Paszyński, D. Pardo, and L. C. V. M. Dalcin. Computational cost of isogeometric
multi-frontal solvers on parallel distributed memory machines. Computer Methods in Applied
Mechanics and Engineering, 284:971–987, 2015.

M. Woźniak Isogeometric solvers

A
G
Hbpp

Maciej Woźniak, mgr inż.
WIEiT-ki
Wydział Informatyki, Elektroniki i Telekomunikacji
Katedra Informatyki

1. Alternating directions solver for isogeometric simulations of non-linear problems / Marcin Łoś,
Maciej WOŹNIAK, Maciej PASZYŃSKI // W: GEASC Global Engineering & Applied Science
Conference ; SEDT International Symposium on Electrical, Electronic Engineering and Digital
Technology ; ILSBE International Conference on Life Science and Biological Engineering
[Dokument elektroniczny] : the joint conference : December, 2015 Tokyo, Japan : conference
proceedings. — Wersja do Windows. — Dane tekstowe. — [Tokyo : s. n.], [2015]. — 1 dysk
Flash. — dod. ISBN: 978-986-5654-05-4 (SEDT), ISBN: 978-986-5654-0407 (ILSBE). — e-ISBN:
978-986-5654-31-3 (G. — S. 296–305. — Wymagania systemowe: Adobe Reader. — Bibliogr.
s. 305, Abstr.. — publikacja zamieszczona w GEASC

brak Impact Factor brak punktacji MNiSW

2. Alternating directions solver for isogeometric simulations of non-linear problems / Marcin ŁOŚ,
Maciej WOŹNIAK, Maciej PASZYŃSKI // International Journal of Computer Science and
Engineering ; ISSN 2278-9960. — 2016 vol. 5 iss. 2, s. 99-107. — Bibliogr. s. 107, Abstr.

brak Impact Factor brak punktacji MNiSW

3. Application of projection-based interpolation algorithm for non-stationary problem / Maciej
WOŹNIAK, Maciej PASZYŃSKI // Computer Science ; ISSN 1508-2806. — 2016 vol. 17 no. 3,
s. 297–319. — Bibliogr. s. 318–319, Abstr.

brak Impact Factor punktacja (lista B czasopism MNiSW, 2016): 12.000

4. Comparison of the structure of equation systems and the GPU multifrontal solver for finite
difference, collocation and finite element method / P. Lipski, M. WOŹNIAK, M. PASZYŃSKI //
Procedia Computer Science [Dokument elektroniczny]. - Czasopismo elektroniczne ; ISSN
1877-0509. — 2015 vol. 51, s. 1072–1081. — Bibliogr. s. 1081, Abstr.. — ICCS 2015 :
International Conference On Computational Science : Computational Science at the Gates of
Nature : June 1–3, 2015 in Reykjavík, Iceland. — tekst:
http://www.sciencedirect.com/science/article/pii/S1877050915010741/pdf?md5=
b4a6f96d61999ce2f4845ed2fb4a18d1&pid=1-s2.0-S1877050915010741-main.pdf

brak Impact Factor punktacja (lista czasopism MNiSW, 2015): 15.000

5. Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers /
M. WOŹNIAK, K. Kuźnik, M. PASZYŃSKI, V. M. Calo, D. Pardo // Computers and
Mathematics with Applications ; ISSN 0898-1221. — 2014 vol. 67 iss. 10, s. 1864–1883. —
Bibliogr. s. 1882–1883, Abstr.. — tekst:
http://vls2.icm.edu.pl/cgi-bin/sciserv.pl?collection=elsevier&journal=08981221&
issue=v67i0010&article=1864_ccefpsmims&form=pdf&file=file.pdf

1.697 punktacja (lista A czasopism MNiSW, 2014): 40.000

6. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory
machines / Maciej WOŹNIAK, Maciej PASZYŃSKI, David Pardo, Lisandro Dalcin, Victor
Manuel Calo // Computer Methods in Applied Mechanics and Engineering ; ISSN 0045-7825. —
2015 vol. 284, spec. iss.: Isogeometric analysis, s. 971–987. — Bibliogr. s. 986–987,
Abstr.. — tekst: http://www.sciencedirect.com/science/article/pii/S0045782514004460/
pdfft?md5=d338712f438c0ca101e7aae45e4bbe5c&pid=1-s2.0-S0045782514004460-main.pdf

3.467 punktacja (lista A czasopism MNiSW, 2015): 45.000

Bibliografia Publikacji Pracowników AGH [04.05.2017; 19:34] [1/4]

Maciej Woźniak, Wydział Informatyki, Elektroniki i Telekomunikacji

7. Dynamics with matrices possessing Kronecker product structure / M. ŁOŚ, M. WOŹNIAK,
M. PASZYŃSKI, L. Dalcin, V. M. Calo // Procedia Computer Science [Dokument elektroniczny].
- Czasopismo elektroniczne ; ISSN 1877-0509. — 2015 vol. 51, s. 286–295. — Bibliogr. s. 294,
Abstr.. — ICCS 2015 : International Conference on Computational Science : Computational
Science at the Gates of Nature : 1–3 June 2015, Reykjavík, Iceland. — tekst:
http://www.sciencedirect.com/science/article/pii/S1877050915010510/pdf?md5=
2fb6fa013dff7f43ea61f0461820aac7&pid=1-s2.0-S1877050915010510-main.pdf

brak Impact Factor punktacja (lista czasopism MNiSW, 2015): 15.000

8. Explicit method solver based on alternating direction isogeometric L2 projections / Maciej
R. PASZYŃSKI, Maciej WOŹNIAK, Lisandro D. Dalcin, Victor M. Calo // W: WCCM XI ;
ECCM V ; ECFD VI [Dokument elektroniczny] : 11th World Congress on Computational
Mechanics ; 5th European Conference on Computational Mechanics : 6th European Conference
on Computational Fluid Dynamics : Barcelona, Spain, 20–25 July 2014. — Wersja do
Windows. — Dane tekstowe. — [Barcelona : International Center of Numerical Methods
Engineering], 2014. — e-ISBN: 978-84-942844-7-2. — S. 1–2. — Bibliogr. s. 2. — tekst:
http://www.wccm-eccm-ecfd2014.org/admin/files/fileabstract/a499.pdf

brak Impact Factor brak punktacji MNiSW

9. Fast GPU integration algorithm for isogeometric finite element method solvers using task
dependency graphs / Maciej WOŹNIAK // Journal of Computational Science ; ISSN
1877-7503. — 2015 vol. 11, s. 145–152. — Bibliogr. s. 151–152, Abstr.. — tekst: http://www.
sciencedirect.com.atoz.wbg2.bg.agh.edu.pl/science/article/pii/S1877750315000253/
pdfft?md5=5e80a98561b590825c8851bea23fa5ca&pid=1-s2.0-S1877750315000253-main.pdf

1.078 punktacja (lista A czasopism MNiSW, 2015): 30.000

10. Fast parallel integration for three dimensional Discontinuous Petrov Galerkin method / Maciej
WOŹNIAK, Marcin ŁOŚ, Maciej PASZYŃSKI, Leszek Demkowicz // Procedia Computer Science
[Dokument elektroniczny]. - Czasopismo elektroniczne ; ISSN 1877-0509. — 2016 vol. 101,
s. 8–17. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 16–17, Abstr.. — Publikacja
dostępna online od: 2016-12-02. — YSC 2016 : 5th international Young Scientist Conference on
computational science : 26–28 October 2016, Krakow, Poland. — tekst: https://goo.gl/Nk59mc

brak Impact Factor punktacja (lista czasopism MNiSW, 2016): 15.000

11. Hypergraph grammars in non-stationary hp-adaptive finite element method / Anna Paszyńska,
Maciej WOŹNIAK, Andrew Lenharth, Donald Nguyen, Keshav Pingali // Procedia Computer
Science [Dokument elektroniczny]. - Czasopismo elektroniczne ; ISSN 1877-0509. — 2016 vol. 80,
s. 875–886. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 886, Abstr.. — ICCS 2016
: International Conference on Computational Science : 6–8 June 2016, San Diego, California,
USA. — tekst: http://goo.gl/VOCX0I

brak Impact Factor punktacja (lista czasopism MNiSW, 2016): 0.000

12. Hypergraph grammar based adaptive linear computational cost projection solvers for two and three
dimensional modeling of brain / Damian Goik, Marcin SIENIEK, Maciej WOŹNIAK, Anna
Paszyńska, Maciej PASZYŃSKI // Procedia Computer Science [Dokument elektroniczny]. -
Czasopismo elektroniczne ; ISSN 1877-0509. — 2014 vol. 29, s. 1002–1013. — Bibliogr. s. 1013,
Abstr.. — ICCS 2014 : 14th International Conference on Computational Science : [Cairns,
Australia, June 10-12, 2014]. — tekst:
http://www.sciencedirect.com/science/article/pii/S1877050914002671/pdf?md5=
1ffdd9094f61e1d690a2dccfa9c1e781&pid=1-s2.0-S1877050914002671-main.pdf

brak Impact Factor punktacja (lista czasopism MNiSW, 2014): 10.000

13. Multi-frontal multi-thread direct solver with galois system for adaptive finite element method /
Anna Paszyńska, Konrad JOPEK, Maciej WOŹNIAK, Maciej PASZYŃSKI, Donald Nguyen,
Andrew Lenerth, Keshav Pingali // W: PANACM 2015 [Dokument elektroniczny] : 1st
Pan-American Congress on Computational Mechanics in conjunction with the XI Argentine
congress on Computational mechanics, MECOM 2015 : 27–29 April, 2015, Buenos Aires,
Argentina : proceedings / eds. Sergio R. Idelsohn, [et al.]. — Wersja do Windows. — Dane

Bibliografia Publikacji Pracowników AGH [04.05.2017; 19:34] [2/4]

Maciej Woźniak, Wydział Informatyki, Elektroniki i Telekomunikacji

tekstowe. — Barcelona : CIMNE, 2015. — e-ISBN: 978-84-943928-2-5. —
S. 931–942. — Wymagania systemowe: Adobe Reader. — Tryb dostępu:
http://congress.cimne.com/panacm2015/frontal/doc/EbookPANACM2015.pdf [2015-06-10]
. — Bibliogr. s. 941–942, Abstr.. — Abstract dostępny również W:
http://congress.cimne.com/PANACM2015/admin/files/fileabstract/a187.pdf

brak Impact Factor punktacja MNiSW (2015): 15.000

14. Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric
L2 projections solver for material science simulations — Otwarte oprogramowanie zawierające
implementację w języku Java równoległego solwera wielowątkowego metody
zmienno-kierunkowych izogeometrycznych L2 projekcji w zastosowaniach do symulacji inżynierii
materiałowej / Grzegorz GURGUL, Maciej WOŹNIAK, Marcin ŁOŚ, Danuta SZELIGA, Maciej
PASZYŃSKI // Computer Methods in Materials Science : quarterly / Akademia
Górniczo-Hutnicza ; ISSN 1641-8581. — Tytuł poprz.: Informatyka w Technologii
Materiałów. — 2017 vol. 17 no. 1, s. 1–11. — Bibliogr. s. 10–11, Abstr., Streszcz.. —
KomPlasTech 2017 : XXIV Conference on Computer Methods in Materials Technology :
Zakopane, Poland 15–18 January 2017. — tekst:
http://www-1cmms-1agh-1edu-1pl-1atoz.wbg2.bg.agh.edu.pl/repo_file.php?f_id=568

brak Impact Factor punktacja (lista B czasopism MNiSW, 2016): 12.000

15. Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric
L2 projections solver for material science simulations / Grzegorz GURGUL, Maciej WOŹNIAK,
Marcin ŁOŚ, Danuta SZELIGA, Maciej PASZYŃSKI // W: KomPlasTech 2017 :
XXIV international conference on Computer methods in materials technology : January 15–18,
2017, Zakopane, Poland : book of abstracts / ed. by Danuta Szeliga, Łukasz Rauch ; AGH
University of Science and Technology ; Silesian University of Technology. — [Zakopane : s. n.],
[2017]. — ISBN: 978-83-947091-0-5. — S. 83–84. — Bibliogr. s. 84

brak Impact Factor punktacja MNiSW (2016): 0.000

16. Optimization of execution time, energy consumption and accuracy during finite element method
simulations / Maciej WOŹNIAK, Marcin ŁOŚ, Leszek SIWIK, Dariusz KRÓL, Maciej
PASZYŃSKI // W: KU KDM 2017 : tenth ACC Cyfronet AGH HPC users’ conference :
Zakopane 8–10 March 2017 : proceedings / ed. Kazimierz Wiatr, Jacek Kitowski, Marian
Bubak. — Kraków : ACC Cyfronet AGH, 2017. — ISBN: 978-83-61433-23-1. — S. 35-36. —
Bibliogr. s. 36

brak Impact Factor brak punktacji MNiSW

17. Parallel alternating direction preconditioner for isogeometric simulations of explicit dynamics /
Marcin ŁOŚ, Maciej WOŹNIAK, Maciej PASZYŃSKI, Lisandro Dalcin, Victor Calo // W:
PANACM 2015 [Dokument elektroniczny] : 1st Pan-American Congress on Computational
Mechanics in conjunction with the XI Argentine congress on Computational mechanics,
MECOM 2015 : 27–29 April, 2015, Buenos Aires, Argentina : technical program. — Wersja do
Windows. — Dane tekstowe. — Barcelona : CIMNE, 2015. —
S. [1]. — Wymagania systemowe: Adobe Reader. — Tryb dostępu:
http://congress.cimne.com/PANACM2015/admin/files/fileabstract/a389.pdf [2015-07-07]
. — Bibliogr. s. [1]

brak Impact Factor brak punktacji MNiSW

18. Parallel isogeometric simulations and inversion of hazardous environmental effects during oil/gas
extraction / Marcin ŁOŚ, Maciej WOŹNIAK, Maciej PASZYŃSKI, Leszek SIWIK, Aleksander
BYRSKI, Marek KISIEL-DOROHINICKI // W: USACM thematic conference on Isogeometric
analysis and meshfree methods [Dokument elektroniczny] : [San Diego, October 10–12, 2016] :
abstracts. (Pt. 2,, M-Z). — Wersja do Windows. — Dane tekstowe. — [USA : s. n.], [2016]. —
S. [1]. — Wymagania systemowe: Adobe Reader. — Tryb dostępu:
http://iga-mf.usacm.org/sites/default/files/IGA-MF%20Abstracts-2R.pdf [2017-01-17]
. — Bibliogr. s. [1]

brak Impact Factor brak punktacji MNiSW

Bibliografia Publikacji Pracowników AGH [04.05.2017; 19:34] [3/4]

Maciej Woźniak, Wydział Informatyki, Elektroniki i Telekomunikacji

19. Quasi-optimal elimination trees for 2D grids with singularities / A. Paszyńska, M. PASZYŃSKI,
K. JOPEK, M. WOŹNIAK, D. Goik, P. GURGUL, [et al.] // Scientific Programming ; ISSN
1058-9244. — 2015 Article ID 303024, s. 1–18. — Bibliogr. s. 17–18

0.455 punktacja (lista A czasopism MNiSW, 2015): 11.250

20. Scalability of direct solver for non-stationary Cahn-Hilliard simulations with linearized time
integration scheme / M. WOŹNIAK, M. SMOŁKA, A. Cortes, M. PASZYŃSKI,
R. SCHAEFER // Procedia Computer Science [Dokument elektroniczny]. - Czasopismo
elektroniczne ; ISSN 1877-0509. — 2016 vol. 80, s. 834–844. — Wymagania systemowe: Adobe
Reader. — Bibliogr. s. 843–844, Abstr.. — Publikacja dostępna online od: 2016-06-01. —
ICCS 2016 : International Conference on Computational Science : 6–8 June 2016, San Diego,
California, USA. — tekst: http://goo.gl/5MDhlK

brak Impact Factor punktacja (lista czasopism MNiSW, 2016): 0.000

21. Simulations of the propagation of electromagnetic waves over a human head based on projection
based interpolation of MRI scan data / Maciej WOŹNIAK, Marcin SIENIEK, Maciej
PASZYŃSKI // W: GEASC Global Engineering & Applied Science Conference ; SEDT
International Symposium on Electrical, Electronic Engineering and Digital Technology ; ILSBE
International Conference on Life Science and Biological Engineering [Dokument elektroniczny] :
the joint conference : December, 2015 Tokyo, Japan : conference proceedings. — Wersja do
Windows. — Dane tekstowe. — [Tokyo : s. n.], [2015]. — 1 dysk Flash. — dod. ISBN:
978-986-5654-05-4 (SEDT), ISBN: 978-986-5654-0407 (ILSBE). — e-ISBN:
978-986-5654-31-3. — S. 455–462. — Wymagania systemowe: Adobe Reader. — Bibliogr. s. 462,
Abstr.. — publikacja zamieszczona w GEASC

brak Impact Factor brak punktacji MNiSW

22. Using the system of graph grammar for generation of quasi optimal element partition trees in two
dimensions — Zastosowanie systemu gramatyk grafowych do generacji quasi-optymalnych drzew
podziałów siatki w dwóch wymiarach / Anna Paszyńska, Iwona Świderska, Maciej WOŹNIAK,
Konrad JOPEK, Maciej PASZYŃSKI, Ewa Grabska, Andrew Lenhart, Donals Nguyen, Keshav
Pingali // Computer Methods in Materials Science : quarterly / Akademia
Górniczo-Hutnicza ; ISSN 1641-8581. — Tytuł poprz.: Informatyka w Technologii
Materiałów. — 2016 vol. 16 no. 3, s. 143–155. — Bibliogr. s. 155, Abstr., Streszcz.. — tekst:
http://www-1cmms-1agh-1edu-1pl-1atoz.wbg2.bg.agh.edu.pl/repo_file.php?f_id=583

brak Impact Factor punktacja (lista B czasopism MNiSW, 2016): 12.000

Bibliografia Publikacji Pracowników AGH [04.05.2017; 19:34] [4/4]

