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Streszczenie

Niniejsza praca prezentuje nowy formalizm matematyczny, który za pomocą gramatyk hipergrafowych steruje

wykonaniem adaptacyjnej Metody Elementów Skończonych dla siatek z osobliwościami punktowymi, o dowol-

nym poziomie zagęszczenia siatki w stronę osobliwości. Wydajne techniki rozwiązywania tej klasy problemów

stanowią niezmiennie obszar zainteresowania środowiska naukowego. Rozprawa ta pokazuje jak wykorzystać

szczególną dla problemów z osobliwościami punktowymi strukturę siatki, celem uzyskania liniowej złożoności

obliczeniowej w wersji sekwencyjnej oraz logarytmicznej złożoności obliczeniowej w wersji równoległej. Po-

nadto, zamodelowanie gramatykami grafowymi solwera wielofrontalnego wspomaga wydajne zrównoleglenie, co

skutkuje dodatkowym wzrostem wydajności. Modele hipergrafowe zostały w niniejszej pracy stworzone zarówno

dla sekwencyjnej jak i równoległej wersji solwera, w dwu i trzech wymiarach. Dla obu wariantów rozwiązania

zostały oszacowane teoretyczne koszty wykonania i zużycie pamięci. Obydwa modele teoretyczne zostały zaim-

plementowane na CPU i GPU. Implementacja na GPU okazała się wyraźnie lepsza od osiągów wiodących solwe-

rów, takich jak MUMPS. Pomiary wydajności zostały zebrane dla problemów dwu- i trójwymiarowych, z jedną

lub wieloma osobliwościami punktowymi oraz dla kilku różnych stopni aproksymacji wielomianowej. Rezultaty

te zostały zestawione z oszacowaniami teoretycznymi.

Abstract

In this thesis I present a new hypergraph grammar based formalism prescribing execution of the adaptive

Finite Element Method solver for grids with point singularities, not restricted by the number of refinement levels.

Efficient approaches to handling such problems are of a great interest and importance to the scientific community.

This thesis presents how to utilize a special, adapted structure of the computational domain for problems with point

singularities in order to achieve linear computational cost in serial and logarithmic computational cost in parallel.

Moreover, graph grammar modeling of the multi-frontal direct solver also helps with efficient parallelisation.

The hypergraph models have been created for both sequential and parallel versions of the algorithm, in two and

three dimensions. The thesis contains theoretical estimates of the computational cost and memory usage for both

versions of the newly developed solver. The theoretical models presented in this thesis have been transformed

into a working CPU and GPU implementations. The GPU implementation has been proven to outperform current

state-of-the-art solvers, like the Multifrontal Massively Parallel sparse direct Solver. The efficiency results have

been collected for two and three dimensional problems with various numbers of point singularities and various

polynomial approximation levels. The resuls have been compared with the theoretical estimates.
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Chapter 1
Introduction

Many challenging and important engineering problems consist in obtaining an approximate solution to a Partial

Differential Equation. Solving such an equation is a task that usually requires significant computational power, as

the resulting problems often generate millions of unknows. As a consequence, efficient, low complexity algori-

thms and techniques are at least as important as powerful hardware. Using methods that deliver exponential error

decrease rates such as hp adaptive Finite Element Method helps to dramatically reduce the number of unknows.

Another important optimization is the speeding up of solving the system of linear equations resulting from the

discretization. Some of these problems are already well-described and addressed, but many of them still remain

open. This thesis presents how to deliver a direct solver an order of magnitude faster than the existing solutions,

which can be applied to a wide range of problems with point singularities. Moreover, this work shows how le-

veraging emerging architectures such as modern graphic processors can also account for increasing efficiency of

scientific computations.

1.1. Motivation

The key motivation of this work is to present the first hypergraph grammar based mathematical formalism

driving execution of the adaptive Finite Element Method solver for grids with point singularities, not restricted by

the number of refinement levels. The main objective is to deliver a graph grammar based version of a multi-frontal

direct solver for grids with point singularities, which allows for exploiting the parallelism hidden within the solver

algorithm, and enabling the most efficient parallel implementation, outperforming current state-of-the-art solvers,

like MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [2, 35].

Many important engineering problems require high precision solutions that would produce enormous grids if

solved using non-adaptive methods. This is why, in this work, I focus only on the adaptive techniques such as

the h−, p− and hp−adaptive Finite Element Method, which perform much better for irregular problems, such as

those with singularities. The Finite Element Method, as well as some other well-established industrial and scientific

numerical techniques, have the following items as their input:

– The computational mesh that contains finite elements, describing the domain of the problem being solved.

– Basis functions spread over the mesh, used for the approximation of the numerical solution.

– Partial differential equations describing the physical phenomena to be simulated.

The Partial Differential Equation is translated into its weak form which allows transformation the initial problem

into a system of linear equations by computing the weak form integrals with basis functions over all finite elements.
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1.1. Motivation 9

A more detailed tutorial to the Finite Element Method in one and two dimensions can be found in Appendices A

and B. The resulting system of linear equations is solved by using a direct solver algorithm.

Classical state-of-the-art solvers, like the MUMPS solver [34, 35], receive the global matrix as their input,

construct the connectivity graph based on the sparsity of the matrix, and build the elimination tree by running graph

partitioning algorithms like nested dissections from the METIS library [66, 67]. Finally, they leverage parallelism

by traversing the elimination tree concurrently. In this work, I present an alternative approach that allows for

expressing the direct solver algorithm by the means of a graph grammar, based on the hypergraph representation

of the computational mesh. The solver algorithm can be expressed in the language of basic indivisable tasks called

graph grammar productions. Such notation allows us to analyse the partial order of execution between tasks.

This, in turn, helps us to recognize sets of tasks that can be executed in parallel, as well as to deliver efficient

parallel implementation, outperforming current state-of-the-art solvers. The graph grammar productions that can

enforce a special processing order enable us to take advantage of the hierarchical structure of the mesh. The

hierarchical structure of the mesh in the neighborhood of point singularities results from local mesh refinements

that are intended to increase the accuracy of the numerical solution. As a rule, these refinements follow local

singularities of the numerical solution. The point singularities are very common in numerical simulations. They

may result from:

– Local geometrical structure of the mesh (like the internal corner in the L-shape domain model problem - see

Appendix B).

– Point sources on the right hand side of the PDE (like point heat sources in the heat transfer problem, or local

point antennas in electromagnetic waves simulation problems).

– Non-uniform distribution of material data (point singularities are present when three different material data

meet at a given point of the domain).

To summarize, the class of graph grammar driven solvers introduced in this work is suitable for a wide array

of computational problems with point singularities. These problems are common in engineering computations,

and are of great interest to the scientific community, since they are computationally demanding by their very

nature. Therefore, I only consider problems with point singularities, since regular grids can be processed effectively

using the existing, well-established methods. Graph grammar formalism is especially important in the case of

parallel version of the solver, where graph grammars allow identification of the smallest atomic tasks that can

be processed independently. Graph grammar productions enforce the correct execution order of various tasks,

since their left hand sides determine what is the necessary and sufficient condition to substitute it with the right

hand side of any given production. In particular, the graph grammar based approach allows us to achieve linear

computational cost when processing the grid with many singularities in serial, as well as logarithmic computational

cost when processing a grid with many singularities in parallel. As a part of this work, a sample CPU and GPU

implementations of the hypergraph solver have been developed to challenge the current state-of-the-art solvers

and prove the theoretical estimates of the computational cost. The use of emerging architectures, such as GPU

for numerical computations is still relatively new to the scientific community. However, it seems a very promising

directions as speeding up computations in the traditional manner seems to be reaching its limits. Increasing the

number of transistors generates huge problems with excessive heat and, a matter of concern these days, power

consumption. Turning to many smaller, more efficient processors can significantly reduce these costs, due to less

complex control hardware. In other words, in case of GPUs more transistors can be used directly for computation.

This of course comes at the cost of a more restrictive programming model, which in case of GPUs is explicitly

parallel.

P. Gurgul Linear computational cost solvers for adaptive simulations
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1.2. Purpose of this book

Section 1.1 explained that there is an open field for formal models prescribing execution of complex algorithms,

especially for emerging architectures. The main purpose of this book is to deliver a solution which can success-

fully utilize this underlying potential and outperform the existing solutions, at least for some classes of problem.

The findings presented in this thesis are applicable to problems that contain one or more point singularities trig-

gering a series of mesh refinements toward them. This is because the algorithm presented in this thesis leverages

information about the structure of the domain to optimize the order of computations. The graph grammar based

solvers presented in this thesis can be easily adapted to accomodate a wider class of two and three dimensional

computational problems with point singularities.

1.3. Main thesis

The main thesis of this work may be summarized as follows:

There is a hypergraph grammar based formalism expressing the multi-frontal direct solver algorithm for two

and three dimensional computational problems with point singularities in the form of basic tasks called graph

grammar productions, allowing for analysis of the order of execution of the tasks resulting in linear computational

cost of the sequential execution, as well as allowing for exploitation of the concurrency hidden within the algorithm

resulting in logarithmic computational cost of the parallel execution.

1.4. Structure of this book

This work is divided into six chapters and three appendices.

Chapter 2 contains a brief introduction to the Finite Element Method (Section 2.1.1), with two more detailed

examples of the FEM problems in Appendix A (one-dimensional case) and Appendix B (two-dimensional case).

This is followed by an outline of the existing mesh refinement techniques (Section 2.1.2). In Section 2.2.1, the

major focus is on direct solvers - primarily those for sparse matrices such as the frontal and multi-frontal ones (with

Schur complements described in detail in Appendix C). Section 2.2.2 explains the relationship between hypergraph

grammars and FEM solvers, outlining the existing attempts to model solvers by the means of graph grammar

productions. Chapter 2 is concluded by listing open problems (Section 2.3) and major scientific contributions of

this thesis (Section 2.4).

Chapter 3 comprises the four major theoretical parts of this thesis. The first is a detailed introduction to the theory of

hypergraphs and hypergraph grammar productions (Section 3.1). This is followed by the application of this theory

to generating the initial mesh in two dimensions and prescribing a solver, of which the sequential version works

in linear time and the parallel version in logarithmic time with respect to the number of unknowns (Section 3.2).

Section 3.3 contains theoretical estimates of the exact computational cost and memory usage for the sequential and

parallel versions of the proposed solver. Moreover, the linear computational complexity is proven for the sequential

solver and the logarithmic complexity for the parallel solver.

Chapter 4 briefly shows how to extend hypergraph grammar reasoning to a three dimensional model problem, as

well as how to generalize the theoretical results concerning the linear computational cost and memory usage in

three dimensions.

Chapter 5 contains the experimental part of this thesis. Section 5.1 defines a sample numerical problem with point

singularities that was solved to measure solver’s performance. Section 5.2 describes computations and performance

P. Gurgul Linear computational cost solvers for adaptive simulations
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evaluation for traditional CPU architectures. Section 5.3 defines the GPU environment used to obtain the results and

technical details of transformation of the theoretical solver into a working CUDA-enabled program. The chapter is

concluded with Section 5.4 which presents the results of the series of experiments conducted to check the efficiency

of the parallel GPU solver. In both cases the efficiency is compared with the state-of-the-art MUMPS solver.

Chapter 6 contains the evaluation of all the obtained results and outlines the potential for future research.

P. Gurgul Linear computational cost solvers for adaptive simulations



Chapter 2
Background

This chapter contains an overview of existing literature concerning various versions of the adaptive Finite Element

Method, which constitute the motivation for high-efficiency direct solvers. A brief introduction to dense algebra

solvers is presented in Section 2.2.1. The state-of-the-art direct solvers for sparse matrices such as the frontal

solver and the multi-frontal solver are described in Section 2.2.1. The chapter is concluded with a list of selected

open problems existing in the field of direct solvers for sparse matrices, accompanied by a list of research results

obtained by the author while adressing some of the open problems.

2.1. Essentials

In this section I present essential background information concerning well-established solutions in the realm

of adaptive simulations. This will be used as a reference point for the research described in this thesis. I briefly

introduce the idea behind the Finite Element Method and its adaptive versions, comparing it to the Finite Difference

Method. I outline the most popular methods of reducing the error rate of the solution such as h, p, r and hp

adaptivity, as well as some extensions to the Finite Element Method for better integration with CAD systems.

2.1.1. Finite Element Method

The Finite Element Method (FEM) is a well-established, mainstream numerical technique used for finding

approximate solutions to Boundary Value Problems (BVP - see Polyanin [92]). It is well-suited to a wide class

of Partial Differential Equations (PDEs). FEM was first introduced in late 1960s by Zienkiewicz [108], based

on Galerkin method that is used for discretizing a continuous operator problem. This is done by converting the

equation to a weak formulation.

Modern and more sophisticated adaptive versions of FEM were proposed by Demkowicz et al. [23, 27]. There

have also been numerous attempts to make Finite Element Analysis (FEA) more compatible with modern CAD

systems [21]. Compared to the Finite Difference Method (FDM) [40, 103], FEM is able to handle complex geome-

tries and non-rectangular meshes, which makes mapping to the parent domain easier. FDM is often more suitable

for Computational Fluid Dynamic (CFD) problems (with many successful FEM attempts [32, 63]) or in the domain

of time, but FEM is usually the only reasonable choice for solid mechanics. In addition, using FEM makes it much

easier to incorporate boundary conditions. Conceptually, FEM is based on variational calculus and FDM is based

on differential calculus.

The finite element solution process starts with the generation of a mesh describing the geometry of the com-

putational problem. Next, the physical phenomena governing the problem are described using PDEs. In addition

12



2.1. Essentials 13

to this differential system, boundary and initial conditions may need to be specified to ensure uniqueness of the

solution. The resulting PDE system is discretized into a system of linear equations by using FEM. This algebraic

system is inverted using a solver algorithm and a solution with a certain degree of accuracy is obtained. A step-by-

step tutorial to the 1D Finite Element Method has been moved to Appendix A. In the 2D case, described in detail

in Appendix B, the approach is similar.

A very common example of a 2D FEM problem is the so called L-shape domain model problem that was

proposed by Babus̃ka [6, 7, 47, 69] to test the convergence of hp-FEM. This example was used in Appendix B.

Isogeometric Finite Element Analysis

Isogeometric analysis is a recently developed concept for integrating FEM into CAD design tools, which are

primarily based on Non-Uniform Rational B-Splines (NURBS) [62, 91, 106]. This removes the need for conversion

between these two formats, which is a computationally intense task. Such seamless integration between FEM

and NURBS is called NURBS-Enhanced FEM (NEFEM) [97]. The main difference between the classical and

isogeometric FEM is that classical FEM delivers solutions that areC0 globally (between particular finite elements),

whereas the isogeometric FEM delivers globally Ck−1 regular solutions for B-splines of order k. However, the

price to pay is that the computational cost of direct solver algorithm is higher by k3 for isogeometric FEM than

for classical FEM [20]. The isogeometric FEM generates a sparse system of equations that can be solved by multi-

frontal direct solver algorithms (see Section 2.2.1).

2.1.2. Adaptive algorithms

Adaptive versions of FEM have a multitude of applications, ranging from weather forecasting (Staniforth et al.

[101]), through fluid mechanics (Oden et al. [78]) to MRI scan processing (Gurgul et al. [53]). More specifically,

the adaptive FEM is also widely used in geophysical simulations [26, 39, 80, 81, 82, 83, 84, 109] to estimate

the electrical or acoustic properties of geophysical formations in the ground. It is customary to record resistivity

measurements using logging instruments that move along a borehole. These instruments are equipped with several

transmitter tools, whose emitted signals are recorded by the receiver tools that are also located along the logging

tool. Thus, logging instruments are intended to estimate properties (electrical or acoustic) of the sub-surface mate-

rial. The ultimate goal is to identify and characterize hydrocarbon (oil and gas) bearing formations in the ground.

The Adaptive FEM algorithms described in this section aim to automatically refine or reorder mesh in order to

achieve a solution having a specified accuracy in an optimal fashion. However, optimal strategies for deciding

where and how to adjust the mesh to reduce error rate are virtually non-existent. This is why the quality of each

refinement is usually evaluated using a posteriori methods [23], e.g. by measuring relative error decrease rate for

each element. The modern, adaptive algorithms for the Finite Element Method have been developed by the rese-

arch team of Demkowicz [23, 27, 28, 29]. The specific techniques for refining the solutions are described in the

subsections below.

h refinement

h refinement is by far the most popular technique for reducing error rate [11, 15]. Its approach to improving

the quality of the solution is to increase the number of elements by dividing the domain into smaller pieces. Some

sensitive places require a lot of elements to approximate the solution fairly, whereas for others, even a relatively

sparse mesh is acceptable. The key factor in achieving satisfactory results is to find places, which demand a finer

domain for acceptable relative error rates. It can be done manually by predicting solution features a priori or

automatically by refining some elements dynamically and evaluating their error rate. In the latter case, the mesh is

recursively subdivided until an acceptable resolution is obtained.

P. Gurgul Linear computational cost solvers for adaptive simulations
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There are two types of h refinement that depend on the strategy.

– Uniform h refinement, where all finite elements over the domain are uniformly and evenly broken into

smaller ones.

– Non-uniform h refinement, where only finite elements in certain regions of the domain are broken into

smaller ones. These regions can produce higher numerical error than a given threshold.

However, non-uniform h refinement does not mean full freedom in breaking the elements due to so called 1-

irregularity rule described in definition 2.1.1.

Definition 2.1.1. 1-irregularity rule. A finite element can be broken only once without breaking its bigger, neigh-

boring elements. It prevents unbroken element edges from being adjacent to more than two finite elements. When

an unbroken edge is adjacent to one large finite element on one side and two smaller finite elements on the other

side, the approximation over these two smaller elements is constrained by the approximation of the larger element.

The 1-irregularity rule helps to prevent overly technically complicated situations with multiple constrained

edges (see Figure 2.1). In order to enforce the 1-irregularity rule, several additional refinements on large adjacent

elements may be required. As a result, the sequence of refinements presented is Figure 2.2 is incorrect, as the left

(a) Mesh violating 1-irregularity rule (b) Mesh obeying 1-irregularity rule

Figure 2.1: Visualization of the 1-irregularity rule

element (h = 1) cannot be the neighbor of the small elements in the bottom part (h = 2). If such a refinement is

needed, it is necessary to break the left element into four so that the difference of h refinement levels is not greater

than one (as in Figure 2.3).

Figure 2.2: Incorrect sequence of mesh refinements

P. Gurgul Linear computational cost solvers for adaptive simulations
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Figure 2.3: Correct sequence of mesh refinements

p refinement

p refinement allows us to locally vary the maximum polynomial degree of the basis functions for each element.

This means that the order of the basis functions can be variable across the mesh. p refinement alone is capable

of achieving exponential convergence rates, but only for smooth problems. However, even for problems with sin-

gularities, p version of FEM can converge twice as fast as the classical, h version [8]. The use of p refinement is

most natural on a hierarchical basis, since substantial portions of the stiffness and mass matrices, as well as the

load vector will remain unchanged when increasing the polynomial degree of the basis. There are two types of p

refinement:

– Uniform p refinement, where the polynomial approximation level is increased for every element in the mesh.

– Non-uniform p refinement, where the polynomial approximation level is increased only for certain elements

in the mesh.

In case of p refinements, there is the so-called minimum rule to obey.

Definition 2.1.2. Minimum rule. The polynomial order of approximation on an element edge must be equal to the

minimum of corresponding orders of approximation from the element interiors.

For an exemplary application of the minimum rule see Figure 2.4, which shows that the polynomial approxi-

mation level p on the edge between two elements presented is equal to minimum of p on both vertical edges pv1
and pv2 . For more information on p refinement see [8, 46].

Figure 2.4: Visualization of the minimum rule

P. Gurgul Linear computational cost solvers for adaptive simulations
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hp adaptation

hp adaptation is a combination of automated h and p refinements, which is by far the most powerful and univer-

sal technique. The reason for this is that unlike p refinements, it is guaranteed to deliver exponential convergence

rates even for the problems with singularities. In case of non-uniform hp adaptation, which is the usual case, it is

essential to find a way of localizing regions of the domain to adapt. The original, self-adapted mesh was introduced

by Demkowicz [23] in 2006 and consists of the following steps:

1. Generate an initial mesh and call it a coarse mesh.

2. Solve the coarse mesh problem by using one of the FEM direct solvers, in order to get the coarse mesh

solution uhp.

3. Generate the fine mesh based on the coarse mesh. Having the coarse mesh uhp, generate the fine mesh,

where each element is broken into four and the polynomial approximation level of each element is increased

by one.

4. Solve the fine mesh problem by using the direct solver in order to get the fine mesh solution uh
2 p+1.

5. For each finite element decide if the refinement was necessary or not. This is usually done based on the

estimation of the relative error decrease rate (see Equation 2.1) between the solution of a given element on a

fine mesh and on the coarse mesh.

errorrel = ‖uhp − uh
2 p+1‖1,Ω (2.1)

A commonly used norm to compute this difference is H1(Ω) Sobolev space norm (Equation 2.2).

‖ν‖1,Ω =

∫
Ω

√
|∇ν|2 + |ν|2dx (2.2)

If the relative error rate is greater than the arbitrary threshold, the refinement is kept, otherwise it is discarded.

A mesh resulting from such an operation is called an optimal mesh.

6. If the maximum relative error rate is greater than the required accuracy, go back to step 2 and turn the current

mesh into a coarse mesh for step 2. Otherwise, output the solution.

An example of three types of meshes presented in the algorithm above is depicted in Figure 2.5. Colors indicate

different polynomial approximation levels.

(a) (b) (c)

Figure 2.5: Coarse mesh (a), fine mesh (b) and optimal mesh (c)
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The coarse mesh contains all the elements unrefined and having the initial polynomial approximation level. In

the fine mesh all elements have been refined and polynomial approximation level has been increased by one. In the

optimal mesh only valuable refinements and polynomial approximation level increases have been kept.

r refinement

Unlike in the previous three types of refinements, in case of r refinement, the number of mesh nodes and ele-

ments remains constant, but nodes are relocated to areas where accuracy needs to be increased. r refinement is most

useful with transient problems, where elements move to follow an evolving phenomena. In such cases, it would be

an unnecessary expense to refine a mesh in one area, as the phenomena may become more computationally intense

in a different region. An overview of existing r refinement algorithms is given by McRae [76]. This thesis does not

cover this kind of problems.

Adaptation with T-splines

Another important disadvantage of the isogeometric FEM proposed in [21] is the fact that the method supports

only uniform p refinements. In other words, there is no way of breaking the elements locally or increasing polyno-

mial orders of approximation. In order to work around this undesirable feature, the T-spline technique has recently

been proposed by Bazilevs [12, 13, 37]. It is the mixture of the isogeometric FEM with a non-uniform h refinement

technique [95, 96]. Unlike the global refinement, T-splines allow partial rows of control points that terminate in a

special control point called a T-junction, which results in local refinement [72].

2.2. State-of-the-art FEM solvers

In this section I present well-established state-of-the-art solvers suitable for the Finite Element Method. This

is followed by listing some of the open problems concerning FEM solvers, as well as solutions to them that

constitute the scientific value of this thesis. I also discuss their shortcomings which justifies the existence of the

solver presented in this thesis.

2.2.1. Direct solvers

Direct solvers are the core, and most computationally expensive part of many engineering analyses performed

using the Finite Element Method. First, it must be stated that the class of iterative solvers is generally inapplicable

to the FEM problems, since they are numerically unstable [79]. There are iterative solvers that converge for a

certain class of variational formulations, but there are no iterative solvers per se that converge for every FEM

problem (as opposed to direct solvers). Moreover, even the multi-grid iterative solvers [1, 9, 10], more suitable for

processing adaptive grids, still utilize a direct solver over the coarser grid. This makes the use of direct solvers

absolutely necessary for designing a general purpose FEM solver. This is why, in this section I focus solely on the

direct solvers and primarily on the ones optimized for sparse matrices. The visual comparison between a dense and

a sparse matrix is depicted in Figure 2.6.
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(a) sparse matrix (b) dense matrix

Figure 2.6: An example of a sparse matrix (a) and a dense matrix (b). Non-zero entries are marked in black, zero

entries are marked in white.

Dense algebra solvers

As a general rule, matrices resulting from FEM or FDM are rather sparse (see Figure 2.6). For the dense ones

there are a number of well-established solutions. Among them, the two most popular algorithms are Gaussian

elimination and LU factorization. The ready-to-use packages include LAPACK (by Dongarra and van den Geijn

[33]) and its parallel version - PLAPACK (by van de Geijn [105]), as well as cutting-edge libraries which are able

to automatically optimize for a given architecture of a sequential or parallel machine such as ELEMENTAL [93]

or FLAME by van de Geijn [64]. In recent years, performing numerical computations on emerging architectures

has also become increasingly common. Therefore, libraries such as PLASMA (Parallel Linear Algebra Software

for Multicore Architectures) and MAGMA (Matrix Algebra on GPU and Multicore Architectures [107]) have been

developed for optimized performance on such architectures. Unlike LAPACK, PLASMA uses tiles algorithms that

enable fine grained architecture.

For sparse matrices though, the approach is totally different and expressed by frontal [65] and multi-frontal

[34, 35] solvers, which are described in detail in the following sections.

2D frontal solver algorithm

In order to convey the idea of a 2D frontal solver algorithms, a simple 2D two finite element example will be

used. The domain Ω is described by two elements and fifteen nodes - two interiors, seven edges and six vertices

(compare Figure 2.7). In the 2D FEM method, as it is described in Appendix B, we utilize basis functions related

to element nodes. In this example, as presented in Figure 2.8, we have linear basis functions related to element

vertices, namely to nodes 1, 3, 5, 11, 13 and 15, quadratic basis functions related to element edges, namely to

nodes 2, 4, 6, 8, 10, 12 and 14, as well as quadratic basis functions related to element interiors, namely to nodes

7 and 9. In the 2D FEM, as described in Appendix B, we construct the matrix by integrating multiplications of

these basis functions or their derivatives over a domain. Thus, matrix rows and columns corresponds to basis

functions and matrix entries corresponds to multiplications of pairs of basis functions. Interior basis functions have

support over a given element only, edge basis functions have support spread over one or two elements, vertex basis

functions also have support spread over one or many elements.

The frontal solver introduced by Irons et al. [65] browses finite elements in a user-determined, arbitrary order.

Due to its nature, it is sequential. Nodes (degrees of freedom) are aggregated into so called frontal matrices.
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Figure 2.7: Sample computational domain for the frontal solver

Figure 2.8: Exemplary basis functions spread over element nodes: (a) basis function associated to vertex node

1 (black) vertex node 3 (dark gray) and vertex node 5 (light gray) (b) basis function associated to edge node 6

(black) edge node 8 (dark gray) edge node 10 (light gray) (c) basis function associated to interior node 7 (black)

and interior node 9 (dark gray).

Instead of generating just one large finite element method matrix, it generates small matrices, called element

frontal matrices. These matrices are obtained by integrating basis functions over a given element. Thus, some

entries in the element frontal matrix are fully assembled, and some are not. The row of the frontal matrix is called

fully assembled, if all of its entries (integrals of products of pairs of basis functions) have been fully computed.

This happens if both basis functions have support over a given element only, or the first of the basis functions

has support over a given element only (since even the second basis functions also has support over some other

element, its product with the first basis function is also zero). The fully assembled rows are self-contained and

can be eliminated by the solver algorithm at any time. If a basis function has support defined only over a single

element, we say that the node is reduced to the element only, and it has all its contributions already present in the

element frontal matrix.

The aim of the frontal solver is to keep the frontal matrix as small as possible. In order to do so, it analyses the

connectivity of the nodes and performs partial forward elimination of the fully assembled nodes. Fully assembled

nodes have all of their contributions already present in the matrix, so no additional knowledge is necessary to

eliminate corresponding rows. Its mechanisms are presented using an example of a two-element mesh. Since the

order is arbitrary, we decided to add the right element’s nodes to the matrix first. Nodes 4, 5, 9, 10, 14 and 15 are

proprietary to the right element and thus, we can call them fully assembled. Nodes 3, 8 and 13 are shared with the

left element, and hence, will not be fully assembled until the frontal matrix associated with the left element is not

merged with the frontal matrix associated with the right element.

The frontal solver browses elements one by one. It starts with generating for the right element, for all the nodes

(4, 5, 9, 10, 14, 15, 3, 8, 13). We put the fully assembled nodes (4, 5, 9, 10, 14, 15) in the upper part of the matrix.

We perform partial forward elimination, eliminating all fully assembled nodes (4, 5, 9, 10, 14, 15). This is shown

in Figure 2.9. The upper triangular part of the frontal matrix has to be stored for future backward substitution.

What is left is the reduced frontal matrix associated with nodes (3, 8, 13), which are not yet fully assembled.

Such a reduced matrix is called the Schur complement matrix (see Appendix C). The solver now moves to the left
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Figure 2.9: Processing of the right element by the frontal solver

Figure 2.10: Processing of the left element by the frontal solver

element (Figure 2.10) and generates its frontal matrix (3, 8, 13, 1, 2, 6, 7, 11, 12), which is followed by adding the

contribution that remained after processing the right element. This is illustrated in Figure 2.11. Now, all nodes are

fully assembled in a single matrix, so it is possible to perform full forward elimination. The process is followed by

Figure 2.11: The upper triangular form of the frontal matrix after processing the second element

backward substitution, browsing elements in reverse order. The solver takes advantage of the upper triangular form

of the frontal matrix and computes the solution at each node, one by one. Such an approach allows us to keep the

size of the matrix as small as possible by eliminating unknowns as soon as possible. Unfortunately, as mentioned

before, in this case only the matrix operations can be parallelized due to the nature of the algorithm.

2D multi-frontal sequential solver algorithm

The multi-frontal solver introduced by Duff and Reid [34, 35] is the state-of-the-art direct solver algorithm for

solving systems of linear equations, which is a generalization of the frontal solver algorithm [65]. However, in case

of a multi-frontal solver, connectivity analysis is performed using a so-called elimination tree. A computational

domain is decomposed into hierarchical subdomains, which account for the elimination tree (Figure 2.12). The

construction of the elimination tree for an arbitrary mesh is a complex task itself. It is done by constructing the

graph representing the connectivities in the mesh, which is followed by running graph partitioning algorithms such

as nested dissections from METIS library [66, 67, 68]. Usually, commercial solvers like the MUMPS [34, 35]

solver are not aware of the structure of the mesh, and they need to reconstruct the connectivity pattern by analysing
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the sparsity pattern of the matrix submitted to the solver. Note that such a matrix is already in its the global form,

after the assembly of all element frontal matrices. In the multi-frontal approach, the solver generates a frontal

Figure 2.12: Domain decomposed into an elimination tree

matrix for each element of the mesh. This is illustrated in Figures 2.13 and 2.14. It eliminates fully assembled

nodes within each frontal matrix, and merges the resulting Schur complement matrices at the parent level of the

tree. This is illustrated in Figure 2.15. The key difference with respect to the frontal matrix is that at the parent level

the solver works with a smaller matrix, which is a 3×3 matrix obtained from the two Schur complements computed

at its son nodes. In other words, the frontal matrix assembles element frontal matrices to a single frontal matrix and

eliminates what is possible from the single matrix, while the multi-frontal solver utilizes multiple frontal matrices

and thus allows us to reduce the size of the matrices at parent nodes of the tree.

Figure 2.13: Partial forward elimination on the left element

Figure 2.14: Partial forward elimination on the right element

Parallel shared memory implementations

Unlike the frontal solver, the tree structure of the multi-frontal solver makes it very natural to parallelize by

executing each branch separately. According to our example, eliminations from Figures 2.13 and 2.14 can be

performed simultaneously. Since the memory is shared, there is no additional communication overhead. The cost

is determined by length of the longest branch of the tree.
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Figure 2.15: Full forward elimination of the interface problem matrix

Parallel distributed memory implementations

In the case of distributed memory, each branch can be executed in parallel, but synchronization in the parent of

each branch requires us to send the frontal matrices to another nodes of the distributed parallel machine. In other

words, the Schur complement matrix related to nodes 3,8,13 from Figure 2.15 is now stored in distributed manner,

and one its contribution needs to be sent from one processor to the other, where it can be merged in the provessor

local memory for further processing. Also, the solution obtained in the processor local memory for these top nodes

needs to be sent back to the other processor. This scheme of course can be generalized into more levels of the

elimination tree.

Extensions of the multi-frontal solver

The multi-frontal direct solver algorithm can be generalized to the usage of matrix blocks associated with nodes

of the computational mesh (called supernodes) rather than particular scalar values. In our approach, as we work

with computational mesh, the nodes follow naturally from the usage of higher order polynomials over element

edges, faces and interiors. In the traditional approach, the nodes must be identified by looking at the sparsity

pattern of the global matrix [22]. This allows for a reduction of the computational cost related to the construction

of the elimination tree. There are also highly optimized implementations of the multi-frontal solver algorithm for

different architectures [48, 49, 50]. Other significant advances in the area of multi-frontal solvers include the design

of a hybrid solver, namely the mixture of direct and iterative solvers, where the elimination tree is cut at some level,

and the remaining Schur complements are submitted to an iterative solver. There is also a linear computational cost

direct solver based on the use of H-matrices [94] having their non-diagonal blocks compressed. However, the main

limitation of the H-matrix solver [58, 59, 60] is that it delivers only an approximated solution [73].

Computational costs of direct solvers

A multi-frontal solver is usually faster than a frontal solver. The computational costs for a multi-frontal solver

for regular grids with uniform polynomial order of approximation has been recently calculated in [20]. First, we

focus on estimating the computational cost for the presented examples. Then, we can think of a more general

formula as a function of the degrees of freedom. In order to compute the number of operations implied by different

numbering and approaches we define variable a as the number of degrees of freedom that can be eliminated for

matrix M and b as the total count of degrees of freedom for matrix M (see Figure 2.16). For a given node, the total

number of operations needed for its elimination C(a, b) is equal to:

C(a, b) =

b∑
m=b−a+1

m2 (2.3)
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a

b

Figure 2.16: Visual explanation of a and b

This is because we have a matrix with size b and there are a rows to be eliminated. The elimination of the first

row involves b2 subtractions, the elimination of the second row involves (b − 1)2 subtractions, and so on, up to

the last row to be eliminated, which involves (b − a + 1)2 subtractions. The exact number of operations involves

three 3m2 instead of m2 since for each entry we perform multiplication, division and subtraction. To simplify the

transformation we skip the factor of three here.

Rewriting the sum in Equation 2.3 as a difference of two sums, we obtain Equation 2.4.

b∑
m=b−a+1

m2 =

b∑
m=1

m2 −
b−a∑
m=1

m2 (2.4)

which can be explicitly written using the following sum of squares:

b∑
m=1

m2 =
b(b+ 1)(2b+ 1)

6
(2.5)

b−a∑
m=1

m2 =
(b− a)(b− a+ 1)(2(b− a) + 1)

6
(2.6)

Finally, we perform the subtraction:

b∑
m=1

m2 −
b−a∑
m=1

m2 =
a(6b2 − 6ab+ 6b+ 2a2 − 3a+ 1)

6
(2.7)

Thus:

C(a, b) =
a(6b2 − 6ab+ 6b+ 2a2 − 3a+ 1)

6
(2.8)

Using this formula, we can directly compute the costs for the sample 2D domain presented in the previous sections.

Our summary of the comparison of costs for frontal and multi-frontal solvers is presented in Table 2.1. We can

conclude that for such a simple, two finite element mesh the multi-frontal solver is less than twice as fast. Actually,

for small 2D grids (such as the layers of elements we process later in this work), the frontal and multi-frontal solver

are comparable. However, for large, three dimensional grids, the frontal solver is far more more expensive than the

multi-frontal solver, what makes it necessary to use a multi-frontal solver [35].

For a regular, uniform p polynomial order of approximation grids, the detailed estimates of the computational

cost has been obtained by Calo et al. [17]. For presentation of the output formulas of this work we assume that p

denotes polynomial approximation level, N refers to the number of degrees of freedom and s is the number of the

levels in the elimination tree.
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Table 2.1: Comparison of computational cost on a sample two element domain for frontal and multi-frontal solver

(a) Sample cost of the frontal solver

Step a b OPS(a, b)

1 6 9 271

2 9 9 729

TOTAL 1000

(b) Sample cost of the multi-frontal solver

Step a b OPS(a, b)

1 6 9 271

2 6 9 271

3 3 3 27

TOTAL 569

FLOPSfrontal(p, s) = 22sp6 +

s−1∑
i=1

22(s−1)23ip3 = O(Np4) +O(N1.5) (2.9)

The computational cost of the multi-frontal solver algorithm is O(Np4) +O(N1.5) for two dimensional problems

in regular and uniform grids, p is a global polynomial order of approximation and is assumed to be constant, yet

arbitrary.

The cost of eliminating the interior of a single element in a 2D grid is p6, where p denotes the polynomial

approximation level of a given element.

In case of a 2D parallel shared memory multi-frontal solver, with the assumption that the number of cores is

infinite, all the additions and subtractions can be performed simultaneously, so the cost can be significantly reduced

- see the Equation 2.10 presented in [17].

FLOPSshared(p, s) = p4 +

s−1∑
i=1

22ip2 = O(Np4) +O(N) (2.10)

When the memory is distributed, it is still possible to perform almost all the computations in parallel. An exception

here are row subtractions which have to be performed sequentially on each node. In addition, there is a cost of

communication between nodes (see Equation 2.11). The detailed reasoning behind this formula is presented in

[17].

FLOPSdistributed(p, s) = p6 +

s−1∑
i=1

22ip4 = O(Np2) (2.11)

Hybrid approaches also exist, where nodes have their own memory, but each node consists of multiple cores that

share its memory. In such cases, we can both process and subtract rows in parallel, but we have to send submatrices

across the nodes [17, 88].

2.2.2. Graph grammar modeling of the FEM solvers

The first attempt to model FEM by means of graph grammars was presented in 1996 by Flasiński and Schaefer

[38]. Graph grammar productions were used to prescribe various transformations of the regular, triangular, two-

dimensional, h adaptive meshes. However, using quasi context sensitive grammar turned out to have limitations in

terms of adaptive meshes. As an example, application of the 1-irregularity rule (see Definition 2.1.1) is contextual

and cannot be modeled using context-free grammars. As a result, only uniform refinements can be prescribed.

Beal and Schephard [14] proposed a topological structure for the finite element mesh, with a hierarchy of vertices,
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edges, faces and region. The primary reason for their work was to support mesh generation and data storage. In

1993 Grabska and Hliniak [42, 43, 44] introduced Composite Programmable graphs (CP-graphs) as a mathematical

formalism applicable to modeling various design processes. CP-graph grammars describe transformation of the

graph representation of the domain object. They are contextual and thus, suitable for a wider range of problems.

The CP-graph grammar consists of a set of graph transformations, called productions, which replace a subgraph

defined on its left-hand side into a new subgraph defined on its right-hand side. The CP-graphs are very convenient

for the modeling the mesh transformations, since they allow for a simple definition of the embedding transformation

for the replaced subgraph. This is because the embedding transformation is coded in the production by introducing

the so-called free bonds, denoting places where the replaced graph is connected through edges with the remaining

parts of the graph. In the CP-graph grammar, the same number of free bonds is assumed on both sides of the

production, and the free bonds numbering is utilized to embed the replaced subgraph. CP-graph grammars were

used for modeling of the FEM non-uniform adaptive grids for the first time by Paszyński [87, 88, 89]. Not only

were grid transformations modeled, but he also completed behavior of the solver. In [85] the composite graph

grammar has been used to model two and three dimensional hp FEM. This work, however, presents the use of

hypergraphs (for all definitions see Chapter 3) instead of CP-graphs to model mesh generation, transformation and

execution of the linear solver. Employing hypergraph grammar formalism instead of composition graph grammars

to model mesh transformations can decrease the computational complexity of performed operations, because the

number of edges and nodes in the hypergraph representing a computational mesh is much smaller than the number

of edges and nodes in the corresponding composite graph. The topological structure of each mesh element is

represented here using four hypergraph nodes corresponding to four vertices and five hyperedges corresponding

to its edges and interior, whereas in the CP-graph representation of a mesh element 18 graph nodes with 60 node

bonds are needed. The most important factor though is the order, in which elements are browsed in case of linear

solver. CP-graphs are very good in representing hierarchies, which is exactly what we need for a multi-frontal

solver. However, accessing a neighbor element requires finding the lowest common ancestor (LCA), which is not

straightforward. In case of the linear solver, we browse elements in the order shown in Figure 3.7, which requires

flat access to horizontal neighbors. This can easily be achieved by using hypergraphs that have a flat structure.

2.3. Summary of open problems

We address, among others, the following problems that exist in the field of linear complexity direct solvers for

problems with singularities.

1. Graph grammar models for generation of two dimensional meshes with point singularity are level-dependent

and they do not allow for generation of an arbitrary number of refinement levels.

2. There is no graph grammar model prescribing execution of the sequential direct solver for two dimensional

problems with point singularities resulting in a linear computational cost of the solver algorithm.

3. There is no graph grammar model prescribing execution of the parallel direct solver for two dimensional

problems with point singularities resulting in a logarithmic computational cost of the solver algorithm.

4. Graph grammar models for generation of three dimensional meshes with point singularities are level-

dependent and do not allow for generation of an arbitrary number of refinement levels.

5. There is no graph grammar model prescribing execution of the sequential direct solver for three dimensional

problems with point singularities resulting in a linear computational cost of the solver algorithm.

6. There is no graph grammar model prescribing execution of the parallel direct solver for three dimensional

problems with point singularities resulting in a logarithmic computational cost of the solver algorithm.
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7. There is no theoretical estimate of the number of operations for the sequential direct solver for two dimen-

sional problems with point singularities.

8. There is no theoretical estimate of the number of operations for the parallel direct solver for two dimensional

problems with point singularities.

9. There is no theoretical estimate of the memory usage for the sequential direct solver for two dimensional

problems with point singularities.

10. There is no theoretical estimate of the computational cost for the sequential direct solver for three dimensio-

nal problems with point singularities.

11. There is no theoretical estimate of the computational cost for the parallel direct solver for three dimensional

problems with point singularities.

12. There is no theoretical estimate of the memory usage for the sequential direct solver for three dimensional

problems with point singularities.

13. A graph grammar driven solver needs to be implemented to compare and contrast theoretical estimates with

the actual performance.

14. The influence of multiple point singularities on the computational cost of the sequential direct solver remains

unknown.

15. How singularities other than the point singularities affect the computational cost of the sequential direct

solver remains unknown.

16. The influence of multiple point singularities on the computational cost of the parallel direct solver remains

unknown.

17. How singularities other than point singularities affect the computational cost of the parallel direct solver

remains unknown.

2.4. Major scientific findings

Research leading to this thesis consists of work that addressed the open problems enumerated in Section 2.3.

Author’s contribution includes, but is not limited to:

1. A hypergraph grammar based model prescribing generation of a two element mesh in 2D refined to an

arbitrary level k towards a point singularity.

2. A hypergraph grammar model of the execution of a sequential direct solver for problems with point singu-

larities in 2D that delivers linear computational cost and linear memory usage with respect to the number of

unknowns.

3. Analysis of the concurrency of the linear computational cost sequential solver resulting in a logarithmic

computational cost algorithm for grids with point singularities in two and three dimensions.

4. A hypergraph grammar model of the execution of a parallel direct solver for problems with point singularities

in 2D that delivers logarithmic computational cost with respect to the number of unknowns.

5. A hypergraph grammar based model prescribing the generation of 3D mesh refined to an arbitrary level k

towards a point singularity.

6. A hypergraph grammar model of the execution of a parallel solver for problems with multiple point singula-

rities in 3D that delivers logarithmic computational cost with respect to the number of unknowns.
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7. A theoretical estimate of the memory usage of the sequential solver in 2D for a two element mesh with a

point singularity.

8. A theoretical estimate of the exact computational cost of the sequential solver in 2D for a two element mesh

with a point singularity.

9. A theoretical estimate of the exact computational cost of the parallel solver in 2D for a two element mesh

with a point singularity.

10. A theoretical estimate of the memory usage of the sequential solver in 3D for a mesh with point singularities.

11. A theoretical estimate of the order of computational cost of the sequential solver in 3D for a mesh with point

singularities.

12. A theoretical estimate of the order of computational cost of the parallel solver in 3D for a mesh with point

singularities.

13. Implementation of the logarithmic computational cost solver algorithm in parallel for GPU.

14. Numerical experiments confirming the theoretical estimations of the computational cost in two and three

dimensions, for grids with one and many point singularities with quadratic and cubic polynomials.

The theoretical component of the results (points 1 - 4 and 7 - 9) in two dimensions is covered in Chapter 3, three

dimensional hypergraph models (items 5 - 6 and 10 - 12) are described in Chapter 4, whereas the experimental

results and implementation of the solver (items 13 - 14) are described in Chapter 5.
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Chapter 3
Graph grammar based models of a solver

algorithm in two dimensions

The purpose of this chapter is to present the core work behind this thesis for a two dimensional scenario. Section

3.1 contains a definition of a hypergraph and a hypergraph grammar. Section 3.2.1 shows how to prescribe mesh

generation by using hypergraph grammars. This is followed by a set of productions describing execution of both

sequential (Section 3.2.2) and parallel (Section 3.2.3) versions of the solver. The chapter is concluded with the

theoretical estimations of computational cost and complexity of a sequential (Section 3.3.1) and parallel version of

the solver (Section 3.3.3), as well as with an estimation of memory usage (Section 3.3.2). The findings presented

in this chapter have also been partly described in my previous papers [51, 52, 86, 98]. Starting from this chapter,

by graph grammars we assume hypergraph grammars and these two terms will be used interchangeably.

3.1. Basic definitions

Hypergraphs were introduced by Habel and Kreowski [56, 57] in 1987. Hypergraph grammars were their

extension for mesh transformations proposed by Ślusarczyk and Paszyńska [100]. This section contains formal

definitions of a hypergraph and a hypergraph grammar, accompanied by a selection of FEM-related comments.

The theoretical part of this section is based on work described in [100]. However, this dissertation proposes a

hypergraph grammar prescribing the solver algorithm which is a completely new contribution to science.

3.1.1. Hypergraph

A hypergraph is composed of a set of nodes and a set of hyperedges to which sequences of source and target

nodes can be assigned. The nodes, as well as the hyperedges can be labeled with labels from the fixed alphabet.

To represent the properties of mesh elements, the attributed hypergraphs are used. This means that each node and

hyperedge can have some attributes, like for example a polynomial order of approximation. However, since the

solvers presented in this work consider only the h version of FEM (with p being fixed, yet arbitrary), labeling is

not necessary and will not be used to model the solver.

Let C be a fixed alphabet of labels for nodes and hyperedges. Let A be a set of hypergraph attributes.

Definition 3.1.1. Hypergraph. An undirected attributed labeled hypergraph over C and A is a system

G = (V,E, t, l, at), where:

28
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1. V is a finite set of nodes,

2. E is a finite set of hyperedges,

3. t : E 7→ V ∗ is a mapping assigning sequences of target nodes to hyperedges of E,

4. l : V ∪ E 7→ C is a node and hyperedge labeling function,

5. at : V ∪ E 7→ 2A is a node and hyperedge attributing function.

The hypergraphs are created from simpler hypergraphs by replacing their subhypergraphs by new hypergraphs.

This operation is possible for a new hypergraph and for the subhypergraph if a sequence of so called external nodes

is specified. The hypergraph replacement is defined as follows. The subhypergraph is removed from the original

hypergraph and the new hypergraph is embedded into the original hypergraph. The new hypergraph is glued to

the remainder of the original hypergraph by fusing its external nodes with the corresponding external nodes in the

remainder of original hypergraph. The number of external nodes should be the same in the both hypergraphs.

Definition 3.1.2. Hypergraph of type k. A hypergraph of type k is a system H = (G, ext), where:

1. G = (V,E, t, l, at) is a hypergraph over C and A,

2. ext is a sequence of specified nodes of V , called external nodes, with ‖ext‖ = k.

3.1.2. Hypergraph grammar

Hypergraph grammar [100] is an extension of Hyperedge Replacement Grammar [56, 57] for modeling mesh

transformations and linear computational cost solvers for grids with point singularities. The rectangular elements of

a mesh as well as the whole mesh are described by means of hypergraphs. The mesh transformations are modeled

by hypergraph grammar productions. Each hypergraph is composed of a set of nodes and a set of hyperedges with

sequences of source and target nodes assigned to them. The nodes, as well as the hyperedges, are labeled with

labels from the fixed alphabet.

Definition 3.1.3. Hypergraph production. A hypergraph production is a pair p = (L,R), where both L andR are

hypergraphs of the same type. A production p can be applied to a hypergraph H if H contains a subhypergraph

isomorphic with L.

Definition 3.1.4. Subhypergraph. Let G1 = (V1, E1, t1, l1, at1) and G2 = (V2, E2, t2, l2, at2) be two hypergra-

phs. G1 is a subhypergraph of G2 if:

1. V1 ⊂ V2, E1 ⊂ E2,

2. ∀e ∈ E1 t1(e) = t2(e),

3. ∀e ∈ E1 l1(e) = l2(e),∀v ∈ V1 l1(v) = l2(v),

4. ∀e ∈ E1 at1(e) = at2(e),∀v ∈ V1 at1(v) = at2(v).

The application of a production p = (L,R) to a hypergraph H consists of replacing a subhypergraph of H

isomorphic with L by a hypergraphR and replacing nodes of the removed subhypergraph isomorphic with external

nodes of L by the corresponding external nodes of R.

Definition 3.1.5. Derived hypergraph. Let P be a fixed set of hypergraph productions. Let H and H ′ be two

hypergraphs. H ′ is directly derived from H (H ⇒ H ′) if there exists p = (L,R) ∈ P such that:

– h is a subhypergraph of H isomorphic with L.

– Let exth be a sequence of nodes of h composed of nodes isomorphic with nodes of the sequence extL. The

replacement of h = (Vh, Eh, th, lh, ath) in H = (VH , EH , tH , lH , atH) by R = (VR, ER, tR, lR, atR)

yields the hypergraph G = (VG, EG, tG, lG, atG), where:

– VG = (VH − Vh) ∪ VR,
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– EG = (EH − Eh) ∪ ER,

– ∀e ∈ ER : tG(e) = tR(e),

– ∀e ∈ (EH − Eh) with tH(e) = t1, ..., tn, tG(e) = t′1, ..., t
′
n, where each t′i = ti if ti does not belong

to the sequence exth or t′i = vi (vi is an i-th element of the sequence extR) if ti is an i-th element of

the sequence exth,

– ∀e ∈ (EH − Eh) lG(e) = lH(e), atG(e) = atH(e), ∀e ∈ ER lG(e) = lR(e), atG(e) = atR(e),

– ∀v ∈ (VH − Vh) lG(v) = lH(v), atG(v) = atH(v), ∀v ∈ VR lG(v) = lR(v), atG(v) = atR(v).

– H ′ is isomorphic with the result of replacing h in H by R.

Let AT = V ∪E be a set of nodes and hyperedges of H , where H denotes a family of hypergraphs over C and A.

Definition 3.1.6. Hypergraph grammar. A hypergraph grammar is a system G = (V,E, P,X), where:

– V is a finite set of labeled nodes,

– E is a finite set of labeled hyperedges,

– P is a finite set of hypergraph productions of the form p = (L,R), where L and R are hypergraphs of the

same type composed of nodes of V and hyperedges of E,

– X is an initial hypergraph called axiom of G.

The definitions above constitute a superset of the formalism used in the following sections.

3.2. Hypergraph grammar models

This section presents the hypergraph grammar for modeling mesh transformations and solvers. The hypergraph

grammar productions for generation of grids with point singularities presented in this work are substantially diffe-

rent from the ones introduced by Ślusarczyk and Paszyńska [100]. Namely, they presented a general approach to

generating any kind of hp mesh, whereas this section focuses on productions optimized for problems with singu-

larities. Moreover, since the polynomial approximation level p is fixed over the entire domain, unlike Ślusarczyk

and Paszyńska, we do not use labels indicating p for each node. The rectangular elements of a mesh as well as the

whole mesh are described by means of hypergraphs. The hypergraph nodes represent mesh nodes and are labeled

v. The hyperedges represent interiors, edges and boundary edges of rectangular finite elements and are labeled I ,

F1, F2 and B, corresponding to interior, edges and boundary edges, respectively. Figure 3.1 presents a sample

mesh and its hypergraph representation. It contains six vertices, six boundary edges B, one vertical interface edge

F1 and two interior nodes I .

3.2.1. Hypergraph grammar model for generation of a mesh with point singularities

This section introduces graph grammar productions for generation of a mesh with point singularities. For

simplicity, the sample mesh is restricted to initial two finite element mesh and one point singularity in the center of

the bottom boundary. However, this is only a subset of graph grammar productions that can be used for generation

of grids with many initial mesh elements and multiple point singularities.

We start with the graph grammar productions that can be used for both sequential and parallel generation of

the initial mesh with a point singularity located at the center of the bottom of the mesh. We start with executing

production Pinit (Figure 3.2) that transforms the initial state S into the initial mesh. Next, we proceed with refi-

nements of the left and right elements, by executing the production in Figure 3.3. It is not allowed to break the

interface edge between those elements. This is due to the 1-irregularity rule already described in Definition 2.1.1.

Before breaking the interface edge we need to ensure that both of the adjacent elements are at the same level of

refinement.

P. Gurgul Linear computational cost solvers for adaptive simulations



3.2. Hypergraph grammar models 31

Figure 3.1: Hypergraph representation of a two element mesh

Figure 3.2: Initial production Pinit

(a) (b)

Figure 3.3: Productions breaking the initial mesh: Pinitleft (a), Pinitright (b).

After applying Pinitleft and Pinitright, we comply with the 1-irregularity rule and are ready to apply produc-

tion Pirregularity presented in Figure 3.4. This was a special case for breaking the initial mesh. The following

refinements need two more productions that can be chained until the desired level of h refinement is obtained. In

Figure 3.4: Production Pirregularity enforcing the 1-irregularity rule after the first refinement
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order to proceed with refinements towards the central singularity, we apply production Pbreakinterior (Figure 3.5)

breaking the interiors of the two elements adjacent to the point singularity (due to symmetry, we can now use a

single production for breaking interior I of both left and right innermost elements), and Penforceregularity (Figure

3.6) breaking the common edge between them.

Figure 3.5: Production Pbreakinterior for breaking an interior into four even, smaller interior nodes

Figure 3.6: Production Penforceregularity enforcing the 1-irregularity rule

3.2.2. Sequential solver prescribed by the hypergraph grammars

The solver is designed to process the mesh from the two bottom elements surrounding the singularity,

level by level, up to the level of initial elements. Assuming we apply the following chain of productions:

Pinit 7→ Pbreakinitleft 7→ Pbreakinitleft 7→ Pregularity 7→ Pbreakinterior 7→ Pbreakinterior 7→
Penforceregularity we receive an output mesh as in Figure 3.7. Yellow arrows indicate the order of browsing,

which consists of three phases. Phases 1 and 3 are the special cases for the innermost and outermost layers of

elements and will be executed exactly once for each problem. Phase 2 describes the processing of any number of

intermediate layers and it is executed zero or more times depending on the h refinement level. Each node also has

Figure 3.7: Browsing order of the linear solver

a label describing its present status in the matrix. To improve visual presentation, the color-coded labels have been

used in the following manner:
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Status=Unprocessed White background. Node in this state has not yet been reached by the solver algorithm and

none of the contributions coming from this node are present in the matrix.

Status=Assembled Yellow background. Node in this state has been, at least partly, processed by the solver algo-

rithm and has some (or all) of its contributions already present in the matrix.

Status=Eliminated Green background. All contributions coming from this node are already present in the matrix

and partial elimination has already been executed.

Status=Distributed Red background. This node contributes to two frontal matrices from two different layers.

Phase 1

In Phase 1 we process the innermost layer that has been marked in blue in Figure 3.8. This layer consists of

just two elements that are nearest the singularity. In case further adaptation is needed, they will be subjected to

refinement resulting in an additional layer.

Figure 3.8: Phase 1 of the solver algorithm

We begin with generating contribution to the element frontal matrix coming from the interior node of the

processed elements. This is done by production Paddint presented in Figure 3.9. We mark in yellow the hypergraph

nodes already generated in the matrix. The system of equations for the element has the following structure:(
b(αI , αI)

)
=

(
l(αI)

)
where αI is the shape function related to the interior node, b is the left hand side of the equation called stiffness

matrix and l(v) is right hand sand of the equation called load vector (see Appendix A). The element frontal matrix

is also graphically illustrated on the right panel of Figures 3.9 - 3.21. In the next step we add the contributions

to the element frontal matrix related to interactions of the boundary node with the interior node. This is done by

executing the productions Paddboundary presented in Figure 3.10. The system of equations for the element after

this operation looks like  b(αI , αI) b(αI , αB)

b(αB , αI) b(αB , αB)

 =

 l(αI)

l(αB)


where αB corresponds to the shape functions associated with the bottom edge.

Next, we add the contributions related to the interactions of the left interface edge node with the interior and

boundary nodes to the element frontal matrix. This is done by executing production PaddF1layer presented in

Figure 3.11. The system of equations for the element after this operation looks like
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Figure 3.9: Production Paddint adding the interior node to the element matrix

Figure 3.10: Production Paddboundary adding the boundary node to the element matrix


b(αI , αI) b(αI , αB) b(αI , αF1)

b(αB , αI) b(αB , αB) b(αB , αF1)

b(αF1, αI) b(αF1, αB) b(αF1, αF1)

 =


l(αI)

l(αB)

l(αF1)


where αF1 corresponds to the shape functions associated with the vertical interface edge.

Next, the same operation is done for the upper interface edge node, as it is illustrated in Figure 3.12 by produc-

tion PaddF2layer, as well as for the vertices, as illustrated in Figure 3.13 by production Paddvertices. Each time the

frontal matrix is augmented with new entries, as graphically illustrated on the right panels.

Figure 3.11: Production PaddF1layer adding the left interface edge to the element matrix

Figure 3.12: Production PaddF2layer adding the upper interface edge to the element matrix

Figure 3.13: Production Paddvertices adding vertices to the element matrix
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The resulting state of the element matrix is depicted in Figure 3.13. At this time, we completed the addition

of the first element’s nodes to the matrix. Now, we can proceed with the elimination of the fully assembled nodes.

Fully assembled nodes are the ones that have all of their contributions already present in the matrix. It is worth

mentioning that interior nodes are always fully assembled, since their basis functions vanish on all edges and

have support on just one element. Edge basis functions, unless they are boundary edges, are always shared by two

elements. Vertex node basis functions can be shared by from one to four distinct elements.

We start with eliminating the interior’s contribution from the matrix. This is done by executing production

Pelimint presented in Figure 3.14. We mark eliminated nodes in a dark color. The only other fully assembled node

Figure 3.14: Production Pelimint eliminating the interior’s contribution from the matrix

is the boundary node B. Thus, we proceed with its elimination by executing production Pelimboundary presented

in Figure 3.15.

Figure 3.15: Production Pelimboundary eliminating the boundary edge from the element matrix

At this time we are done with the first element. No more nodes can be eliminated without further knowledge

about neighboring elements. We start processing the right neighbor of the current element and begin adding its

nodes’ contributions. Again, first we add contributions coming from the interior node of the second element. This

is done by executing production Paddint2, see Figure 3.16. Then we add contributions coming from the boundary

Figure 3.16: Production Paddint2 adding the interior of the second element to the matrix

edge, by running the production Paddboundary2 (Figure 3.17). And the upper and right interface edges (productions

Figure 3.17: Production Paddboundary2 adding the boundary edge to the matrix

PaddF1layer2, PaddF2layer2, see Figure 3.18). Once we add all vertices (Figure 3.18), we can proceed with the
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Figure 3.18: Productions PaddF1layer2, PaddF2layer2 adding the layer nodes to the matrix

elimination of the fully assembled nodes for the second element.

Again, we start with eliminating contribution coming from the interior node (production Pelimint2, see Figure

3.19). Similarly to the first element, we can eliminate also the boundary edge (production Pelimboundary2, Figure

Figure 3.19: Production Pelimint2 eliminating the interior of the second element

3.20). After adding the second element, we now have all the contributions for the interface edge and vertex between

elements, so both can now be eliminated (production Pelimcommon, Figure 3.21).

Figure 3.20: Production Pelimboundary2 eliminating the boundary edge in the element matrix

Figure 3.21: Production Pelimcommon eliminating the common edge

In summary, the execution of the solver algorithm in Phase 1 can by expressed by the following

sequence of hypergraph grammar productions: Paddint 7→ Paddboundary 7→ PaddF1layer 7→
PaddF2layer 7→ Paddvertices 7→ Pelimint 7→ Penforceregularity 7→ Pelimboundary 7→ Paddint2 7→
Paddboundary2 7→ PaddF1layer2 7→ Padd21layer2 7→ Pelimint2 7→ Pelimboundary2 7→ Pelimcommon.

Phase 2

Phase 2 concerns the layer marked in purple in Figure 3.22. From this point we do not plot the matrices

associated with elements, since they can be deduced from the hypergraph. Similarly to previous steps, we begin by

adding contributions coming from neighboring element’s interior (Figure 3.23). This time though, the outer edge

spans over the two elements due to the 1-irregularity rule. Moreover, due to the plentitude of productions in this

phase we switch to numerical names, starting from P17, which is the seventeenth of the productions.
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Figure 3.22: Phase 2 of the solver algorithm

Figure 3.23: Production P17

Next, we add contributions coming from the boundary edge (Figure 3.24) and the upper interface edge (Figure

3.25).

Figure 3.24: Production P18

Figure 3.25: Production P19
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Finally, we add contributions from the outer, (large) interface edge (Figure 3.26) and its vertices (Figure 3.27).

Figure 3.26: Production P20

Figure 3.27: Production P21

Having finished adding contributions from this element, we can proceed with partial elimination. The fully

assembled nodes are: the interior I , boundary edge B, left interface F1 and interface vertices on the left. Again,

we start with the elimination of the interior node in the matrix (Figure 3.28) and then the boundary edge node

(Figure 3.29).

Figure 3.28: Production P22

At this time, we can also eliminate the interface edge and vertex between those elements 3.30. Since further

eliminations are not possible, we proceed with adding contributions from the next neighboring element. Again, we

start with adding the interior of a new element (Figure 3.31), followed by interface edge F1 (Figure 3.32) and a

large interface edge F2 (Figure 3.33).

We also add the vertex terminating the big edge F2 (Figure 3.34). Similarly to the previous steps, we can now

start eliminating nodes. As always, we can eliminate the interior I (Figure 3.35). We have also collected all the

information required to eliminate edge F2 (Figure 3.36). Unfortunately, this was all we could do, since in order to

eliminate the remaining nodes we need additional contributions coming from the left neighbor. In Figures 3.37 -

3.38 we add the missing contributions - interior I and vertical edge F1. Again, we are now ready to eliminate the
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Figure 3.29: Production P23

Figure 3.30: Production P24

Figure 3.31: Production P25

Figure 3.32: Production P26
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Figure 3.33: Production P27

Figure 3.34: Production P28

Figure 3.35: Production P29

Figure 3.36: Production P30
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Figure 3.37: Production P31

Figure 3.38: Production P32

contribution coming from the interior (Figure 3.39). We can also eliminate the interface edge F1 (Figure 3.40). On

Figure 3.39: Production P33

Figure 3.40: Production P34

top of that, since the bottom neighbors are already in the matrix, we can also perform productions in Figure 3.41.

In Figures 3.42 - 3.45 we add contributions coming from the left neighbor. Next, following our usual procedure,

we start with eliminating interior’s contribution (Figure 3.46). The next step is to eliminate interface edge F1

and vertex between these elements (Figure 3.47). We proceed with elimination of the edge F2 in Figure 3.48. At
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Figure 3.41: Production P35

Figure 3.42: Production P36

Figure 3.43: Production P37

Figure 3.44: Production P38

Figure 3.45: Production P39

Figure 3.46: Production P40
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Figure 3.47: Production P41

this point, we need to add contributions from another element from the layer, which is shown in Figures 3.49 -

3.53. Again, we eliminate the interior node (Figure 3.54), followed by elimination of the interface edge F1 (Figure

3.55). At this point, we cannot eliminate anything else and we continue following the order from Figure 3.22.

Figure 3.48: Production P42

Figure 3.49: Production P43

Figure 3.50: Production P44

Productions in Figures 3.56 - 3.57 add nodes of the next element, whereas productions in Figures 3.58 - 3.63

eliminate the remaining nodes so that only the outer edges and vertices of the layer remain.

To sum up, the execution of the solver algorithm in Phase 2 can by expressed by the following sequence of

hypergraph grammar productions: P17 7→ P18 7→ P19 7→ P20 7→ P21 7→ P22 7→ P23 7→
P24 7→ P25 7→ P26 7→ P27 7→ P28 7→ P29 7→ P30 7→ P31 7→ P32 7→ P33 7→ P34 7→ P35 7→
P36 7→ P37 7→ P38 7→ P39 7→ P40 7→ P41 7→ P42 7→ P43 7→ P44 7→ P45 7→ P46 7→ P47 7→
P48 7→ P49 7→ P50 7→ P51 7→ P52 7→ P53 7→ P54 7→ P55 7→ P56 7→ P57.

Phase 2 occurs exactly k times, where k ≥ 0 denotes the count of refinement levels. This means concatenating

the chain of productions k times: (P17 7→ P18 7→ ... 7→ P56 7→ P57)k.

P. Gurgul Linear computational cost solvers for adaptive simulations



3.2. Hypergraph grammar models 44

Figure 3.51: Production P45

Figure 3.52: Production P46

Figure 3.53: Production P47

Figure 3.54: Production P48

Figure 3.55: Production P49
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Figure 3.56: Production P50

Figure 3.57: Production P51

Figure 3.58: Production P52

Figure 3.59: Production P53

Figure 3.60: Production P54

P. Gurgul Linear computational cost solvers for adaptive simulations



3.2. Hypergraph grammar models 46

Figure 3.61: Production P55

Figure 3.62: Production P56

Figure 3.63: Production P57

Phase 3

After Phase 2 is over, we process the outermost layer in Phase 3 in a similar manner (Figure 3.64). This occurs

only once and is analogical to Phase 1. Since there is no added value coming from the productions at this stage,

their presentation will be omitted. We follow the order shown in Figure 3.7 until we reach the very last element.

Figure 3.64: Phase 3 of the solver algorithm
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Then, we can proceed with a backward substitution that provides us with a solution with a given accuracy. It is

up to the adaptation algorithm whether a solution for a given mesh is already satisfactory. Since usually it is not

possible to estimate error rate a priori, we compare the relative error decrease rate on each element. If it is more

than a fixed (but arbitrary) threshold, we refine this element (and possibly, increase p). In the case of a given mesh,

if we decide to refine elements, we already know, due to the point singularity, which elements need refinement.

3.2.3. Parallel solver prescribed by the hypergraph grammars

In this section we mark the partial order of the productions and decide, which of them can be executed in

parallel. This analysis will allow us to switch from a frontal to a multi-frontal solver by assigning a single frontal

matrix to each layer of the mesh. These layers can be all processed in parallel. The resulting Schur complements

(see Appendix C) from each layer, associated with the interfaces between layers, will be merged using the binary

tree elimination pattern.

Mesh generation

When compared with the remaining parts of the algorithm, mesh generation based on graph grammars is

computationally inexpensive and there is no point in parallelizing this part. Besides, most of the productions must

be executed in a strictly enforced order since most steps depend on the mesh being in a certain state. However,

to enable parallel processing, once the mesh is generated, we trigger some additional graph grammar productions,

Pseparatetop presented in Figure 3.65 as many times as there are layers of the mesh, except for the last layer, where

we trigger Pseparatebottom, presented in Figure 3.66. These graph grammar productions separate particular layers

of the mesh, so we can process them independently, without overlap of nodes.

Processing of each layer

Having partitioned the computational mesh into layers, we can process each layer fully in parallel, independen-

tly from the other layers. The considerations presented for the bottom layer with two elements can be generalized

into an arbitrary layer. The general idea of the graph grammar for the arbitrary layer is the same, however, the num-

ber of productions is two times larger, since there are four instead of two elements. Each layer can be processed

independently, at the same time. In other words the graph grammar productions responsible for aggregation and

merging over one layer can be executed in parallel

Paddint 7→ Paddboundary 7→ PaddF1layer 7→

PaddF2layer 7→ Paddvertices 7→ Pelimint 7→ (3.1)

Pelimboundary 7→ ...

where ... denotes the additional productions for layers consisting of four instead of two elements for each layer.

Moreover, for point singularities located inside the elements, all the considerations presented in this paper

remain the same, however the bottom layer consists of four elements and upper layers consists of eight elements.

Processing of the interfaces

Unlike the sequential algorithm, for the parallel algorithm we keep all the interface nodes uneliminated until all

the layers are processed. Having eliminated the interiors of all layers, we have several frontal matrices associated

with all the layers, one frontal matrix per layer. The frontal matrices contain the nodes from both interfaces, located

on the top and on the bottom side of each layer. We execute graph grammar productions Pmergetop merging the

two top layers into one layer, additionally merging the two frontal matrices into one matrix, in such a way that the
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Figure 3.65: Production Pseparatetop for separation of the top layer

rows of the merged matrix associated with the common interface are now fully assembled. This is shown in Figure

3.67, with fully assembled nodes highlighted in red.

Having the single frontal matrix with fully assembled nodes related to the common interface allows us to

eliminate these nodes by executing the graph grammar production Pelimtop presented in Figure 3.68. The fully

assembled nodes are eliminated, which is denoted by changing their red color into green. The same scenario

applies to the two bottom layers, which is denoted by productions Pmergebottom and Pelimbottom presented in

Figures 3.69 and 3.70. Finally, we merge the patches of two layers, obtained from the previous steps, into a single

path. This is expressed by production Pmergetop presented in Figure 3.71. Additionally, the two frontal matrices

associated with the two patches are merged into one frontal matrix, with the rows associated with nodes on the
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Figure 3.66: Production Pseparatebottom for separation of the bottom layer
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Figure 3.67: Production Pmergetop for merging of the two top layers with interface matrices

common interface fully assembled. These nodes are denoted in Figure 3.71 by red. At this point we can solve

the top problem, since all the nodes are fully assembled, including the top boundary nodes. This is expressed by

productionPsolvetop presented in Figure 3.72. Having solved the top problem, we process with analogous backward

substitutions, which can be expressed simply by identical graph grammar productions, but executed in the reverse

order. For more than four layers the procedure is identical, we only need to generate additional productions for

merging patches of four, eight or more layers. This technique is illustrated in Chapter 5 with a few examples in two

and three dimensions.
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Figure 3.68: Production Pelimtop for elimination of the common layer over the two already merged top layers
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Figure 3.69: Production Pmergebottom for merging of the two bottom layers with interface matrices
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Figure 3.70: Production Pelimbottom for elimination of the common layer over the two already merged bottom

layers
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Figure 3.71: Production Pmergetop for merging of the bottom and top layers, resulting in a top problem
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Figure 3.72: Production Psolvetop for solving the top problem
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3.3. Estimation of the computational cost and memory usage

This section aims to estimate computational costs and memory usages of the hypergraph grammar driven

solvers presented in the previous sections. This means proving linear computational cost for the sequential solver

and logarithmic computational cost for the parallel solver. The proofs are conducted by counting the number of

operations incurred by the proposed algorithms and expressing it as a function of the number of the degrees of

freedom (unknowns). This is done only for the case of the two element mesh with one point singularity used

previously for derivation of the graph grammars. However, it is easy to show that different element configurations

with a single point singularity differ only by a constant factor in terms of the computational cost and memory

usage. The crucial observation is that in the case of a point singularity, each additional level of refinement adds a

constant number of new elements. This observation, however, is not necessarily true for other types of singularities,

such as edge singularities. Moreover, the linear cost still holds true for multiple (arbitrary, yet constant) numbers of

point singularities, since we can divide the problem into s subproblems, one singularity each. This reasoning is, in

fact, applied in Chapter 5. Rough estimates of the computational cost and memory usage for the three dimensional

case have been placed in Sections 4.4 and 4.5. Free software called Maxima1, for the manipulation of symbolic

and numerical expressions, was used to evaluate the polynomials in the proofs.

3.3.1. Estimation of the computational cost of the hypergraph grammar based sequ-
ential solver

In this section I estimate the total number of operations for the graph grammar based sequential solver browsing

the computational mesh in level-by-level order, aggregating the element frontal matrices into a single frontal matrix

and eliminating the fully assembled degrees of freedom as quickly as possible. This means the order exactly as

prescribed by the graph grammars in Section 3.2.2.

In order to prove that the computational complexity is O(N), where N denotes the total number of unknowns,

first, in Lemma 3.3.1, we express the exact computational cost as a function of polynomial approximation level p

and refinement level k.

Lemma 3.3.1. The number of operations incurred by solving the adaptive problem with a point singularity for a

two element mesh using a hypergraph grammar driven solver is equal to:

T (p, k) =
16p6 + 96p5 + 264p4 + 864p3 + 533p2 + 93p

6

+ k
12p6 + 72p5 + 198p4 + 1558p3 − 441p2 − 277p− 24

6

where k stands for the number of h refinement levels and p is the global polynomial order of approximation.

Parameter p is assumed to be uniform, yet arbitrary, over the entire mesh.

Proof. First, we refer back to Figure 2.16 and Equation 2.8 which indicate the cost of partial elimination of an

element matrix in a given state. With Equation 2.8 it is possible to evaluate the cost of each step of the elimination

process. Counting a and b is even easier, since they correspond to colors (states) used in hypergraph productions.

Using this nomenclature, a can be defined as count of nodes marked in green in the RHS of the production, whereas

b is the count of nodes marked in yellow in the LHS of the production.

The proof can be split into two independent steps. First, we compute the constant part associated with the elimi-

nation of the initial, unrefined mesh (k = 0) and then the count of operations incurred by the each increase of k

by one. This is sufficient, since each layer produced as a result of incrementing k is identical and contains six new

elements.
1http://maxima.sourceforge.net
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Step 1. k = 0. We begin by computing the cost of eliminating the fully assembled nodes. This process is

called static condensation. To eliminate entries produced by these nodes we do not need to know about any other

degrees of freedom. Static condensation usually occurs just after attaching an element to the given structure (as in

Production Pelimint). In case of a hypergraphs from Section 3.2, static condensation is illustrated by productions

in Figures 3.14, 3.15, 3.20, 3.21. As such entries are self-contained and can be processed independently, we can

count their contributions to the total number of operations independently. For each element 1, 2, 5, 6 (see Figure

3.73a) the interior, two edges and a vertex are fully assembled and can be eliminated immediately (or at any time).

For each element 3, 4, 7, 8 (see Figure 3.73b) interior and only one edge are fully assembled. The number of

1 2 3

4567

8

(a) SC for elements 3, 4, 7, 8

1 2 3

4567

8

(b) SC for elements 1, 2, 5, 6

Figure 3.73: Static condensation for k = 0 two element mesh

operations incurred by each of two cases above has been summarized in Table 3.1. Column TOTAL is the sum

of contributions for each of the elements in the Table 3.1 (which means multiplying the value in the first row by

four and adding it to the value in the second row, also multiplied by four). The next step is to count the operations

Table 3.1: Operations incurred by static condensation for k = 0

Elements a for arbitrary p b for arbitrary p C(a, b)

3, 4, 7, 8 1+2(p−1)+(p−1)2 4+4(p−1)+(p−1)2 2p6+12p5+33p4+36p3+13p2

6

1, 2, 4, 6 p− 1 + (p− 1)2 4(p− 1) + (p− 1)2 2p6+12p5+33p4+2p3−32p2−13p
6

TOTAL 16p6+96p5+264p4+136p3−19p2−13p
6

incurred by the interface elimination, still for the k = 0 two element grid. This time, we need to obey the proper

order for the elimination, starting from what is operationally called Interface 1-2 and reflected by the Production

Pelimcommon. In general, during this step we follow the chain of productions from Phase 2 described earlier in this

chapter. This order is also concisely summarized by Figure 3.74. The results are presented in Table 3.2. Since in

this step we do not eliminate contributions coming from interior nodes (all of them were eliminated in the previous

step), p in the results appears only in its third power. Now we have finished the first step of computations and

received the constant part for k = 0, which can be expressed as T (p, 0) in Equation 3.2.

T (p, 0) =
728p3 + 552p2 + 106p+ 16p6 + 96p5 + 264p4 + 136p3 − 19p2 − 13p

6
(3.2)

=
16p6 + 96p5 + 264p4 + 864p3 + 533p2 + 93p

6
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1 2

(a) Interface 1-2

1 2 3

(b) Interface 2-3

1 2 3

4

(c) Interface 3-4

1 2 3

45

(d) Interface 4-5

1 2 3

456

(e) Interface 5-6

1 2 3

4567

(f) Interface 6-7

1 2 3

4567

8

(g) Interface 7-8

Figure 3.74: Interface elimination order, k = 0
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Table 3.2: Computational cost incurred by element elimination for k = 0

Interface a for arbitrary p b for arbitrary p C(a, b)

1-2 1 + p− 1 6 + 5(p− 1)
122p3 + 81p2 + 13p

6

2-3 1 + p− 1 6 + 5(p− 1)
122p3 + 81p2 + 13p

6

3-4 1 + p− 1 6 + 5(p− 1)
122p3 + 81p2 + 13p

6

4-5 2 + 2(p− 1) 6 + 5(p− 1)
196p3 + 144p2 + 26p

6

5-6 2 + 2(p− 1) 5 + 4(p− 1)
112p3 + 108p2 + 26p

6

6-7 1 + (p− 1) 4 + 3(p− 1)
38p3 + 45p2 + 13p

6

7-8 3 + 2(p− 1) 0
16p3 + 12p2 + 2p

6

TOTAL
728p3 + 552p2 + 106p

6

Step 2. The second step of the proof is to compute the linear increase of the operation count depending on

k. Increasing k by one adds one more layer of elements as presented in Figure 3.75. Again, for simplicity, we

introduce temporary naming for the consecutive interfaces (Interface 1-2 to Interface 7-8) that will be processed.

Let k ≥ 1.

3+6k

4+6k5+6k6+6k7+6k

8+6k
8+6(k-1)

Figure 3.75: Ordering for arbitrary k

As in Step 1, we begin with the contribution of static condensation. In the case of elements 3 + 6k and 8 + 6k

we can eliminate for each one edge and its interior independently. For the remaining elements the elimination of

their interiors is the only possibility at this point. The results has been summarized in Table 3.3. Again, TOTAL

indicates first row multiplied by two plus the second row multiplied by four. In terms of eliminating interfaces, as

in Step 1, we have to follow the order, but the direction (left to right or right to left) is not relevant to the result, so

we may assume that we are proceeding from right to left. For a summary of the results, see Table 3.4. Having all

P. Gurgul Linear computational cost solvers for adaptive simulations



3.3. Estimation of the computational cost and memory usage 60

3+6k

4+6k5+6k6+6k7+6k

8+6k
8+6(k-1)

(a) Ordering within a layer

3+6k
8+6(k-1)

7+6(k-1)

(b) Interface 1-2

3+6k
8+6(k-1)

7+6(k-1)

4+6k

(c) Interface 2-3

3+6k
8+6(k-1)

7+6(k-1)

4+6k5+6k

(d) Interface 3-4

3+6k
8+6(k-1)

7+6(k-1)

4+6k5+6k6+6k

(e) Interface 4-5

3+6k
8+6(k-1)

7+6(k-1)

4+6k5+6k6+6k7+6k

(f) Interface 5-6

3+6k
8+6(k-1)

7+6(k-1)

4+6k5+6k6+6k7+6k

8+6k

(g) Interface 7-8

Figure 3.76: Interface elimination order, arbitrary k
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Table 3.3: Computational cost incurred by static condensation for arbitrary k

Elements a for arbitrary p b for arbitrary p C(a, b)

3, 8 (p− 1) + (p− 1)2 4 + 4(p− 1) + (p− 1)2 2p6+12p5+33p4−2p3−32p2−13p
6

4, 5, 6, 7 (p− 1)2 4 + 4(p− 1) + (p− 1)2 2p6+12p5+33p4−76p3+p2+22p+6
6

TOTAL 12p6+72p5+198p4−308p3−60p2+62p+24
6

Table 3.4: Computational cost incurred by interface elimination for arbitrary k

Interface a for arbitrary p b for arbitrary p C(a, b)

1-2 1 + (p− 1) 7 + 6(p− 1) 182p3+99p2+13p
6

2-3 (p− 1) 7 + 7(p− 1) 254p3−177p2−71p−6
6

3-4 2(p− 1) 7 + 7(p− 1) 436p3−228p2−178p−30
6

4-5 1 + 2(p− 1) 7 + 7(p− 1) 436p3−78p2−58p−6
6

5-6 (p− 1) 7 + 7(p− 1) 254p3−177p2−71p−6
6

6-7 2 + 2(p− 1) 7 + 6(p− 1) 304p3+180p2+26p
6

TOTAL 1866p3−381p2−339p−48
6

the terms, it is now possible to assemble the final formula:

T (p, k) = T (k, 0) + k
12p6 + 72p5 + 198p4 + 1558p3 − 441p2 − 277p− 24

6
(3.3)

Thus:

T (p, k) =
16p6 + 96p5 + 264p4 + 864p3 + 533p2 + 93p

6

+ k
12p6 + 72p5 + 198p4 + 1558p3 − 441p2 − 277p− 24

6
(3.4)

which completes the proof.

Having Lemma 3.3.1 proven and using the formula 3.4 it is possible to count the exact number of operations

for the linear solver for different numbers of levels and various polynomial orders of approximation (see Table

3.5).

Table 3.5: Theoretical cost estimates for two element mesh for the sequential linear solver

p/k 2 3 4 5 T (p, k)

2 27384 40638 53892 67146 876 + 13254k

3 93452 137634 181816 225998 5088 + 44182k

4 259226 378987 498748 618509 19704 + 119761k

5 622804 905357 1187910 1470463 57698 + 282553k
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Now, we can simplify the reasoning above into more rough and general estimations of the computational

complexity.

Lemma 3.3.2. The computational complexity of the hypergraph grammar driven solver for problems with point

singularities is equal to O(N), where N is the number of unknowns.

Proof. The proof relies on Lemma 3.3.1 and transforms T (p, k) into a function of N . In order to achieve this goal,

we first need to determine the relationship between the number of elementsNe and the number of redinement levels

k. The initial mesh for k = 0 has eight elements. Each new refinement level adds a layer of six new elements. Thus:

Ne(k) = 8 + 6k (3.5)

Since each element contains 4 degrees of freedom associated with its vertex, 4(p−1) degrees of freedom associated

with its edges and (p − 1)2 degrees of freedom associated with its interior, we multiply number of elements and

number of degrees of freedom per element.

N(Ne, p) = (8 + 6k)((p− 1)2 + 4(p− 1) + 4) = O(p2 + kp2) (3.6)

Substituting this result in T (p, k) we receive:

T (p,N) = O(Np4) (3.7)

Since p can be treated as a constant and in fact, due to numerical side-effects is very rarely greater than nine, we

receive:

T (N) = O(N) (3.8)

which proves the linear complexity.

3.3.2. Memory usage of the hypergraph grammar based sequential solver

The order of the memory usage of the hypergraph solver can be well-approximated by computing the count of

non-zero entries in the matrix. Since we do not store zero values, the real space usage is the function of non-zero

entries (NZ). NZ at any given stage can be expressed as a function of previously defined a and b, as defined by

the following formula.

NZ(a, b) =
a(a+ 1)

2
+ a(b− a) (3.9)

We will compute NZ(k, p) with k and p being defined the same way as in the previous proof.

Lemma 3.3.3. The order of memory usage for a two element mesh with a point singularity using the hypergraph

grammar driven solver is equal to:

MEM(N) = O(N)

where N is the total number of the degrees of freedom.

Proof. Similarly to the previous section, the proof consists of two steps. One for the constant part (k = 0) and one

for estimating the number of non-zero entries introduced by each additional layer.

Step 1. Compute the constant part of the cost (k = 0). As in Section 3.3.1, we start with computing the part

that does not depend on k. Contribution to the non-zero entries coming from the static condensation is presented

in Table 3.6. The contributions coming from the interface elimination are summed up in Table 3.7. The logic is

exactly the same as for the tables in Section 3.3.1.

P. Gurgul Linear computational cost solvers for adaptive simulations



3.3. Estimation of the computational cost and memory usage 63

Table 3.6: Count of non-zero entries incurred by static condensation for k = 0

Elements a for arbitrary p b for arbitrary p NZ for arbitrary p

3, 4, 7, 8 1 + 2(p− 1) + (p− 1)2 4 + 4(p− 1) + (p− 1)2 1
2
(p4 + 4p3 + 3p2)

1, 2, 5, 6 p− 1 + (p− 1)2 4 + 4(p− 1) + (p− 1)2 1
2
(p4 + 4p3 − 9p2 + 2p+ 1)

TOTAL 6p4 + 24p3 − 30p2 + 8p+ 4

Table 3.7: Non-zero entries incurred by interface elimination for k = 0

Interface a for arbitrary p b for arbitrary p NZ for arbitrary p

1-2 1 + p− 1 6 + 5(p− 1) 1
2
(3p(3p+ 1))

2-3 1 + p− 1 6 + 5(p− 1) 1
2
(3p(3p+ 1))

3-4 1 + p− 1 6 + 5(p− 1) 1
2
(3p(3p+ 1))

4-5 2 + 2(p− 1) 6 + 5(p− 1) p(8p+ 3)

5-6 2 + 2(p− 1) 5 + 4(p− 1) p(6p+ 3)

6-7 1 + (p− 1) 4 + 3(p− 1) 1
2
(p(5p+ 3))

7-8 3 + 2(p− 1) 0 (p+ 1)(2p+ 1)

TOTAL 32p2 + 15p+ 1

Table 3.8: Count of non-zero entries incurred by static condensation for arbitrary k

Elements a for arbitrary p b for arbitrary p NZ for arbitrary p

1,6 (p− 1) + (p− 1)2 4 + 4(p− 1) + (p− 1)2 1
2
(p4 + 4p3 − 2p2 − 3p)

2,3,4,5 (p− 1)2 4 + 4(p− 1) + (p− 1)2 1
2
(p4 + 4p3 − 9p2 + 2p+ 2)

TOTAL 3p4 + 12p3 − 20p2 + p+ 4

Table 3.9: Non-zero entries incurred by interface elimination for arbitrary k

Interface a for arbitrary p b for arbitrary p NZ for arbitrary p

1-2 1 + (p− 1) 7 + 6(p− 1) 1
2
p(11p+ 3p)

2-3 (p− 1) 7 + 7(p− 1) 1
2
(13p2 − 11p− 2)

3-4 1 + 2(p− 1) 7 + 7(p− 1) 12p2 − 4p− 1

4-5 1 + 2(p− 1) 7 + 7(p− 1) 12p2 − 4p− 1

5-6 (p− 1) 7 + 7(p− 1) 1
2
(13p2 − 11p− 2)

6-7 2 + 2(p− 1) 7 + 6(p− 1) 10p2 + 3p

TOTAL 105p2 − 29p− 8
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Step 2. Count the NZ increase with k. This is the analogous step to Step 2 in the proof of linear computational

cost. Also the interface numbering corresponds to that from Figure 3.76. The results are presented in Table 3.8.

The corresponding results for the interface elimination step are presented in Table 3.9.

When we assemble the above results into a single equation we receive:

MEM(k, p) = NZ(k, p) =
1

2
(12p4 + 48p3 + 11p2 + 35p+ 4) + k

1

2
(105p2 − 29p− 8) (3.10)

= O(p4 + kp2)

We also already know that:

Ne(k) = 8 + 6k (3.11)

And the relationship between N , Ne and p is as below:

N(Ne, p) = (8 + 6k)((p− 1)2 + 4(p− 1) + 4) = O(p2 + kp2) (3.12)

Since p2 does not depend on N and kp2 was proven to be O(N) in Lemma 3.3.1, we obtain:

MEM(N) = O(N) (3.13)

which completes the proof.

3.3.3. Estimation of the computational cost of the hypergraph grammar based parallel
solver

As discussed in Section 3.2.3, in the case of a parallel solver each layer can be processed concurrently. The

aim of this section is to prove Lemma 3.3.4.

Lemma 3.3.4. The computational complexity of the hypergraph grammar driven solver is logarithmic with the

respect to number of unknowns N on shared memory parallel machines.

Proof. We assume tLi is the computational cost associated with processing layer i. However, the size of each layer

is fixed, so this cost is also constant provided that P is fixed. The bottom layer L1 consists of two elements and the

cost of its elimination is always equal to C1(p).

tL1
= C1(p) (3.14)

In order to determine C1(p) we have to sum up the first two rows from Table 3.1 with the first two rows from Table

3.2.

C1(p) =
122p3 + 81p2 + 13p

3
+

2p6 + 12p5 + 33p4

3
+

36p3 + 13p2

3
(3.15)

=
2p6 + 12p5 + 33p4 + 158p3 + 94p2 + 13p

3

Similarly, for each of the layers L2, ..., Lk−1 the cost is also equal to some C2(p) (see Equation 3.16). We

determine this in the similar manner as C1(p). In fact, its upper boundary value is expressed by the coefficient

standing by k in Equation 3.3, which is constant with respect toN . Its actual value is even smaller since in the case

of parallel solver we do not eliminate contributions coming from top and bottom nodes of each layer at this time.

tLi
= C2(p) where 1 < i < k (3.16)

The top layer Lk has the same number of elements as layers L2, ..., Lk−1, but the different cost, since its outer

nodes lie on the boundary (see Equation 3.17). Nevertheless, it is also constant with respect to N .

tLk
= C3(p) (3.17)
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Provided that each layer is processed in parallel, the total cost of this step is equal to the maximum cost of proces-

sing of a single layer (as in Equation 3.18).

tlayers = max(C1(p), C2(p), C3(p)) (3.18)

As mentioned before, we assume p to be constant over the entire grid and tlayers is independent of k (and, as a

result, of N ). The next step is to merge each layer following the binary tree order. We denote tinterface as the cost

of eliminating (and merging) degrees of freedom lying on the interface between any two layers. Since there are

k + 2 layers, the total cost of this part is:

tmerger = tinterfacelog2(k + 2) (3.19)

This is due to the fact that we process the neighboring layers pairwise, producing the binary tree of height log2(k+

2). tinterface is constant for each two layers and a given p. It can be computed based on Pmergetop (see Figure

3.67) leveraging the previously used formula for C(a, b).

amt = 5 + 4(p− 1) (3.20)

bmt = 15 + 12(p− 1) (3.21)

and hence

C(amt, bmt) =
2432p3 + 2064p2 + 580p+ 54

6
= O(p3) (3.22)

Substituting these values in Equation 3.19 we receive:

T (N) = max(C1(p), C2(p), C3(p)) + p3log2(
N

p2
) (3.23)

Assuming that p is constant over the entire domain we receive the final formula:

T (N) = O(1) +O(logN) = O(logN) (3.24)

which completes the proof.
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Chapter 4
Graph grammar based model of a solver

algorithm in three dimensions

The goal of this chapter is to present the extension of the hypergraph grammar model to the process of generation

and adaptation of three dimensional grids, followed by a description of hypergraph grammar productions driving

the execution of the multi-frontal solver algorithm in a special order, which allows for faster processing. The

reasoning is similar to the previous chapter, but due to a very large number of possible productions, we introduce

only most important ones.

4.1. Hypergraph grammar model for generation and adaptation of a
three dimensional mesh with point singularities

The process of generation of the three dimensional computational mesh with hexahedral elements starts with

execution of the Pinit production, presented in Figure 4.1. It generates a hypergraph representing a single three-

dimensional finite element. In the case of uniform mesh adaptations, we can prepare a sequence of graph grammar

productions replacing the single element by a uniform cluster of elements. The model production Pinitbreak presen-

ted in Figure 4.2 generates a uniform mesh of 2×2×2 elements. In order to get non-uniform mesh refinements, we

need to enforce the 1-irregularity rule as described in Definition 2.1.1. The rule does not allow for breaking a sin-

gle element for the second time without first breaking any adjacent elements. In order to enforce the 1-irregularity

rule, we must break element interiors first, as is expressed by production Pbreakint presented in Figure 4.3. The

example execution of the production over the eight finite element mesh is presented in Figure 4.4. In the case of

faces, a face can be broken only if two adjacent interiors have already been broken, or one adjacent interior has

been broken and the face is located on the boundary of the mesh. This second case is illustrated in production

Pbreakface presented in Figure 4.5. Finally, edges can be broken only if all adjacent faces have already been bro-

ken, or the edge is located on the boundary (and in such a scenario we need to check fewer of adjacent faces). This

is illustrated in Figure 4.6 by production Pbreakedge.

66
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Figure 4.1: The initial production generating a single cubic element

Figure 4.2: The production breaking a single element into eight elements
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Figure 4.3: The production breaking an interior of a single element

Figure 4.4: The eight element mesh after breaking the interior of the front element
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Figure 4.5: The production for breaking a face

Figure 4.6: The production for breaking an edge

4.2. Multi-frontal solver algorithm prescribed by the hypergraph gram-
mars

The first graph grammar productions are responsible for generation of the frontal element matrices. This is

done by productions Pagregint responsible for generation of the matrix entries associated with interior nodes,

Pagregboundary and Pagregface responsible for generation of matrix entries associated with boundary and interior

faces, Pagregedge and Pagregvertex responsible for generation of matrix entries associated with element edges and

vertices. These graph grammar productions are illustrated in Figure 4.7.

Having assembled the frontal matrix, it is possible now to start with elimination of the fully assembled nodes.

We can eliminate the interior node, which is denoted by production Pelimint presented in Figure 4.8, we can

also eliminate boundary faces, which is denoted by production Pelimface as well as boundary edges and vertices,

compare productions Pelimedge and Pelimvertex in Figure 4.8.

Having adjacent elements with frontal matrices and eliminated interior and boundary nodes, we can now merge

the frontal matrices into one matrix and eliminate fully assembled nodes from the common face. It is expressed by

productions Pmergeeliminate illustrated in Figure 4.9. This procedure of merging frontal matrices and eliminating

fully assembled nodes located on common faces is repeated until all the nodes in the mesh are eliminated.
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Figure 4.7: The productions for assembly of an element frontal matrix
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Figure 4.8: The production for elimination of an interior and boundary nodes
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Figure 4.9: The productions for merging two frontal matrices and elimination of fully assembled nodes from a

common face
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4.3. Linear computational cost solver for three dimensional meshes with
point singularities

In the case of a mesh with point singularities, as the one presented in Figure 4.10, we can take advantage of the

multi-level structure of the computational grid in the following way. We start with the grid presented on the right

panel in Figure 4.2. The first step is to execute the multi-frontal solver algorithm for all the elements, except the

elements located closest to the point singularity.

Figure 4.10: Three dimensional mesh with a single point singularity

In order to create element frontal matrices for all elements on the top level we execute the following chain

of productions: Pagreginit 7→ Pagregboundary 7→ Pagregface 7→ Pagregedge 7→ Pagregvertex. The

next step is to eliminate entries that resulted from the previously aggregated element contributions, which can be

achieved by executing the following chain of productions: Pelimboundary 7→ Pelimedge 7→ Pelimvertex.

Finally, we merge frontal matrices, by executing productions Pmergeeliminate as many times as necessary to

end up with the interface of the top level with respect to the next level, as presented in Figure 4.11. We store the

Schur complement matrix associated with the interface.

At this point, we can aggregate the frontal matrix associated with the element nearest to the point singularity,

by executing productions Pagreginit 7→ Pagregboundary 7→ Pagregface 7→ Pagregedge 7→ Pagregvertex.

Next, we can merge the element frontal matrix with the Schur complement matrix, by executing production

PmergewithSchur. This results in a fully assembled matrix and we can solve the problem close the singularity.

If a more accurate solution is required, we can break the element neighboring the singularity by executing the

production Pbreaksingularity presented in Figure 4.12, preserving the Schur complement adjacent to the broken

element.

At this point, we can continue to solve the problem over the newly refined elements by executing the following

chain of productions Pagreginit 7→ Pagregboundary 7→ Pagregface 7→ Pagregedge 7→ Pagregvertex ge-

nerating the element frontal matrices, followed by productions Pelimboundary 7→ Pelimedge 7→ Pelimvertex,
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Figure 4.11: The interface between layers

together with PmergewithSchur reutilizing the Schur complement matrix for the interface with other part of the

mesh.
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Figure 4.12: The hypergraph grammar derivation of a grid with point singularity

4.4. Computational complexity of sequential hypergraph grammar ba-
sed solver for three dimensional meshes with point singularities

As an estimation of the exact computational cost for the three dimensional solver would be a very strenuous

task, we restrict ourselves to a rough approximation of the computational complexity.

Lemma 4.4.1. Computational complexity of the sequential solver with respect to the number of degrees of fre-

edom N and polynomial order of approximation p for a three dimensional grid with point singularity is equal to

T (p,N) = O(Np6).

Proof. A three dimensional element has number of degrees of freedom over an element edge of the order of O(p),

the number of degrees of freedom over an element face of the order ofO(p2) and the number of degrees of freedom

over an element interior of the order of O(p3). The computational complexity of elimination of the interior-related

degrees of freedom is of the order of O((p + p2 + p3)2p3) = O(p9). The computational complexity of the static

condensation is of the order of O(Nep
9), where Ne denotes the number of elements. The remaining faces and
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edges are eliminated level by level (layer by layer), and the computational complexity of elimination of a single

level is of the order of O((p2 + p)3) = O(p6). The number of elements Ne is of the order of O(Ne) = O(Np3 ), and

the number of levels k is of the order of O(k) = O(Np3 ) thus the total computational complexity is of the order of

O(Nep
9 + kp6) = O(Np6 +Np3) = O(Np6) which completes the proof.

4.5. Memory usage of hypergraph grammar based solver for three di-
mensional meshes with point singularities

Memory usage in case of the hypergraph grammar driven solver for the three dimensional meshes with point

singularities remains linear with respect to the number of the degrees of freedom N . The order of memory usage

is roughly estimated in the lemma below.

Lemma 4.5.1. Memory usage of the solver with respect to the number of degrees of freedom N and polynomial

order of approximation p for the three dimensional grid with point singularity is of the order of MEM(N, p) =

O(Np3).

Proof. A three dimensional element contains O(p) degrees of freedom over element edges, O(p2) degrees of

freedom over element faces and O(p3) degrees of freedom over element interiors. The memory usage complexity

of storing an element frontal matrix is of the order of O((p + p2 + p3)2) = O(p6). The total memory usage

complexity of storing element frontal matrices is of the order of O(Nep
6). The matrices at higher levels contain

contributions from faces and edges and the memory usage complexity of storing such a matrix is of the order of

O((p2 + p)2) = O(p4). The number of elements Ne is of the order of O(Ne) = O(Np3 ), and the number of levels

k is of the order of O(k) = O(Np3 ), thus the total memory usage complexity is of the order of O(Nep
6 + kp3) =

O(Np6 +Np3) = O(Np3).

4.6. Computational complexity of the parallel hypergraph grammar ba-
sed solver for three dimensional meshes with point singularities

This section roughly estimates the theoretical computational complexity of the fastest version of the solvers

presented in this thesis - parallel hypegraph grammar solver for three dimensional meshes with point singularities.

Lemma 4.6.1. Computational complexity of the parallel solver with respect to the number of degrees of freedom

N and polynomial order of approximation p for three dimensional grid with point singularity is of the order of

O(p6log(Np3 )).

Proof. The three dimensional elements contains O(p) degrees of freedom over element edges, O(p2) degrees of

freedom over element faces and O(p3) degrees of freedom over element interiors. The computational complexity

of elimination of interior degrees of freedom is of the order of O(p3(p+p2 +p3)2) = O(p9). The remaining faces

and edges are eliminated level by level (layer by layer), and the computational complexity of their elimination over

a single level is of the order of O((p2 + p)3) = O(p6). In parallel we construct an elimination tree with O(log(k))

levels, where k is the previously defined number of the refinement levels. In particular, the number of levels k is of

the order of O(k) = O(Np3 ) and thus O(log(k)) = O(log(Np3 )). This is why the computational complexity of the

parallel solver is O(p9 + log(p6 N
p3 )) = O(p6log(Np3 )). This completes the proof.
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Chapter 5
Numerical results

This chapter presents numerical results for both sequential and parallel versions of the hypergraph grammar based

solver. The sequential version has been benchmarked on a traditional CPU , whereas the parallel version has been

implemented and tested on shared memory Graphics Processing Unit. The numerical results deliver the solution to

an exemplary heat transfer problem described in Section 5.1.3. The solution has been computed by means of the

h adaptive Finite Element Method (see Section 2.1.2). Since this book presents rather general mathematical for-

malism for prescribing solvers, the GPU solver described in this thesis is just one of the possible implementations.

For performance reasons, graph grammar productions have not been mapped exactly as presented in Chapter 3.

The left hand sides of the productions have been minimized and various purely technical implementation details

have also been applied to facilitate better specifics of GPU architecture.

5.1. Problem statement

The grids with refinements towards a point, such as the ones presented in Figures 5.1 - 5.2 can be used for

solving the numerical problems with point singularities. The examples of such problems are projection problems

for functions having multiple point extrema or singularities, or the solution of the heat transfer problems with

different material data varying by several orders of magnitude, or heat transfer problems with several point heat

sources (compare Figure 5.5), or any other problem where the solution exhibits multiple point gradients.

5.1.1. Projection problem

In this section, we formulate the projection problem (for a detailed description see [18, 23, 24, 25, 53, 55, 99])

that will be solved using the hypergraph grammar driven solver implemented on a GPU. The goal is to find the

approximation u to the given function f , defined over Ω ⊂ R2, which satisfies Equation 5.1.

‖f − u‖L2 → min (5.1)

By applying the definition of the L2 norm we receive:√√√√∫
Ω

(f − u)
2
dx→ min (5.2)

Minimizing the above formula is equivalent to:∫
Ω

(f − u)
2

dx→ min (5.3)
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Figure 5.1: Exemplary two dimensional mesh

Figure 5.2: Exemplary three dimensional mesh

Hence: ∫
Ω

f2dx− 2

∫
Ω

fudx +

∫
Ω

u2dx→ min (5.4)

Since ∫
Ω

f2dx = const (5.5)

the problem can be reduced to:

−2

∫
Ω

fudx +

∫
Ω

u2dx→ min (5.6)
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Figure 5.3: 3D mesh with four point singularities

Let b(w, v) be a symmetric, bilinear form:

b(w, v) = 2

∫
Ω

wvdx (5.7)

and let l(w) be a linear form defined as:

l(w) = 2

∫
Ω

wfdx (5.8)

This allows us to rewrite the problem in the following way:

1

2
b (u, u)− l (u)→ min (5.9)

Let b(w, v) be a bilinear form on V × V and l(v) be a linear form on V . Let J(w) be a quadratic functional

defined as J(w) := 1
2b(w,w)− l(w). Then finding u that minimizes J(w) over the affine space V is equivalent to

finding u that satisfies:

b (u, v) = l (v) ∀v∈V

For the detailed proof, please refer to [23].

By applying the above fact we obtain an equivalent problem, as in Equation 5.10:

b (u, v) = l (v) ∀v∈V (5.10)

The computational domain Ω is now partitioned into rectangular elements with second order shape functions

defined over each finite element vertex, edge and interior. Shape functions αi : R2 3 (x, y) 7→ R over master

rectangular element (0, 1)2 are defined in the following way:
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– first order polynomials over four vertices

α1(x, y) = (1− x)(1− y)

α2(x, y) = (1− x)y

α3(x, y) = xy

α4(x, y) = x(1− y)

– second order polynomials over four edges

α4+1(x, y) = (1− x)x(1− y)

α4+2(x, y) = (1− x)y(1− y)

α4+3(x, y) = (1− x)xy

α4+4(x, y) = x(1− y)y

– second order polynomial over element interior

α9(x, y) = x(1− x)y(1− y)

Each of the vertex shape functions is equal to one on one vertex and vanishes on the remaining vertices. Each

of the edge shape functions is second order polynomial over one edge, and equal to zero on all other edges. Each

of the face shape functions is second order polynomial over one face and zero over all other edges and faces. The

interior shape function is second order polynomial inside an element and is equal to zero over all the faces. The

shape functions over an arbitrary rectangular element are obtained by affine transformation of the master element

basis functions. For more details please refer to [23, 27].

We utilize a linear combination of second order polynomials for the numerical solution, spread over finite

elements vertices, edges and interiors:

u =

n∑
i=1

uiαi. (5.11)

The basis functions αj of space V belong to the space, and the form b is linear with respect to the first argument.

We can finally rewrite the problem as:

n∑
i=1

uib (αi, αj) = l (αj) ∀αj∈V (5.12)

The equation is considered element by element, and we generate element frontal matrices, one for each element,

to be interfaced with the multi-frontal solver. Namely, for each rectangular element we utilize a set of graph

grammar productions contributing to the element matrix. The element matrix in this model projection problem

looks like this: 
b(α9, α9) ... b(α9, α1)

... ... ...

b(α1, α9) ... b(α1, α1)

 =


l(α9)

...

l(α1)


where rows and columns are ordered thus interior, followed by edges, followed by vertex shape functions.

In the numerical simulations we have selected the function f so it has a gradient going to infinity at the bottom

center of the rectangular domain Ω.

Ω = (−1, 1)× (0, 1) 3 (x, y) 7→ f(x, y) (5.13)
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= min(tan(
π

2
(1− |x|))tan(

π

2
(1− y)),M)

M denotes the strength of the singularities. The graph grammar generates a sequence of two dimensional, incre-

asingly refined grids with rectangular finite elements with basis functions spread over finite element vertices, edges

and interiors, approximating the function f with increasing accuracy.

5.1.2. Heat transfer problem with heterogeneous materials

In this section we present another sample model problem, where we solve a heat transfer problem over a domain

with heterogeneous materials ranging over several orders of magnitude. In such a case, each time three different

materials meet, or two materials meet at a corner, they generate a local point singularity. For a visualisation, see

Figure 5.4.

Figure 5.4: Sample two dimensional mesh with different material data, refined towards point singularities

The strong form of the problem is defined by Equation 5.14.

Find u = u(x, y) ∈ H1 (Ω) such that (5.14)

∇ (K∇u) = 0 (5.15)

where Ω = (0, 1)
2, with the following boundary conditions:

u (·, 0) = u (·, 1) = 0 (5.16)

∂u

∂x
(0, ·) =

∂u

∂x
(1, ·) = 1 (5.17)

The K(·, ·) is the material data function given by:

K (x, y) = 103 for x <
3

8
or y <

1

8
or x >

7

8
or y >

7

8
(5.18)

K (x, y) = 1 for
3

8
< x <

5

8
and

1

8
< y <

7

8
or

1

8
< x <

7

8
and

3

8
< y <

5

8
(5.19)

K (x, y) = 10−4 elsewhere (5.20)
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The variational formulation is obtained by taking the L2 inner product with functions v ∈ H1 (Ω) and integrating

by parts.

Find

u ∈ V = {u ∈ H1 (Ω) : tru (·, 0) = tru (·, 1) = 0} (5.21)

such that

b (u, v) = l (v) ,∀v ∈ V (5.22)

b (u, v) =

∫
Ω

K∇u · ∇vdV (5.23)

l (v) = −
∫

Γ0×(0,1)

vdV +

∫
Γ1×(0,1)

vdV (5.24)

where tru denotes trace of function u and:

Γ0×(0,1) = {(x, y) : x = 0, y ∈ (0, 1)}

Γ1×(0,1) = {(x, y) : x = 1, y ∈ (0, 1)}

5.1.3. Heat transfer problem with point sources

In this section we consider a model of a three dimensional heat transfer problem with Dirichlet and Neumann

boundary conditions, namely:

For a given f find u = u(x, y, z) ∈ H1 (Ω) such that (5.25)

∆u = f (5.26)

where Ω = (0, 1)
3, with the following boundary conditions:

u (·, ·, 0) = 0 (5.27)

∂u

∂x
(0, ·, ·) =

∂u

∂x
(1, ·, ·) =

∂u

∂y
(·, 0, ·) =

∂u

∂y
(·, 1, ·) =

∂u

∂y
(·, ·, 1) = 0 (5.28)

The right hand side defines the point-wise heat sources, e.g.

Ω = (0, 1)3 3 (x, y, z) 7→ f(x, y, z) (5.29)

= minx{tan(2πx),M}

∗miny{tan(2πy),M}

∗minz{tan(2πz),M}

M stands for a constant describing strength of singularity.

The weak variational formulation is obtained by taking the L2 inner product with functions v ∈ H1 (Ω) and

integrating by parts.

Find

u ∈ V = {u ∈ H1 (Ω) : u (·, ·, 0) = u (·, ·, 1) = 0} (5.30)

such that

b (u, v) = l (v) ,∀v ∈ V (5.31)

b (u, v) =

∫
Ω

∇u · ∇vdV (5.32)
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Figure 5.5: Solutions to heat transfer problems with several point heat sources with the same or different intensities.

l (v) = −
∫

Ω

fvdV (5.33)

The exemplary solution on a cross-section of the domain is presented in Figure 5.5.

Although this study is restricted to a Laplace equation, the results presented here are still valid when applied

to other PDEs including linear elasticity, Stokes and Maxwell’s equations, or a number of multi-physics problems,

where the forcing in the equation is point-wise in nature. In these cases, the problem implies the necessity for local

point refinements.

5.2. CPU implementation

This section delivers efficiency measurements of the solver algorithm for the simple two- and three-dimensional

problems with one point singularity. A simple heat transfer problem with artificially enforced singularity at the

bottom-center of the mesh has been used to measure the behavior of the solver. The goal of these experiments was

to compare our graph grammar based approach with classical state-of-the-art MUMPS solver [2, 3, 4] performing

the construction of the elimination tree with a nested dissection algorithm from the METIS [68] library based on

recursive partitions of the connectivity graph obtained from the global matrix sparsity pattern. The numerical expe-

riments for 2D are summarized in Figures 5.6 - 5.9. The performance of the solver for the 3D problem is depicted

in Figure 5.10. The horizontal axis denotes the number of degrees of freedom when we increase the number of

refinement levels, the vertical axis denotes the execution time. We have enforced the level-by-level ordering in the

frontal solver algorithm developed by Irons [65] as well as executing the MUMPS solver [2, 3, 4] with a nested

dissection algorithm. The numerical results show that both our algorithm and MUMPS algorithm deliver a linear

computational cost in sequential case. The oscillations can be attributed to the fact that one singularity problem

is very small, and therefore activities of the system deamons and other third-party phenomena can influence the

results. The results obtained can be considered good, since the MUMPS solver is highly optimized code, and we

have shown that our hand-made code can provide the same scalability due to our graph grammar based approach.

In order to improve the scalability, we need to go for parallel shared memory GPU implementation. This result

became strong encouragement for developing the parallel shared memory graph grammar based implementation

of our algorithm, where we can take advantage of the graph grammar based parallel implementation, where the

concurrency of the algorithm results from analysis of the dependency on basic undivisible tasks, defined as graph

grammar productions.

P. Gurgul Linear computational cost solvers for adaptive simulations



5.2. CPU implementation 84

0 100 200 300 400 500 600 700 800 900
N

0.000

0.005

0.010

0.015

0.020

0.025

ti
m

e
[s

]

Solver type

Linear solver
MUMPS

Figure 5.6: The linear computational cost of the solver algorithm for second order polynomials
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Figure 5.7: The linear computational cost of the solver algorithm for third order polynomials
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Figure 5.8: The linear computational cost of the solver algorithm for fourth order polynomials
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Figure 5.9: The linear computational cost of the solver algorithm for fifth order polynomials
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Figure 5.10: The linear computational cost of the solver algorithm for 3D mesh with point singularity

5.3. GPU implementation

The graph grammar based solver has been implemented on GPU with NVIDIA CUDA inspired by the B-spline

[74] based solver developed by Kuźnik [71]. The graph grammar productions have been partitioned into sets of

independent tasks, and scheduled set by set, concurrently, into nodes of the GPU. The algorithm is the following:

1. Execute in serial (on CPU) hypergraph productions constructing a mesh with point singularity refined to an

arbitrary level k. Pinit 7→ Pbreakinitleft 7→ Pbreakinitleft 7→ Pregularity 7→ [Pbreakinterior 7→
Penforceregularity]k, where k corresponds to the number of generated layers.

2. Execute in serial the graph grammar production partitioning the mesh into layers: Pseparatetop 7→
Pseparatetop 7→ Pseparatebottom.

3. Execute concurrently the graph grammar productions responsible for generation and aggregation of inte-

rior nodes from particular layers Paddint 7→ Paddboundary 7→ PaddF1layer 7→ Paddvertices 7→
Pelimint 7→ Pelimboundary 7→ .... where ... corresponds to additional productions for upper layers.

4. Execute graph grammar productions for merging and elimination of the interface nodes from top layers

Pmergetop 7→ Pelimtop in concurrent with graph grammar productions for merging and elimination of the

interface nodes from bottom layers Pmergebottom 7→ Pelimbottom. For more than four layers, we obtain

the binary tree structure here, processed level by level one after another.

5. Execute the graph grammar production responsible for merging and solving the top problem Pmergetop and

Psolvetop.

NVIDIA CUDA environment

GPUs constitute a very promising architecture for scientific computations as they allow us to process data much

faster than ordinary CPUs. Instead of faster clocks, more sophisticated processors and adding more work per clock

cycle, the GPU approach is to put together many smaller, simpler processors. Calculations are performed in parallel

by hundreds of threads allowing us to achieve logarithmic scaling of the solution. GPUs also have a large memory
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bandwidth and a substantial amount of processing cores. CUDA (Compute Unified Device Architecture [77]) is a

language for programming both CPUs and NVIDIA GPUs using the same CUDA program written in C (with some

extensions for expressing the the parallelism). CUDA assumes that the GPU is a coprocessor for the CPU. The CPU

is called a host, whereas the GPU is called a device. The host plays the superior role orchestrating computations

and initiating memory copying. Parallel portions of an application are executed on the device as kernels, which

look like serial programs. However, the GPU will run each kernel on many threads. A typical CUDA program

includes the following steps:

1. CPU allocates memory on GPU using cudaMalloc instruction.

2. CPU copies data from CPU to GPU using cudaMemcpy instruction.

3. CPU launches kernels on GPU.

4. GPU processes the data in parallel.

5. CPU copies results back to CPU from GPU (again using cudaMemcpy instruction).

Understandably, a successful CUDA program should have a high computation to communication ratio. In the

case of the parallel solver presented in this thesis, this holds true, since processing element matrix for a single layer

significantly more expensive than distributing and merging the solution. CUDA is available so far on GeForce, ION,

Quadro and Tesla chips. Tesla is dedicated to scientific computations and has been enthusiastically welcomed [45]

due to its reasonable price, high performance and low energy consumption. CUDA programming is now backed

by established commercial software like Mathematica (via CUDALink) or MATLAB (via Parallel Computing

Toolbox). Using Tesla is also becoming increasingly popular among FEM researchers - see [70, 75]. Recently,

Tesla-based supercomputers were prominent on the TOP5001 list. What is even more interesting is that all of the

top 10 supercomputers on the Green5002 list are Tesla-based.

Modern GPUs consist of several multiprocessors (usually 8 to 12), each containing many cores (8 for GTX

260, 32 for Tesla C2070). Moreover, there are four kinds of memory: global, shared, constant, and texture. Unlike

traditional CPUs, which are optimized for latency, GPUs are primarily optimized for high throughput, which makes

more sense in graphic computations. Global memory is over 1 GB and can be accessed from every multiprocessor

at the cost of high latency. Shared memory (up to 48 KB per multiprocessor) can be accessed by all threads running

on one multiprocessor. This is a very limited amount, but accessed with low latency and high throughput. In this

work, only global and shared memory are used. Using constant and texture memory could improve the presented

results even more, but then, the presented implementation would be tightly bound to a specific hardware solution.

5.4. Numerical experiments

In order to prove the theoretical discoveries in this paper, a series of experiments have been conducted to

compare and contrast efficiency of the hypergraph driven parallel GPU solver with the well-established MUMPS

solver (see Section 2.2.1 or [2, 3, 4]) over 2D and 3D grids with point singularities. The numerical tests were

performed on GeForce GTX 260 graphic card with 24 multiprocessors, each of them equipped with 8 cores. This

means the total count of cores was equal to 192. The global memory of the graphic card was 896 MB. Polynomial

approximation level p was fixed over the entire domain. The results presented below in a form of graphs were

obtained for p = 2 and p = 3.

Performance evaluation

We compare performance of the traditional MUMPS solver with the graph-grammar driven linear GPU solver

starting from a 2D grid with a single point singularity (see Figure 5.11). Such a structure of the grid may result

1TOP500 List ranks and details the top 500 most powerful computer systems in the world - http://www.top500.org
2Green500 List lists the most energy-efficient supercomputers that made the TOP500 List
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either from a projection problem or from a heat transfer problem, again, either with point sources or with different

material data. The different problems only influence the values at the matrix entries but they do not change the

number of operations or the computational cost of the solver.

It can be easily observed that the GPU solver is very predictable in terms of computational costs, which loga-

rithmically increases with the number of degrees of freedom. In the case of MUMPS, it is full of sharp rises and

falls, but, in general, rises in a linear way. The results are presented in eight graphs (Figures 5.11 - 5.20).
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Figure 5.11: 2D mesh with a point singularity, p = 2
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Figure 5.12: 2D mesh with a point singularity, p = 3

For p = 3 this difference remains visible in favor of the GPU solver (compare Figure 5.13).
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Figure 5.13: 2D mesh with 2× 2 point singularities, p = 2
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Figure 5.14: 2D mesh with 2× 2 point singularities, p = 3

With the increase in the number of singularities this difference becomes even more obvious. The computational

cost of MUMPS still seems linear, but rising at a much steeper angle. When there is only one GPU available,

we can process each of the singularities one by one, and then submit the remaining Schur complements for the

top problem to the MUMPS solver in order to solve the 2 × 2 regular grid with element matrices replaced by

Schur complements coming from elimination of the point singularities. This scenario is called 4GPU+top for

2× 2 singularites or 16GPU+top for 4× 4 singularities and 64GPU+top for 8× 8 singularities. We compare this

approach to submitting the entire problem to the MUMPS solver, and solving it once (denoted by MUMPS solver).

The comparison of the MUMPS solver with our GPU based solver is presented in Figures 5.13 - 5.18 for 2× 2

and 4× 4 and 8× 8 singularities, respectively.
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Figure 5.15: 2D mesh with 4× 4 point singularities, p = 2
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Figure 5.16: 2D mesh with 4× 4 point singularities, p = 3

We have performed some experiments for three dimensional point singularities, for both one singularity cases

as well as for 2× 2× 2 singularities. We present these results in Figures 5.19 - 5.20. The results for a 3D problem

also confirm logarithmic scalability of our hypergraph grammar based solver.

Convergence rate

It is also worth measuring what was the loss of convergence rate associated with using h FEM instead of

hp FEM. The results presented in Figure 5.21 indicate that the h adaptive FEM still converges at a reasonable

rate, however, the convergence is no longer exponential. In turn, the linear cost of the hp-adaptive version of the
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Figure 5.17: 2D mesh with 8× 8 point singularities, p = 2
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Figure 5.18: 2D mesh with 8× 8 point singularities, p = 3
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Figure 5.19: 3D mesh with a point singularity, p = 2
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Figure 5.20: 3D mesh with 2× 2× 2 point singularities, p = 2
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Figure 5.21: Convergence rate comparison for a sample 3D problem

graph grammar solver has not been theoretically proven, but the preliminary experiments for a presented problem

suggest that it is also close to linear. The subject of convergence of the adaptive FEM methods has been profoundly

researched by Babuška [6, 7] and Demkowicz et al. [23, 27, 29].
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Chapter 6
Conclusions and future research

This chapter contains a summary of the research described in this thesis. This is followed by an evaluation of

the scientific contribution made by this work. The most important directions for the future work have also been

investigated and outlined.

6.1. Summary and significance of the obtained results

This section summarises all the results obtained and presented in this thesis and compares them with the open

problems listed in Section 2.3. The main and most significant achievement of this work is creation of the graph

grammar models applicable to a wide class of the adaptive algorithms, namely grids with one or multiple point sin-

gularities. The formal methodology used to achieve this goal was hypergraph grammar formalism. The hypergraph

grammar productions introduced in this work represent all the steps of the muti-frontal direct solver algorithm ap-

plied for fast numerical solutions of the grids resulting from adaptive finite element method computations. All the

graph grammar productions presented in this work can also be applied to grids with multiple point singularities,

however, for the sake of simplicity, we restricted ourselves here to the subset of hypergraph grammar productions

expressing the grids with single point singularities. Nevertheless, in the numerical sections we analyzed meshes

with one or many point singularities, for two and three dimensional grids. The sequential version of the hypergraph

grammar driven solver has been implemented on CPU and its efficiency has been compared with the state-of-the-art

MUMPS solver. The graph grammar formalism presented in this work allowed for analysis of the concurrency of

the algorithm and for localizing sets of graph grammar productions that can be executed concurrently. The analysis

allowed us to obtain the graph grammar model suitable for parallel shared memory implementation. The formalism

was implemented on GPU thanks to NVIDIA CUDA technology.

The author’s contribution specifically includes the following items:

Hypergraph grammar model for generation of the two element mesh. Section 3.2.1 presented hypergraph

grammars for generating a non-uniform mesh refined towards a point singularity. These productions are not

designed for parallel execution, but are computationally inexpensive and can be executed in serial without

any undesirable loss of efficiency.

Hypergraph grammar models of the sequential direct solver in 2D. Section 3.2.2 contains a set of hypergraph

productions driving execution of the sequential direct solver for two dimensional problems with one or

multiple point singularities. Its linear computational cost has been proven in Section 3.3.1. Its memory

usage has been estimated in Section 3.3.2. The solver algorithm is also easily extendable to problems with

multiple point singularities, which was the case in Chapter 5.
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Hypergraph grammar model of the parallel direct solver in 2D. Analysis of concurrency of the sequential so-

lver algorithm led to discoveries presented in Section 3.2.3 and a hypergraph model for the parallel solver for

2D problems with point singularities delivering logarithmic computational cost (which has been estimated

in Section 3.3.3).

Hypergraph grammar model prescribing generation of a mesh in 3D. Section 4.1 contains a set of hyper-

graph grammar productions for generating an arbitrarily refined three dimensional mesh.

Hypergraph grammar model prescribing direct solver execution in 3D. Section 4.2 contains a summary of

hypergraphs grammar productions driving execution of the solver in three dimensions.

Numerical experiments and efficiency comparison. Chapter 5 considers sample 2D and 3D problems that are

exercised primarily to measure performance of the GPU implementation of the hypergraph grammar driven

solver for one and many point singularities. Its execution time is compared with both MUMPS and theoretical

cost estimations.

Theoretical estimations of the computational cost and memory usage. The computational cost of the propo-

sed graph grammar based algorithms has been analysed in Section 3.3. Proof of linear complexity of the

sequential solver in two dimensions was based on exact cost estimations. Proof of logarithmic complexity

of the parallel solver was also based on exact estimations of computational cost on shared memory archi-

tectures. Theoretical estimation of the memory usage for the two dimensional sequential solver has been

performed in Section 3.3.2.

6.2. Potential for future research

There remain several interesting unanswered questions in this field. They will definitely be of interest to me in

the next stages of my research. First, it needs to be estimated what is the exact computational cost in the case of

hp adaptive FEM with one or multiple point singularities. Proof of the linear cost of h adaptive FEM can be used

to determine the upper limit of the cost of hp adaptive FEM, whereas it is far from being exact.

It is important to decide, whether problems with single or multiple edge singularities can also be solved in linear

time using a similar approach to the one described in this thesis. In other words it is an open question if the same

linear computational cost can be obtained for graph grammar based solvers dedicated to edge singularities, and if

not, what will be the computational cost of such cases. Moreover, we can investigate if the proposed approach can

be generalized for grids with mixed point and edge singularities.

The findings presented here can also be applied to three dimensional grids. This concerns the theoretical esti-

mates, the graph grammar models, as well as other types of singularities that can be identified in three dimensional

cases, like face singularities and the mixtures of various singularities.

Another area for future research is to continue my agent-based FEM research started in [53, 54, 55, 99]. This

means leveraging the graph-grammar formalism presented in this thesis to orchestrate high-level [5, 31] parallel

FEM codes with a certain level of autonomy [16, 19, 90, 104]. The role of the graph grammars is to increase

locality and robustness of the computation in a heterogeneous environment. Each host could be equipped with a

certain amount of productions that would be the only necessary context.

The last planned field of future research would be to implement hypergraph grammar formalism on different

types of traditional and emerging architectures. Comparison of their performance would help us to determine where

the benefits from using graph grammars are most substantial.

P. Gurgul Linear computational cost solvers for adaptive simulations



Appendices

96



Appendix A
Exemplary 1D problem solved with the Finite

Element Method

This Appendix presents a step-by-step solution to a rudimentary, one dimensional Finite Element Method problem.

It will be solved over the two element domain in Figure A.1 to outline all relevant phases of this method. The do-

main is defined by a segment [0, 1], which, in our case, determines also the element size (h = 0.5). The polynomial

approximation level is constant and set to 1 (p = 1).

Figure A.1: Domain of the exemplary 1D FEM problem

We begin with the initial, strong formulation of the heat transfer (Equation A.1).

We are looking for [0, 1] 3 x→ u(x) ∈ R such:

− d

dx
(k(x)

du

dx
) = 0 (A.1)

where [0, 1] 3 x→ k(x) ∈ R is a given material data function, in our case defined as

k(x) =

 k1 if x ∈ [0, 0.5)

k2 if x ∈ [0.5, 1]
(A.2)

On both ends of the domain there are certain boundary conditions (BC). There are three possible types:

– Dirichlet BC, where u(xl) = ul is given,

– Cauchy BC, where boundary conditional is determined by the following equation αdu(xl)
dx + βu(xl) = γ,

– Neumann BC, which is a special case of Cauchy BC where du(xl)
dx is given.

We assume Dirichlet BC in x = 0 to be the following:

u(0) = uw (A.3)

where uw is a given temperature value outside of the domain on the left-hand-side Cauchy Boundary in x = 1 is

expressed by Equation A.4.

k(1)
du(1)

dx
+ hu(1) = huz (A.4)
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where k(1) = k1 is the value of k material data function at point 1, h is a given constant, uz is a given temperature

value outside of the domain on the right-hand-side. To obtain variational (weak) formulation of the problem, we

multiply both sides of the strong formulation by a test function v and integrate left side by parts.

−
∫ 1

0

d

dx
(k
du

dx
)vdx = 0 (A.5)

∫ 1

0

k
du

dx

dv

dx
dx− k(1)

du(1)

dx
v(1) + k(0)

du(0)

dx
v(0) = 0 (A.6)

Finally we incorporate boundary conditions, and the fact that v(0) = 0∫ 1

0

k
du

dx

dv

dx
dx− (huz − hu(1))v(1) = 0 (A.7)

Now, the problem statement is converted to the formulation below.

Find function u satisfying the following equation:∫ 1

0

k
du

dx

dv

dx
dx+ hu(1)v(1) = huzv(1) ∀v:v(0)=0 (A.8)

To satisfy Dirichlet BC, also u(0) = uw. In order to make this equation solvable by FEM, we need to extend the

boundary condition so that u(0) = 0.

Figure A.2: Graph of ũ

We also define ũ as a function of x.

ũ(x) = uw(1− x) (A.9)

We also substitute u in Equation A.10.

u = ũ+ û (A.10)

Hence ∫ 1

0

k
d(ũ+ û)

dx

dv

dx
dx+ h(ũ+ û)(1)v(1) = huzv(1) ∀v:v(0)=0 (A.11)

∫ 1

0

k
dũ

dx

dv

dx
dx+

∫ 1

0

k
dû

dx

dv

dx
dx+ hũ(1)v(1) + hû(1)v(1) = huzv(1) ∀v:v(0)=0 (A.12)

The formula can now be rewritten in the following way:∫ 1

0

k
dû

dx

dv

dx
dx+ hû(1)v(1) = huzv(1)−

∫ 1

0

k
dũ

dx

dv

dx
dx− hũ(1)v(1) ∀v:v(0)=0 (A.13)

Now, the problem can be expressed as:

Find u such that b(u, v) = l(v), ∀v:v(0)=0 where

b(u, v) =

∫ 1

0

k
du

dx

dv

dx
dx+ hu(1)v(1) b : V × V → R (A.14)
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l(v) = huzv(1)−
∫ 1

0

k
dũ

dx

dv

dx
dx− hũ(1)v(1) l : V → R (A.15)

and u(0) = 0. We finally construct the finite element subspace Vh ⊂ V . For the sake of simplicity it was assumed

that p = 1 and hence, we construct only vertex basis function. Function e1 is defined over the first vertex (Figure

A.3), e2 over the second (Figure A.4) and e3 over the third (Figure A.5). Starting from p = 2, basis functions have

their supports over a single element only. This is one of the reasons that the FEM-assembled matrices are sparse.

Figure A.3: Basis function e1

e1(x) =

 1− 2x if x ∈ (0, 0.5)

0 if x ∈ (0.5, 1)

de1(x)

dx
=

 −2 if x ∈ (0, 0.5)

0 if x ∈ (0.5, 1)
(A.16)

Figure A.4: Basis function e2

e2(x) =

 2x if x ∈ (0, 0.5)

2− 2x if x ∈ (0.5, 1)

de2(x)

dx
=

 2 if x ∈ (0, 0.5)

−2 if x ∈ (0.5, 1)
(A.17)

Figure A.5: Basis function e3

e3(x) =

 0 if x ∈ (0, 0.5)

2x− 1 if x ∈ (0.5, 1)

de3(x)

dx
=

 0 if x ∈ (0, 0.5)

2 if x ∈ (0.5, 1)
(A.18)

The original problem can be expressed as follows:

P. Gurgul Linear computational cost solvers for adaptive simulations



100

Find such u ∈ V that

b(u, v) = l(v) ∀v ∈ V

We turn it into an approximated problem that can be solved in the Finite Element space.

It is stated as follows:

Find uh ∈ Vh such that

b(uh, vh) = l(vh) ∀vh ∈ Vh

u ≈ uh =

3∑
i=1

uiei (A.19)

b(

3∑
i=1

uiei, vj) = l(vj) (A.20)

3∑
i=1

uib(ei, ej) = l(ej) (A.21)


b(e1, e1) b(e1, e2) b(e1, e3)

b(e2, e1) b(e2, e2) b(e2, e3)

b(e3, e1) b(e3, e2) b(e3, e3)



u1

u2

u3

 =


l(e1)

l(e2)

l(e3)

 (A.22)

But, u(0) = 0 and Dirichlet BC can be enforced right in the Matrix A.23.
1 0 0

0 b(e2, e2) b(e2, e3)

0 b(e3, e2) b(e3, e3)



u1

u2

u3

 =


0

l(e2)

l(e3)

 (A.23)

As soon as we compute both u2 and u3, we obtain the approximate solution û(x), which is defined by the following

formula:

û(x) =

 u2e2(x) if x ∈ (0, 0.5)

u2e2(x) + u3e3(x) if x ∈ (0.5, 1)

And finally we receive u(x) from space Vh:

u(x) = ũ(x) + û(x) = uw(1− x) +

 u2e2(x) if x ∈ (0, 0.5)

u2e2(x) + u3e3(x) if x ∈ (0.5, 1)
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Appendix B
Exemplary 2D problem solved with the Finite

Element Method

This Appendix focuses on the L-shape domain problem, which is complicated enough to present an end-to-end

2D FEM approach. The L-shape domain problem is a model academic problem formulated by Babuška ([6], [7])

in 1986 to investigate the convergence of p and hp adaptive FEM algorithms. The problem consists in solving a

partial differential equation over the L-shaped domain presented in Figure B.1. The L-shaped domain Ω is defined

as [−1, 1] × [−1, 1] \ [−1, 0) × [−1, 0). There are two types of boundary conditions applied - Dirichlet BC ∂ΩD

marked in blue and Neumann BC ∂ΩN marked in red.

Figure B.1: L-shape domain

To illustrate the point singularity in this problem, the Euclidean norm of the gradient of the solution to the

L-shape domain problem has been shown in Figure B.2. The gradient goes to infinity at the central point which

drives mesh refinements towards this point when the error is measured in H1 norm. In this example though, the

problem will be solved only on the initial mesh, without any further mesh refinements.
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Figure B.2: Euclidean norm of the gradient of the solution to the L-shape domain problem

B.1. Strong formulation

We seek the temperature scalar field defined by Equation B.1.

R2 3 (x1, x2)→ u(x1, x2) ∈ R (B.1)

Value u(x1, x2) indicates temperature at the point (x1, x2). The strong formulation in Equation B.2 reflects the

heat transfer problem.
2∑
i=1

∂2u

∂x2
i

= 0 over Ω (B.2)

This can be rewritten as the so-called Laplace Equation B.3.

4u = 0 (B.3)

over the L-shape domain Ω.

The zero Dirichlet boundary condition:

u = 0 on ∂ΩD (B.4)

is imposed on the internal part of the boundary ∂ΩD.

The Neumann boundary condition is defined as follows:

∂u

∂n
= ∇u · n = g on ∂ΩN (B.5)

is imposed on the external part of the boundary ∂ΩN . The temperature gradient in the direction normal to the

boundary is defined in the radial system of coordinates with the origin point 0 (Equation B.6).

g(r, θ) = r
2
3 sin

2

3
(θ +

π

2
) (B.6)

The additional constraints are expressed by Equation B.7.

∂u

∂n
= ∇u · n = (

∂u

∂x1
,
∂u

∂x2
) · (n1, n2) =

∂u

∂x1
n1 +

∂u

∂x2
n2 = g (B.7)

where ∇u = ( ∂u∂x1
, ∂u∂x2

) is a gradient of u and (n1, n2) are the components of the normal vector.
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B.2. Weak formulation

Weak (variational) formulation can be obtained by computing L2 scalar product with test functions v.∫
Ω

4uvdx = 0 ∀v ∈ V (B.8)

integrating by parts ∫
Ω

∇u · ∇vdx−
∫
∂Ω

∇u · nvdS = 0 ∀v ∈ V (B.9)

and incorporating boundary conditions∫
Ω

∇u · ∇vdx−
∫
∂ΩN

gvdS = 0 ∀v ∈ V (B.10)

We end up with the following week formulation: Find u ∈ V such that

b(u, v) = l(v) ∀v ∈ V (B.11)

b(u, v) =

∫
Ω

∇u · ∇vdx (B.12)

l(v) =

∫
∂ΩN

gvdS (B.13)

The space of test function V is defined by Equation B.14.

V =
{
v ∈ H1(Ω) : trv = 0 on ∂ΩD

}
(B.14)

where trv means trace of function v.

B.3. Discretization into Finite Elements

As stated before, the problem will be solved using 2D Finite Element Method, but for simplicity, p is assumed

to be constant over the entire domain and equal to one. This means absence of edge and interior basis functions .

Finite Element Method implies partitioning Ω into the space of finite elements. In this example, we divide it into

three square elements E1, E2 and E3, as shown in Figure B.3.

Figure B.3: Division of the domain into three finite elements

For p = 1 there are eight basis functions spanning over these elements (compare Figure B.4).

Having these, it is possible to generate a system of linear equations for the new, discretized problem.

u ≈ uh =

N∑
i=1

aiei
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Figure B.4: Basis functions spanning over the domain

N∑
i=1

aib(ei, ej) = l(ej) j = 1, ..., N

b(ei, ej) =

∫
Ω

∇ei · ∇ejdx =

∫
Ω

2∑
k=1

∂ei
∂xk

∂ej
∂xk

dx

l(ej) =

∫
∂ΩN

ejgdS

The Dirichlet BC is enforced by simply setting rows and columns related to nodes 4, 5 and 7 to zero.

In Figure B.5 we introduce four vertex shape functions over each element Φ1, Φ2, Φ3 and Φ4 (p = 1).

Each basis functions is a sum of one or two shape functions Φi. As an example - basis function e2 consists of

shape functions Φ3 over the element E1 and the fourth basis function over the element E2. This is presented in

Figure B.6.

Figure B.5: Vertex basis functions span over the single element

The efficient computation of an arbitrary basis function Φi requires some additional, purely technical, impro-

vements. The first of them is to introduce the so called master element Ê = [0, 1] × [0, 1] and to define a set of

template shape functions Φ̂i over this element. The template functions are defined in Equations B.15 - B.18. Master

element is presented in Figure B.7.

Φ̂1(ξ1, ξ2) = χ̂1(ξ1)χ̂1(ξ2) = (1− ξ1)(1− ξ2) (B.15)

Φ̂2(ξ1, ξ2) = χ̂2(ξ1)χ̂1(ξ2) = ξ1(1− ξ2) (B.16)
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Figure B.6: Vertex basis functions span over two elements

Figure B.7: Image definition of a master element

Φ̂3(ξ1, ξ2) = χ̂2(ξ1)χ̂2(ξ2) = ξ1ξ2 (B.17)

Φ̂4(ξ1, ξ2) = χ̂1(ξ1)χ̂2(ξ2) = (1− ξ1)ξ2 (B.18)

Each rectangular element E can be defined based on its location (b1, b2), length and height (a1, a2). In our

case, the elements E1, E2 and E3 defining the L-shape domain are defined in the following way.

E1 : (b1, b2) = (−1, 0); (a1, a2) = (1, 1) (B.19)

E2 : (b1, b2) = (0, 0); (a1, a2) = (1, 1) (B.20)

E3 : (b1, b2) = (0,−1); (a1, a2) = (1, 1) (B.21)

We define the mapping from master element Ê into an arbitrary element E (Equation B.22).

Ê 3 (ξ1, ξ2)→ xEk
(ξ1, ξ2) = (b1 + a1ξ1, b2 + a2ξ2) = (x1, x2) ∈ Ek (B.22)

For the purposes described further we also need reverse mapping for an arbitrary elementE into master element

Ê (Equation B.23).

Ek 3 (x1, x2)→ x−1
Ek

(x1, x2) = (
x1 − b1
a1

,
x2 − b2
a2

) = (ξ1, ξ2) ∈ Ê (B.23)

In other words

x1 = b1 + a1ξ1 x2 = b2 + a2ξ2 (B.24)

and

ξ1 =
x1 − b1
a1

ξ2 =
x2 − b2
a2

(B.25)
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Now, we can prescribe formulas for arbitrary shape functions Φki , i = 1, 2, 3, 4 defined over element Ek by

using the map x−1
E .

Φk1(x1, x2) = Φ̂1(x−1
Ek

(x1, x2)) (B.26)

= Φ̂1(
x1 − b1
a1

,
x2 − b2
a2

)

= χ̂1(
x1 − b1
a1

)χ̂1(
x2 − b2
a2

)

= (1− x1 − b1
a1

)(1− x2 − b2
a2

)

Φk2(x1, x2) = Φ̂2(x−1
Ek

(x1, x2)) (B.27)

= Φ̂2(
x1 − b1
a1

,
x2 − b2
a2

)

= χ̂2(
x1 − b1
a1

)χ̂1(
x2 − b2
a2

)

=
x1 − b1
a1

(1− x2 − b2
a2

)

Φk3(x1, x2) = Φ̂3(x−1
Ek

(x1, x2)) (B.28)

= Φ̂3(
x1 − b1
a1

,
x2 − b2
a2

)

= χ̂2(
x1 − b1
a1

)χ̂2(
x2 − b2
a2

)

=
x1 − b1
a1

x2 − b2
a2

Φk4(x1, x2) = Φ̂4(x−1
Ek

(x1, x2)) (B.29)

= Φ̂4(
x1 − b1
a1

,
x2 − b2
a2

)

= χ̂1(
x1 − b1
a1

)χ̂2(
x2 − b2
a2

)

= (1− x1 − b1
a1

)
x2 − b2
a2

We can compute integrals of the functions above element-wise, since integral of the sum is the sum of integrals.

b(Φki ,Φ
k
j ) =

∫
Ek

∂Φki
∂x1

(x1, x2)
∂Φkj
∂x1

(x1, x2)dx1dx2 (B.30)

+

∫
Ek

∂Φki
∂x2

(x1, x2)
∂Φkj
∂x2

(x1, x2)dx1dx2

For p = 1 computing the integrals is an easy task as it is sufficient to take the value in the center of the element

and the area of the element (a1a2). This transformation is presented in Equation B.31.

b(Φki ,Φ
k
j ) ≈ [

∂Φki
∂x1

(b1 +
a1

2
, b2 +

a2

2
)
∂Φkj
∂x1

(b1 +
a1

2
, b2 +

a2

2
)a1a2 (B.31)

+ [
∂Φki
∂x2

(b1 +
a1

2
, b2 +

a2

2
)
∂Φkj
∂x2

(b1 +
a1

2
, b2 +

a2

2
)a1a2
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B.3.1. Finite Element Method Algorithm

At this point we can formulate a Finite Element Method algorithm. The algorithm constructs a global system

of linear equations to be send to some solver algorithm. The system is build by summing up the integrals of basis

functions from particular finite elements.

1 B(1:8,1:8)=0 (creation of the global matrix)

2 L(1:8) (creation of the right hand side)

3 Loop with respect to elements Ek, k=1,2,3

4 Loop with respect to functions Φki , i=1,2,3,4

5 i1 = row of the matrix related to Φki

6 L(i1) + = l(Φki )

7 Loop with respect to functions Φkj, j=1,2,3,4

8 j1 = row of the matrix related to Φkj

9 B(i1,j1) + = b(Φki ,Φ
k
j )

10 end loop
11 end loop
12 end loop
13 B(4,1:8)=0 (enforcing Dirichlet b.c. at node 4)

14 B(5,1:8)=0 (enforcing Dirichlet b.c. at node 5)

15 B(7,1:8)=0 (enforcing Dirichlet b.c. at node 7)

16 L(4)=0 (enforcing Dirichlet b.c. at node 4)

17 L(5)=0 (enforcing Dirichlet b.c. at node 5)

18 L(7)=0 (enforcing Dirichlet b.c. at node 7)

19 B(4,4)=1 (1 on diagonal at row 4)

20 B(5,5)=1 (1 on diagonal at row 5)

21 B(7,7)=1 (1 on diagonal at row 7)

The sum of integrals from line 9 is assembled into a proper row and column of the global matrix B(i1, j1). This

scheme is presented in Equation B.32.

B(i1, j1)+ =

∫
Ek

∂Φki
∂x1

(x1, x2)
∂Φkj
∂x1

(x1, x2)dx1dx2 (B.32)

+

∫
Ek

∂Φki
∂x2

(x1, x2)
∂Φkj
∂x2

(x1, x2)dx1dx2

The open problem that remains, is how we can translate i and j into the global row i1 and i2. To answer this

question we observe that each row and column of the global matrix B is related to one coefficient ai of one basis

function ei. See Figure B.8 where the shape functions Φki over elements k = 1, 2, 3, are marked in red and the

corresponding basis functions ei are marked in black as row/column numbers in the matrix.

The sum of integrals from line 6 is related to the integration over the boundary (Equation B.33).

l(Φki ) =

∫
Ek∩∂ΩN

g(x1, x2)Φki (x1, x2)dx1dx2 (B.33)

We need to determine whether the edges of a given element Ek are located on the Neumann boundary ∂ΩN . If the

answer is positive, then we need to add the additional integral over the edge to the right hand side of the equation.∫
edge

g(x1, x2)Φki (x1, x2)dx1dx2 = g(x∗1, x
∗
2)Φki (x∗1, x

∗
2)|edge| (B.34)
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Figure B.8: Order of the integrals

where

(x∗1, x
∗
2) is the central point of the edge,

g(x∗1, x
∗
2) is the g function value in this point,

Φki (x∗1, x
∗
2) is the shape function value in this point,

|edge| is the length of the edge.

At this point, we invoke the procedure solving the equation Ba = L, and we get the solution defined

as the linear combination of the basis functions:

u ≈ uh =

8∑
i=1

aiei (B.35)

The solution to the L-shape domain model problem has been presented in Figure B.9.

Figure B.9: Solution to the L-shape domain model problem
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Some solver algorithms, like the frontal or multi-frontal solvers considered in this work do not construct the

global system of linear equations. They rather collect all the element frontal matrices and elements’ load vectors.

In such the case, lines 3 - 11 from the FEM algorithm are replaced by the following algorithm:

3 Loop with respect to elements Ek, k=1,2,3

4 Loop with respect to functions Φki , i=1,2,3,4

5 Lk(i) + = l(Φki )

6 Loop with respect to functions Φkj, j=1,2,3,4

7 Bk(i,j) + = b(Φki ,Φ
k
j )

8 end loop
9 end loop
10 end loop

Such an algorithm submits to the solver a sequence of element frontal matrices Bk and right-hand sides Lk.

Nevertheless, it is also necessary to enforce the Dirichlet boundary conditions, which is performed on the element

matrices level.

In order to increase the accuracy of the numerical solution, it is also possible to add additional basis func-

tions located at element edges and interiors. In the general case considered in this work, we introduce four shape

functions over the four vertices of the two dimensional rectangular element {(ξ1, ξ2) : ξi ∈ [0, 1], i = 1, 2}:

Φ̂1(ξ1, ξ2) = χ̂1(ξ1)χ̂1(ξ2) (B.36)

Φ̂2(ξ1, ξ2) = χ̂2(ξ1)χ̂1(ξ2)

Φ̂3(ξ1, ξ2) = χ̂2(ξ1)χ̂2(ξ2)

Φ̂4(ξ1, ξ2) = χ̂1(ξ1)χ̂2(ξ2)

pi − 1 shape functions over each of the four edges of the element

Φ̂5,j(ξ1, ξ2) = χ̂2+j(ξ1)χ̂1(ξ2) j = 1, ..., p1 − 1 (B.37)

Φ̂6,j(ξ1, ξ2) = χ̂2(ξ1)χ̂2+j(ξ2) j = 1, ..., p2 − 1

Φ̂7,j(ξ1, ξ2) = χ̂2+j(ξ1)χ̂2(ξ2) j = 1, ..., p3 − 1

Φ̂8,j(ξ1, ξ2) = χ̂1(ξ1)χ̂2+j(ξ2) j = 1, ..., p4 − 1

where pi is the polynomial order of approximation utilized over the i-th edge, and (ph − 1) × (pv − 1) shape

functions over an element interior

Φ̂9,ij(ξ1, ξ2) = χ̂2+i(ξ1)χ̂2+j(ξ2) i = 1, ..., ph − 1, j = 1, ..., pv − 1 (B.38)

where (ph, pv) are the horizontal and vertical polynomial orders of approximation utilized over an element interior,

and

χ̂1(ξ) = 1− ξ (B.39)

χ̂2(ξ) = ξ

χ̂3(ξ) = ξ(1− ξ)

χ̂l(ξ) = (1− ξ)ξ(2ξ − 1)l−3, l = 4, ..., p+ 1

where p is the polynomial order of approximation over an edge.

In particular, in the case of higher order shape functions, the elimination of an edge ei implies elimination

of all pi − 1 shape functions related to the edge. Also, the elimination of an interior implies elimination of all

(ph − 1)(pv − 1) shape functions related to the edge.
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Appendix C
Schur complements and partial Gaussian

eliminations

This Appendix outlines the theoretical foundations of the hypergraph solvers presented in my thesis, which are

based on the Schur complement method [41]. Schur complements were named after Issai Schur who used them to

prove Schur’s Lemma [36]. For more information on the theory of Schur complements, please refer to [30, 61, 102].

C.1. Schur complement

Let M be an n× n matrix written as a 2× 2 block matrix, and b the right hand side vector.

M =

A B

C D

 b =

c
d

 (C.1)

where A is a p×p matrix and D is a q× q matrix, with n = p+ q (so, B is a p× q matrix and C is a q×p matrix).

We can try to solve the following linear system:A B

C D


x
y

 =

c
d

 (C.2)

hence

Ax+By = c (C.3)

Cx+Dy = d

If we assume that D is invertible, we can solve for y by doing the following:

y = D−1(d− Cx) (C.4)

By substituting this result for y in Equation C.3 we receive:

Ax+B(D−1(d− Cx)) = c (C.5)

and we transform it into

(A−BD−1C)x = c−BD−1d (C.6)
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Provided that the matrix (A−BD−1C) is invertible, we are able to obtain the solution to our linear system:

x = (A−BD−1C)−1(c−BD−1d)

y = D−1(d− C(A−BD−1C)−1(c−BD−1d))

Definition C.1.1. Schur complement. The matrix A−BD−1C is called the Schur complement of D in M .

If A is invertible, we can use the Schur complement of A, which is D − CA−1B to obtain the following

factorization of M :

M =

A B

C D

 =

 I 0

CA−1 I


A 0

0 D − CA−1B


I A−1B

0 I

 (C.7)

Lemma C.1.1. Schur complement lemma. Let S be symmetrical matrix partitioned into blocks.

S =

 A B

BT C

 (C.8)

where both A and C are symmetric and square. Assume that C is positive definite. Then the following properties

are equivalent:

– S is positive semi-definite.

– The Schur complement of C in S, defined as the matrix A−BC−1BT , is positive semi-definite.

C.2. LU factorization scheme

The idea behind the LU factorization scheme is to find matrices L and U such that:

A = LU (C.9)

where

A is a matrix to solve

L is a lower triangular matrix

U is an upper triangular matrix

The LU factorization can be implemented by the Gaussian elimination algorithm. Namely, to compute the

upper triangular part of the matrix A we need to execute the Gaussian elimination algorithm:

for irow = 1 ... sizeof(M)

for jrow =irow+1 ... sizeof(M)

b(jrow) = b(jrow) - b(irow)/M(jrow,jrow)

for col = irow ... sizeof(M)

M(jrow,col) = M(jrow,col) - M(irow,col)/M(jrow,jrow)

We do not consider the pivoting, since all the problems considered in this work are positive definite, and thus

the pivoting is unnecessary.
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C.3. Relation of Schur complement to partial forward elimination

The Schur complement operation presented in Section C.1 can, in fact, be computed by performing a partial

Gaussian elimination. Namely, we only need to trick the Gaussian elimination algorithm so it stops after elimina-

ting all the rows of block A. This results in a much simpler and efficient algorithm, since we do not compute the

expensive inverse A−1 at any stage of the algorithm.

for irow = 1 ... sizeof(A)

for jrow =irow+1 ... sizeof(M)

b(jrow) = b(jrow) - b(irow)/M(jrow,jrow)

for col = irow ... sizeof(M)

M(jrow,col) = M(jrow,col) - M(irow,col)/M(jrow,jrow)

The Schur complement computed by executing the above algorithm is equivalent to the one introduced in

Section C.1.
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