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Software
Program Title: IGA-ADS
(Isogeometric Analysis Alternating Directions Solver)
Code: git clone https://github.com/marcinlos/iga-ads

License: MIT license (MIT) Programming language: C++
Nature of problem: Solving non-stationary problems in 1D, 2D and
3D with alternating direction solver and isogeometric analysis
Open source, parallel, flexible (2D/3D, multi-physics, stabilization:
residual minimization, SUPG, DG, different time schemes)
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Motivation
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isogeometric Residual Minimization Method
for time-dependent problems

isoGeometric Residual Minimization Method (iGRM)
Second order time integration scheme
(unconditional stability in time)
Residual minimization for each time step
(stability in space)
Discretization with B-spline basis functions
(higher continuity smooth solutions)
Kronecker product structure of the matrix
(linear cost O(N) of direct solver)
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isogeometric Residual Minimization Method
for stationary problems

isoGeometric Residual Minimization Method (iGRM)
Residual minimization
(stability in space)
Discretization with B-spline basis functions
(higher continuity smooth solutions)
Kronecker product structure of the inner product matrix
(linear cost O(N) preconditioner for iterative solver)
Symmetric positive definite system
(convergence of the conjugated gradient method )
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Mass and stiffness matrices over 2D domain Ω = Ωx × Ωy

M = (Bij ,Bkl )L2 =
∫

Ω
BijBkl dΩ =∫

Ω
Bx

i (x)By
j (y)Bx

k (x)By
l (y) dΩ =

∫
Ω

(BiBk)(x) (BjBl )(y) dΩ

=
(∫

Ωx

BiBk dx
)(∫

Ωy

BjBl dy
)

=Mx ⊗My

S = (∇Bij ,∇Bkl )L2 =
∫

Ω
∇Bij · ∇Bkl dΩ =∫

Ω

∂(Bx
i (x)By

j (y))
∂x

∂(Bx
k (x)By

l (y))
∂x +

∂(Bx
i (x)By

j (y))
∂y

∂(Bx
k (x)By

l (y))
∂y dΩ

=
∫

Ω

∂Bx
i (x)
∂x By

j (y)∂B
x
k (x)
∂x By

l (y) + Bx
i (x)

∂By
j (y)
∂y Bx

k (x)∂B
y
l (y))
∂y dΩ

=
∫

Ωx

∂Bi
∂x

∂Bk
∂x dx

∫
Ωy

BjBl dy +
∫

Ωx

BiBk dx
∫

Ωy

∂Bj
∂y

∂Bl
∂y dy

= Sx ⊗My +Mx ⊗ Sy
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Non-stationary advection-diffusion model
Let Ω = Ωx × Ωy ⊂ R2 a bounded domain and I = (0,T ] ⊂ R,

∂u/∂t −∇ · (α∇u) + β · ∇u = f in Ω× I,
u = 0 on Γ× I,

u(0) = u0 in Ω,
where Ωx and Ωy are intervals in R. Here, Γ = ∂Ω, f : Ω× I −→ R
is a given source and u0 : Ω −→ R is a given initial condition.
We consider constant diffusivity α and a velocity field β = [βx βy ].

We split the advection-diffusion operator
Lu = −∇ · (α∇u) + β · ∇u as Lu = L1u + L2u where

L1u := −α ∂u
∂x2 + βx

∂u
∂x , L2u := −α ∂u

∂y2 + βy
∂u
∂y .

We perform an uniform partition of the time interval Ī = [0,T ] as
0 = t0 < t1 < . . . < tN−1 < tN = T ,

and denote τ := tn+1 − tn, ∀n = 0, . . . ,N − 1. 10 / 50



Peaceman-Reachford scheme


un+1/2 − un

τ/2 + L1un+1/2 = f n+1/2 − L2un,

un+1 − un+1/2

τ/2 + L2un+1 = f n+1/2 − L1un+1/2.

(un+1/2, v) + τ

2

(
α
∂un+1/2

∂x ,
∂v
∂x

)
+ τ

2

(
βx
∂un+1/2

∂x , v
)

=

(un, v)− τ

2

(
α
∂un

∂y ,
∂v
∂y

)
− τ

2

(
βy
∂un

∂y , v
)

+ τ

2 (f n+1/2, v),

(un+1, v) + τ

2

(
α
∂un+1

∂y ,
∂v
∂y

)
+ τ

2

(
βy
∂un+1

∂y , v
)

=

(un+1/2, v)− τ

2

(
α
∂un+1/2

∂x ,
∂v
∂x

)
− τ

2

(
βx
∂un+1/2

∂x , v
)

+ τ

2 (f n+1/2, v),

where (·, ·) denotes the inner product of L2(Ω).
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Peaceman-Reachford scheme (matrix form)

Finally, expressing problem in the Kronecker product matrix form we
have 

[
Mx + τ

2 (K x + Gx )
]
⊗Myun+1/2 =

Mx ⊗
[
My − τ

2 (K y + Gy )
]
un + τ

2F
n+1/2,

Mx ⊗
[
My + τ

2 (K y + Gy )
]
un+1 =[

Mx − τ

2 (K x + Gx )
]
⊗Myun+1/2 + τ

2F
n+1/2,

where Mx ,y , K x ,y and Gx ,y are the 1D mass, stiffness and advection
matrices, respectively.
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Strang splitting scheme
In the Strang splitting scheme we divide problem ut + Lu = f into{

P1 : ut + L1u = f ,
P2 : ut + L2u = 0,

the scheme integrates the solution from tn to tn+1 into substeps:


Solve P1 : ut + L1u = f , in (tn, tn+1/2),
Solve P2 : ut + L2u = 0, in (tn, tn+1),
Solve P1 : ut + L1u = f , in (tn+1/2, tn+1),

and we can employ different methods in each substep
13 / 50



Strang splitting scheme with Backward Euler method



un+1/2 − un

τ/2 + L1un+1/2 = f n+1/2,

un+1 − un

τ
+ L2un+1 = 0,

un+1 − un+1/2

τ/2 + L1un+1 = f n+1.

(un+1/2, v) + τ

2

(
α
∂un+1/2

∂x ,
∂v
∂x

)
+ τ

2

(
βx
∂un+1/2

∂x , v
)

= (un, v) + τ

2 (f n+1/2, v),

(un+1, v) + τ

(
α
∂un+1

∂y ,
∂v
∂y

)
+ τ

(
βy
∂un+1

∂y , v
)

= (un, v),

(un+1, v) + τ

2

(
α
∂un+1

∂x ,
∂v
∂x

)
+ τ

2

(
βx
∂un+1

∂x , v
)

= (un+1/2, v) + τ

2 (f n+1, v),
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Strang splitting scheme with Backward Euler method

Expressing problem in the Kronecker product matrix form we have



[
Mx + τ

2 (K x + Gx )
]
⊗Myu∗ = Mx ⊗Myun + τ

2F
n+1/2,

Mx ⊗ [My + τ(K y + Gy )] u∗∗ = Mx ⊗Myu∗,[
Mx + τ

2 (K x + Gx )
]
⊗Myun+1 = Mx ⊗Myu∗∗ + τ

2F
n+1.
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Strang splitting scheme with Crank-Nicolson method

If we select the Crank-Nicolson method for Strang scheme we obtain

un+1/2 − un

τ/2 + 1
2(L1un+1/2 + L1un) = 1

2(f n+1/2 + f n),

un+1 − un

τ
+ 1

2(L2un+1 + L2un) = 0,

un+1 − un+1/2

τ/2 + 1
2(L1un+1 + L1un+1/2) = 1

2(f n+1 + f n+1/2).
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Strang splitting scheme with Crank-Nicolson method



(un+1/2, v) + τ

4

(
α
∂un+1/2

∂x ,
∂v
∂x

)
+ τ

4

(
βx
∂un+1/2

∂x , v
)

=

= (un, v)− τ

4

(
α
∂un

∂x ,
∂v
∂x

)
− τ

4

(
βx
∂un

∂x , v
)

+ τ

4 (f n+1/2 + f n, v),

(un+1, v) + τ

2

(
α
∂un+1

∂y ,
∂v
∂y

)
+ τ

2

(
βy
∂un+1

∂y , v
)

=

= (un, v)− τ

2

(
α
∂un

∂y ,
∂v
∂y

)
− τ

2

(
βy
∂un

∂y , v
)
,

(un+1, v) + τ

4

(
α
∂un+1

∂x ,
∂v
∂x

)
+ τ

4

(
βx
∂un+1

∂x , v
)

=

= (un+1/2, v)− τ

4

(
α
∂un+1/2

∂x ,
∂v
∂x

)
− τ

4

(
βx
∂un+1/2

∂x , v
)

+ τ

4 (f n+1 + f n+1/2, v).
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Strang splitting scheme with Crank-Nicolson method
(matrix form)



[
Mx + τ

4 (K x + Gx )
]
⊗Myu∗ =[

Mx − τ

4 (K x + Gx )
]
⊗Myun + τ

4 (F n+1/2 + F n),

Mx ⊗
[
My + τ

2 (K y + Gy )
]
u∗∗ = Mx ⊗

[
My − τ

2 (K y + Gy )
]
u∗,[

Mx + τ

4 (K x + Gx )
]
⊗Myun+1 =[

Mx − τ

4 (K x + Gx )
]
⊗Myu∗∗ + τ

4 (F n+1 + F n+1/2).
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Douglas-Gunn scheme for 3D problems


(1 + τ

2L1)un+1/3 = τ f n+1/2 + (1− τ

2L1 − τL2 − τL3)un,

(1 + τ

2L2)un+2/3 = un+1/3 + τ

2L2un,

(1 + τ

2L3)un+1 = un+2/3 + τ

2L3un.
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Douglas-Gunn scheme for 3D problems



(un+1/3, v) + τ

2

(
α
∂un+1/3

∂x ,
∂v
∂x

)
+ τ

2

(
βx
∂un+1/3

∂x , v
)

=

= (un, v)− τ

2

(
α
∂un

∂x ,
∂v
∂x

)
− τ

2

(
βx
∂un

∂x , v
)

− τ
(
α
∂un

∂y ,
∂v
∂y

)
− τ

(
βy
∂un

∂y , v
)

− τ
(
α
∂un

∂z ,
∂v
∂z

)
− τ

(
βz
∂un

∂z , v
)

+ τ(f n+1/2, v),

(un+2/3, v) + τ

2

(
α
∂un+2/3

∂y ,
∂v
∂y

)
+ τ

2

(
βy
∂un+2/3

∂y , v
)

=

= (un+1/3, v) + τ

2

(
α
∂un

∂y ,
∂v
∂y

)
+ τ

2

(
βy
∂un

∂y , v
)
,

(un+1, v) + τ

2

(
α
∂un+1

∂z ,
∂v
∂z

)
+ τ

2

(
βz
∂un+1

∂z , v
)

=

= (un+2/3, v) + τ

2

(
α
∂un

∂z ,
∂v
∂z

)
+ τ

2

(
βz
∂un

∂z , v
)
,
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Douglas-Gunn scheme for 3D problems



[
Mx + τ

2 (K x + Gx )
]
⊗My ⊗Mzun+1/3

=
[
Mx − τ

2 (K x + Gx )
]
⊗My ⊗Mzun

− τMx ⊗ (K y + Gy )⊗Mzun − τMx ⊗My ⊗ (K z + Gz)un + τF n+1/2

Mx ⊗
[
My + τ

2 (K y + Gy )
]
⊗Mzun+2/3

= Mx ⊗My ⊗Mzun+1/3 + Mx ⊗ τ

2 (K y + Gy )⊗Mzun,

Mx ⊗My ⊗
[
Mz + τ

2 (K z + Gz)
]
un+1

= Mx ⊗My ⊗Mzun+2/3 + Mx ⊗My ⊗ τ

2 (K z + Gz)un,

where Mx ,y ,z , K x ,y ,z and Gx ,y ,z are the 1D mass, stiffness and
advection matrices, respectively.

21 / 50



Residual minimization method
In all the above methods, in every time step we solve:

Find u ∈ U such as b (u, v) = l (v) ∀v ∈ V , (1)

b (u, v) = (u, v) + dt
((

βi
∂u
∂xi

, v
)

+ αi

(
∂u
∂xi

,
∂v
∂xi

))
. (2)

where dt = τ/2 for the Peaceman-Reachford, dt = τ/2 for the
Strang method with backward Euler, and dt = τ/4 for the Strang
method with Crank-Nicolson scheme. The right-hand-side l (w , v)
depends on the selected time-integration scheme, e.g. for the
Strang method with backward Euler it is

l (w , v) = (w + dtf , v) ∀v ∈ V . (3)
In our advection-diffusion problem we seek the solution in space

U = V = {v :
∫

Ω

(
v2 + ∂v

∂xi

2)
<∞}. (4)

The inner product in V is defined as
(u, v)V = (u, v)L2

+
(
∂u
∂xi
, ∂v
∂xi

)
L2 22 / 50



Residual minimization method

b(u, v) = l(v) ∀v ∈ V (5)

For our weak problem (5) we define the operator B : U → V ′ such
as < Bu, v >V ′×V = b (u, v).

B : U → V ′ (6)

such that
〈Bu, v〉V ′×V = b(u, v) (7)

so we can reformulate the problem as

Bu − l = 0 (8)

We wish to minimize the residual

uh = argminwh∈Uh

1
2‖Bwh − l‖2V ′ (9)
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Residual minimization method
We introduce the Riesz operator being the isometric isomorphism

RV : V 3 v → (v , .) ∈ V ′ (10)
We can project the problem back to V

uh = argminwh∈Uh

1
2‖R

−1
V (Bwh − l)‖2V (11)

The minimum is attained at uh when the Gâteaux derivative is equal
to 0 in all directions:

〈R−1
V (Buh − l),R−1

V (B wh)〉V = 0 ∀wh ∈ Uh (12)
We define the residual r = R−1

V (Buh − l) and we get
〈r ,R−1

V (B wh)〉 = 0 ∀wh ∈ Uh (13)
which is equivalent to

〈Bwh, r〉 = 0 ∀wh ∈ Uh. (14)
From the definition of the residual we have

(r , v)V = 〈Buh − l , v〉 ∀v ∈ V . (15)
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Residual minimization method with semi-infinite problem
Find (r , uh)V×Uh such as

(r , v)V − 〈Buh − l , v〉 = 0 ∀v ∈ V
〈Bwh, r〉 = 0 ∀wh ∈ Uh

(16)

We discretize the test space Vm ∈ V to get the discrete problem:
Find (rm, uh)Vm×Uh such as

(rm, vm)Vm − 〈Buh − l , vm〉 = 0 ∀vm ∈ Vm

〈Bwh, rm〉 = 0 ∀wh ∈ Uh
(17)

where (∗, ∗)Vm is an inner product in Vm, 〈Buh, vm〉 = b (uh, vm),
〈Bwh, rm〉 = b (wh, rm).

Remark
We define the discrete test space Vm in such a way that it is as
close as possible to the abstract V space, to ensure stability, in a
sense that the discrete inf-sup condition is satisfied. In our method
it is possible to gain stability enriching the test space Vm without
changing the trial space Uh.
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Discretization of the residual minimization method
We approximate the solution with tensor product of one dimensional
B-splines basis functions of order p

uh =
∑
i ,j

ui ,jBx
i ;p(x)By

j;p(y). (18)

We test with tensor product of one dimensional B-splines basis
functions, where we enrich the order in the direction of the x axis
from p to r (r ≥ p, and we enrich the space only in the direction of
the alternating splitting)

vm ← Bx
i ;r (x)By

j;p(y). (19)
We approximate the residual with tensor product of one dimensional
B-splines basis functions of order p

rm =
∑
s,t

rs,tBx
s;r (x)By

t;p(y), (20)

and we test again with tensor product of 1D B-spline basis functions
of order r and p, in the corresponding directions

wh ← Bx
k;p(x)By

l ;p(y). (21)

Remark
We perform the enrichment of the test space also in the alternating
directions manner. In this way, when we solve the problem with
derivatives along the x direction, we enrich the test space by
increasing the B-splines order in the x direction, but we keep the
B-splines order along y constant (same as in the trial space). By
doing that, we preserve the Kronecker product structure of the
matrix, to ensure that we can apply the alternating direction solver.
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Decomposition into Kronecker product structure

A = Ay ⊗ Ax ;B = Bx ⊗ By ;BT = BT
y ⊗ BT

x ;Ay = By(
A B
BT 0

)
=
(

Ax Bx
BT

x 0

)(
Ay 0
0 AT

y

)
=
(

AxAy BxAy
BT

x AT
y 0

)
.

Both matrices
(

Ax Bx
BT

x 0

)
and

(
Ay 0
0 AT

y

)
can be factorized

in a linear O(N) computational cost.

Figure: Factorization of the first sub-matrix.
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Numerical results: manufactured solution

Two-dimensional advection-diffusion problem

du
dt −∇ · (K∇u) + β · ∇u = f ,

with ε = 10−2, β = (1, 0), with zero Dirichlet boundary conditions
solved on a square [0, 1]2 domain.
We setup the forcing function f (x , y , t) in such a way that it
delivers the manufactured solution of the form
u(x , y , t) = sin(Πx) sin(Πy) sin(Πt) on a time interval [0, 2].
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Numerical results: manufactured solution
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Figure: Convergence in L2 and H1 norms for different time integration
schemes on 8× 8 mesh.
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Numerical results: manufactured solution
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Figure: Convergence in L2 and H1 norms for different time integration
schemes on 16× 16 mesh.
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Numerical results: manufactured solution

10-6

10-5

10-4

10-3

10-2

10-1

0.0010.01

e
rr

o
r

dt

Backward Euler
Crank-Nicolson

Peaceman-Rachford
Strang + BE
Strang + CN

10-3

10-2

10-1

100

0.0010.01

e
rr

o
r

dt

Backward Euler
Crank-Nicolson

Peaceman-Rachford
Strang + BE
Strang + CN

Figure: Convergence in L2 and H1 norms for different time integration
schemes on 32× 32 mesh.
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Two-dimensional numerical results

Propagation of the pollutant from a chimney modeled by the f
function, distributed by the wind blowing with changing directions,
modeled by β function, and the diffusion phenomena modeled by
the coefficients K , over Ω = 5000× 5000 meters.

du
dt −∇ · (K∇u) + β · ∇u = f

K = (50, 0.5)

β = (βx (t), βy (t)) = (cos a(t), sin a(t))

a(t) = π

3 (sin(s) + 1
2 sin(2.3s)) + 3

8π

f (p) = (r − 1)2(r + 1)2

where r = min(1, (|p − p0|/25)2), and p represents the distance
from the source, and p0 is the location of the source p0 = (3, 2).
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Numerical results

Trial space: quadratic B-splines
Rows: Mesh size N = 50, 100, 150
Columns: Test-space B-splines of order 2 + k for k = 0, 1, 2, 3, 4
(quadratic C1, cubics C2, quartics C3)
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Stationary problems
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Towards iterative solver

[
A B
BT 0

] [
r
u

]
=
[
F
0

]

A = M + ηK

M = Mx ⊗My ,

K = Kx ⊗My + Mx ⊗ Ky .

A = M + ηK
= (Mx + ηKx )⊗ (My + ηKy )− η2Kx ⊗ Ky

= Ã− η2K̃
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Towards iterative solver

We start from initial guess
[
rk

uk

]
, and we compute the update

necessary to perform to get the exact solution[
d
c

]
=
[
r − rk

u − uk

]
The update can be obtained by solving[

A B
BT 0

] [
r
u

]
−
[
A B
BT 0

] [
rk

uk

]
=
[
F
0

]
[
A B
BT 0

] [
d
c

]
=
[
F − Ark − Brk

−BT rk

]
This is expensive to factorize, so we replace A by approximation Ã[

Ã B
BT 0

] [
d
c

]
=
[
F − Ark − Brk

−BT rk

]
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Towards iterative solver

Initialize {u0 = 0; r0 = 0} for k = 1, ...,N until convergence

Compute Schur complement with linear O(N) cost[
Ã B
BT 0

] [
dk

ck

]
=
[
F − Ark − Brk

−BT rk

]
Solve

BT ÃBuk = BT rk − BT ÃF + BT ÃArk + BT ÃBrk

using either MUMPS or PCG
rk+1 = dk + rk

uk+1 = ck + uk

k = k + 1;

Algorithm 1: Iterative algorithm

37 / 50



A manufactured solution problem: strong form

We focus on a model problem with a manufactured solution. For a
unitary square domain Ω = (0, 1)2, the advection vector
β = (1, 1)T , and Pe = 100, ε = 1/Pe we seek the solution of the
advection-diffusion equation

∂u
∂x + ∂u

∂y − ε
(
∂2u
∂x2 + ∂2u

∂y2

)
= f

with Dirichlet boundary conditions u = g on the whole of Γ = ∂Ω.
We utilize a manufactured solution

u(x , y) = (x + ePe∗x − 1
1− ePe )(y + ePe∗y − 1

1− ePe )

enforced by the right-hand side, and we use homogeneous Dirichlet
boundary conditions on ∂Ω.
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A manufactured solution problem: weak form

b(u, v) = l(v) ∀v ∈ V

b(u, v) =
(
∂u
∂x , v

)
Ω

+
(
∂u
∂y , v

)
Ω

+ ε

(
∂u
∂x ,

∂v
∂x

)
Ω

+ ε

(
∂u
∂y ,

∂v
∂y

)
Ω

−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

n = (nx , ny ) is versor normal to Γ, and h is element diameter,

l(v) = (f , v)Ω− (g , ε∇v · n)Γ − (g , β · nv)Γ−
(
g , 3p2ε/hv

)
Γ

red terms correspond to weak imposition of the Dirichlet b.c. on Γ
with g = 0, f is the manufactured solution, blue terms are the
integration by parts, gray terms the penalty terms. We seek the
solution in space U = V = H1 (Ω). The inner product in V is

(u, v)V = (u, v)L2
+
(
∂u
∂x ,

∂v
∂x

)
L2

+
(
∂u
∂y ,

∂v
∂y

)
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A manufactured solution results
n trial(2,1) trial(3,2) trial(4,3) trial(5,4)

test(2,0) test(2,0) test(2,0) test(2,0)
#DOF 389 410 433 458
L2 192 151 78 28
H1 101 74 44 32

8× 8
#DOF 1413 1450 1489 1530
L2 80 16 3.29 1.48
H1 59 29 18 10

16× 16
#DOF 5381 5450 5521 5594
L2 32 1.33 0.27 0.056
H1 31 9.77 3.16 0.82

32× 32
#DOF 20997 21130 21265 21402
L2 7.66 0.07 0.01 0.003
H1 9.86 1.67 0.26 0.068
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Eriksson-Johnson problem strong form
Given Ω = (0, 1)2, β = (1, 0)T , we seek the solution of the
advection-diffusion problem

∂u
∂x − ε

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0

with Dirichlet boundary conditions

u = 0 for x ∈ (0, 1), y ∈ {0, 1} u = sin(Πy) for x = 0

The problem is driven by the inflow Dirichlet boundary condition.
It develops a boundary layer of width ε at the outflow x = 1.
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Eriksson-Johnson problem weak form
We introduce first the weak formulation for the Eriksson-Johnson
problem

b(u, v) = l(v) ∀v ∈ V

b(u, v) =
(
∂u
∂x , v

)
+ ε

(
∂u
∂x ,

∂v
∂x

)
+ ε

(
∂u
∂y ,

∂v
∂y

)
−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

where the blue, red, and gray terms correspond to the weak
imposition of the Dirichlet b.c. on the boundary Γ, and n = (nx , ny )
is the versor normal to the boundary,

l(v) = − (g , ε∇v · n)Γ− − (g , β · nv)Γ−−
(
g , 3p2ε/hv

)
Γ−

(22)

where the red and gray terms correspond to the weak introduction
of the Dirichlet b.c. on the boundary Γ.
We plug the weak form and the inner product into the iGRM setup
and we use the preconditioned CG solver. 42 / 50



Residual minimization method for Eriksson-Johnson
problem

Find (rm, uh)Vm×Uh such as

(rm, vm)Vm −
(
∂uh
∂x , vm

)
− ε

(
∂uh
∂x ,

∂vm
∂x + ∂uh

∂y ,
∂vm
∂y

)
= (f , vm)

∀vm ∈ Vm(
∂wh
∂x , rm

)
+ ε

(
∂wh
∂x ,

∂rm
∂x + ∂wh

∂y ,
∂rm
∂y

)
= 0

∀wh ∈ Uh

where (rm, vm)Vm = (rm, vm) + (∂rm
∂x ,

∂vm
∂x ) + (∂rm

∂y ,
∂vm
∂y )

is the H1 norm induced inner product.

Remark
We will use trial space Uh as quadratic B-splines with C1 continuity
and test space Vh as cubic B-splines with C2 continuity
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Eriksson-Johnson problem weak form, SUPG method

b(u, v) + (R(u), τβ · ∇v) = l(v) ∀v ∈ V (23)
where R(u) = ∂u

∂x + ε∆u, and τ1/2 =
(
βx
hx

+ βy
hy

)
+ 3ε 1

h2
x +h2

y
,

and in our case diffusion term ε = 10−6, and convection term
β = (1, 0), and hx and hy are dimensions of an element.

bSUPG(u, v) = l(v) ∀v ∈ V (24)

bSUPG(u, v) =
(
∂u
∂x , v

)
+ ε

(
∂u
∂x ,

∂v
∂x

)
+ ε

(
∂u
∂y ,

∂v
∂y

)
−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ −
(
u, 3p2ε/hv

)
Γ

+

∂u
∂x + ε∆u,

(
1
hx

+ 3ε 1
h2

x + h2
y

)2
∂v
∂x


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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 2x2 mesh,
using (2,1) for trial and (3,0) for testing.
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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 32x32 mesh,
using (2,1) for trial and (3,0) for testing.
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Circular wind problem

βx
∂u
∂x + βy

∂u
∂y − ε

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0

over the rectangular domain Ω = (0, 1)× (−1, 1), with zero
right-hand side f = 0, Pe = 1, 000, 000, the advection vector
β(x , y) = (βx (x , y), βy (x , y)) = ψ( −y

(x2+y2)
1
2
, x

(x2+y2)
1
2

) modeling
the circular wind, where ψ is the wind force coefficient.
Γ1 = {(x , y) : x = 0, 0.5 ≤ y ≤ 1.0},
Γ2 = {(x , y) : x = 0, 0.0 ≤ y ≤ 0.5},
Γ3 = {(x , y) : x = 0,−0.5 ≤ y ≤ 0.0},
Γ4 = {(x , y) : x = 0,−1.0 ≤ y ≤ −0.5},
We utilize the Dirichlet boundary conditions u = g on Γ = ∂Ω where

g = 1
2

(
tanh

(
(|y | − 0.35) b

ε

)
+ 1
)
, for x ∈ Γ2 ∪ Γ3

g = 1
2

(
0.65− tanh

(
(|y |) b

ε

)
+ 1
)
, for x ∈ Γ1 ∪ Γ4

g = 0, for x ∈ Γ \ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 47 / 50



Circular wind problem
The weak formulation

b(u, v) = l(v) ∀v ∈ V

b(u, v) =(
βx
∂u
∂x , v

)
Ω

+
(
βy
∂u
∂y , v

)
Ω

+ ε

(
∂u
∂x ,

∂v
∂x

)
Ω

+ ε

(
∂u
∂y ,

∂v
∂y

)
Ω

−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

where n = (nx , ny ) is the versor normal to Γ,

l(v) = − (g , ε∇v · n)Γ − (g , β · nv)Γ−
(
g , 3p2ε/hv

)
Γ

n = (nx , ny ) is the versor normal to the boundary, and the
right-hand side forcing is equal to 0.
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Circular wind problem

Figure: Solution to the circular wind problem on the mesh of 128× 128
elements with trial(2,1),test(2,0), for Pecklet number Pe = 1, 000, 000,
wind force b = 1. Horizontal cross-section at x = 0.
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Conclusions
isoGeometric Residual Minimization Method (iGRM)
for time-dependent problems

2nd order time schemes (unconditional stability in time)
Residual minimization for each time step (stability in space)
Discretization with B-spline basis functions
(higher continuity smooth solutions)
Kronecker product structure of the matrix
(linear cost O(N) of direct solver)

isoGeometric Residual Minimization Method (iGRM)
for stationary problems

Residual minimization (stability in space)
Discretization with B-spline basis functions
(higher continuity smooth solutions)
Kronecker product structure of the inner product matrix
(linear cost O(N) preconditioner for iterative solver)
Symmetric positive definite system
(convergence of the conjugated gradient method )
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