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Eriksson-Johnson problem
Given Ω = (0, 1)2, β = (1, 0)T , we seek the solution of the
advection-diffusion problem

∂u
∂x − ε

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0 (1)

with Dirichlet boundary conditions

u = 0 for x ∈ (0, 1), y ∈ {0, 1} u = sin(Πy) for x = 0

The problem is driven by the inflow Dirichlet boundary condition.
It develops a boundary layer of width ε at the outflow x = 1.

3 / 45



Eriksson-Johnson problem

Figure: Galerkin FEM solution to Erikkson-Johnson problem, Pe = 106

Figure: Cross-section and zoom
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Higher continuity of isogeometric analysis

Figure: Isogeometric analysis provided smooth approximations with lower
number of degrees of freedom

5 / 45



Higher continuity of isogeometric analysis

Figure: Recursive definition of B-splines
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Higher continuity of isogeometric analysis

Figure: Tensor product structure of the 3D mesh

Isogeometric basis functions:
1D B-splines basis along x axis Bx

1,p(x), . . . ,Bx
Nx ,p(x)

1D B-splines basis along y axis By
1,p(y), . . . ,By

Ny ,p(y)
1D B-splines basis along z axis Bz

1,p(z), . . . ,Bz
Nz ,p(z)

In 2D we take tensor product basis
{Bx

i ,p(x)By
j,p(y)}i=1,...,Nx ;j=1,...,Ny

In 3D we take tensor product basis
{Bx

i ,p(x)By
j,p(y)Bz

k,p(z)}i=1,...,Nx ;j=1,...,Ny ;1,...,Nz 7 / 45



Mass and stiffness matrices over 2D domain Ω = Ωx × Ωy

M = (Bij ,Bkl )L2 =
∫

Ω
BijBkl dΩ =∫

Ω
Bx

i (x)By
j (y)Bx

k (x)By
l (y) dΩ =

∫
Ω

(BiBk)(x) (BjBl )(y) dΩ

=
(∫

Ωx

BiBk dx
)(∫

Ωy

BjBl dy
)

=Mx ⊗My

S = (∇Bij ,∇Bkl )L2 =
∫

Ω
∇Bij · ∇Bkl dΩ =∫

Ω

∂(Bx
i (x)By

j (y))
∂x

∂(Bx
k (x)By

l (y))
∂x +

∂(Bx
i (x)By

j (y))
∂y

∂(Bx
k (x)By

l (y))
∂y dΩ

=
∫

Ω

∂Bx
i (x)
∂x By

j (y)∂B
x
k (x)
∂x By

l (y) + Bx
i (x)

∂By
j (y)
∂y Bx

k (x)∂B
y
l (y))
∂y dΩ

=
∫

Ωx

∂Bi
∂x

∂Bk
∂x dx

∫
Ωy

BjBl dy +
∫

Ωx

BiBk dx
∫

Ωy

∂Bj
∂y

∂Bl
∂y dy

= Sx ⊗My +Mx ⊗ Sy
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Derivation of Spatial Direction Splitting

Idea exploit Kronecker product structure of

Mx = b

with M = A⊗ B, where A is n × n, B is m ×m

Definition of Kronecker (tensor) product:

M = A⊗ B =


AB11 AB12 · · · AB1m
AB21 AB22 · · · AB2m

...
... . . . ...

ABm1 ABm2 · · · ABmm


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Derivation of Spatial Direction Splitting

RHS and solution are partitioned into m blocks of size n each

xi = (xi1, . . . , xin)T

bi = (bi1, . . . , bin)T

We can rewrite the system as a block matrix equation:

AB11x1 + AB12x2 + · · ·+ AB1mxm = b1

AB21x1 + AB22x2 + · · ·+ AB2mxm = b2
...

...
...

...
ABm1x1 + ABm2x2 + · · ·+ ABmmxm = bm
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Derivation of Spatial Direction Splitting

Factor out A:

A
(
B11x1 + B12x2 + · · ·+ B1mxm

)
= b1

A
(
B21x1 + B22x2 + · · ·+ B2mxm

)
= b2

...
...

...
...

A
(
Bm1x1 + Bm2x2 + · · ·+ Bmmxm

)
= bm

Wy multiply by A−1 and define yi = A−1bi

(we have one 1D problem here A yi = bi with multiple RHS)

B11x1 + B12x2 + · · ·+ B1mxm = y1

B21x1 + B22x2 + · · ·+ B2mxm = y2
...

...
...

...
Bm1x1 + Bm2x2 + · · ·+ Bmmxm = ym
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Derivation of Spatial Direction Splitting

Consider each component of xi and yi ⇒ family of linear systems

B11x1i + B12x2i + · · ·+ B1mxmi = y1i

B21x1i + B22x2i + · · ·+ B2mxmi = y2i
...

...
...

...
Bm1x1i + Bm2x2i + · · ·+ Bmmxmi = ymi

for each i = 1, . . . , n

⇒ linear systems with matrix B (We have another 1D problem here
with multiple RHS B xi = yi )

12 / 45



Residual minimization method

b(u, v) = l(v) ∀v ∈ V (2)

For our weak problem (2) we define the operator B : U → V ′ such
as < Bu, v >V ′×V = b (u, v).

B : U → V ′ (3)

such that
〈Bu, v〉V ′×V = b(u, v) (4)

so we can reformulate the problem as

Bu − l = 0 (5)

We wish to minimize the residual

uh = argminwh∈Uh

1
2‖Bwh − l‖2V ′ (6)
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Residual minimization method
We introduce the Riesz operator being the isometric isomorphism

RV : V 3 v → (v , .) ∈ V ′ (7)
We can project the problem back to V

uh = argminwh∈Uh

1
2‖R

−1
V (Bwh − l)‖2V (8)

The minimum is attained at uh when the Gâteaux derivative is equal
to 0 in all directions:

〈R−1
V (Buh − l),R−1

V (B wh)〉V = 0 ∀wh ∈ Uh (9)
We define the residual r = R−1

V (Buh − l) and we get
〈r ,R−1

V (B wh)〉 = 0 ∀wh ∈ Uh (10)
which is equivalent to

〈Bwh, r〉 = 0 ∀wh ∈ Uh. (11)
From the definition of the residual we have

(r , v)V = 〈Buh − l , v〉 ∀v ∈ V . (12)
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Residual minimization method with semi-infinite problem
Find (r , uh)V×Uh such as

(r , v)V − 〈Buh − l , v〉 = 0 ∀v ∈ V
〈Bwh, r〉 = 0 ∀wh ∈ Uh

(13)

We discretize the test space Vm ∈ V to get the discrete problem:
Find (rm, uh)Vm×Uh such as

(rm, vm)Vm − 〈Buh − l , vm〉 = 0 ∀vm ∈ Vm

〈Bwh, rm〉 = 0 ∀wh ∈ Uh
(14)

where (∗, ∗)Vm is an inner product in Vm, 〈Buh, vm〉 = b (uh, vm),
〈Bwh, rm〉 = b (wh, rm).

Remark
We define the discrete test space Vm in such a way that it is as
close as possible to the abstract V space, to ensure stability, in a
sense that the discrete inf-sup condition is satisfied. In our method
it is possible to gain stability enriching the test space Vm without
changing the trial space Uh.
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Discretization of the residual minimization method
We approximate the solution with tensor product of one dimensional
B-splines basis functions of order p

uh =
∑
i ,j

ui ,jBx
i ;p(x)By

j;p(y). (15)

We test with tensor product of one dimensional B-splines basis
functions, where we enrich the order in the direction of the x axis
from p to r (r ≥ p, and we enrich the space only in the direction of
the alternating splitting)

vm ← Bx
i ;r (x)By

j;p(y). (16)
We approximate the residual with tensor product of one dimensional
B-splines basis functions of order p

rm =
∑
s,t

rs,tBx
s;r (x)By

t;p(y), (17)

and we test again with tensor product of 1D B-spline basis functions
of order r and p, in the corresponding directions

wh ← Bx
k;p(x)By

l ;p(y). (18)

Remark
We perform the enrichment of the test space also in the alternating
directions manner. In this way, when we solve the problem with
derivatives along the x direction, we enrich the test space by
increasing the B-splines order in the x direction, but we keep the
B-splines order along y constant (same as in the trial space). By
doing that, we preserve the Kronecker product structure of the
matrix, to ensure that we can apply the alternating direction solver.
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Decomposition into Kronecker product structure

A = Ay ⊗ Ax ;B = Bx ⊗ By ;BT = BT
y ⊗ BT

x ;Ay = By (19)(
A B
BT 0

)
=
(

Ay 0
0 AT

y

)(
Ax Bx
BT

x 0

)
=
(

AxAy BxAy
BT

x AT
y 0

)
.

(20)

Both matrices
(

Ay 0
0 AT

y

)
and

(
Ax Bx
BT

x 0

)
can be factorized

in a linear O(N) computational cost.

Figure: Factorization of second block. 17 / 45



Towards iterative solver
[
A B
BT 0

] [
r
u

]
=
[
F
0

]
(21)

A = M + ηK
M = Mx ⊗My ,

K = Kx ⊗My + Mx ⊗ Ky .

A = M + ηK
= (Mx + ηKx )⊗ (My + ηKy )− η2Kx ⊗ Ky = Ã− K̃[

Ã B
BT 0

] [
r
u

]
=
[
F + K̃ r
0 ∗ u

]
(22)

so we iterate [
rk+1

uk+1

]
=
[
Ã B
BT 0

]−1 [
F + K̃ rk

0 ∗ uk

]
(23)
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Towards iterative solver
Firstly, consider the residual error

rk = F − Awk − Buk = F + K̃wk − Ãwk − Buk ,

sk = −BTwk .
(24)

To minimize these residual-type error, we build a dual problem,
which resembles the features of preconditioner.[

Ã B
BT 0

] [
dk

ck

]
=
[
rk

sk

]
, (25)

Using (24), solving these equations gives

dk = Ã−1(F + K̃wk − Buk)− wk − Ã−1Bck

:= d̃k − wk − Ã−1Bck ,

BT Ã−1Bck = −BT d̃k + BTwk + sk = −BT d̃k ,

(26)

where the first equation is a primal update and the second equation
is to be solved by a Conjugate-Gradient (CG) type method.
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Inner loop

Initialize {q(0) = p(0) = c̃k ; u(0) = uk}
for j = 1 until convergence

θ(j) = Bp(j);
δ(j) = Ã−1θ(j);

α(j) =
(
p(j), q(j))(
θ(j), δ(j)) ;

u(j+1) = u(j) + α(j)p(j);
q(j+1) = q(j) − α(j)BT δ(j);

β(j+1) =
(
q(j+1), q(j+1))(
q(j), q(j)) ;

p(j+1) = q(j+1) + β(j+1)p(j);

Algorithm 1: Inner CG
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Iterative solver

To determine the convergence, for the inner loop,
we iterate until α(j+1) ≤ tolerance. We denote this j as jc .
The outer iteration calculates

ck = u(jc ) − u(0);
uk+1 = u(jc );
wk+1 = d̃k + Ã−1Bck .

(27)

The outer iteration stops at ck+1 ≤ tolerance.
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Towards iterative solver

Initialize {u(0) = 0;w (0) = 0}
for k = 1, ...,N until convergence

Inner loop
ck = u(Nk ) − u(0);

uk+1 = u(Nk );
wk+1 = d̃k + Ã−1Bck ;

k = k + 1;
d̃k+1 = Ã−1(F + K̃wk+1 − Buk+1);
c̃k+1 = −BT d̃k+1.

Algorithm 2: Inner-Outer CG
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isogeometric Residual Minimization Method

isoGeometric Residual Minimization Method (iGRM)
Residual minimization
(unconditional stability in space)
Discretization with B-spline basis functions
(higher continuity smooth solutions)
Kronecker product structure of the inner product matrix
(linear cost O(N) preconditioner for iterative solver)
Symmetric positive definite system
(convergence of the conjugated gradient method )

23 / 45



A manufactured solution problem: strong form

We focus on a model problem with a manufactured solution. For a
unitary square domain Ω = (0, 1)2, the advection vector
β = (1, 1)T , and Pe = 100, ε = 1/Pe we seek the solution of the
advection-diffusion equation

∂u
∂x + ∂u

∂y − ε
(
∂2u
∂x2 + ∂2u

∂y2

)
= f (28)

with Dirichlet boundary conditions u = g on the whole of Γ = ∂Ω.
We utilize a manufactured solution

u(x , y) = (x + ePe∗x − 1
1− ePe )(y + ePe∗y − 1

1− ePe )

enforced by the right-hand side, and we use homogeneous Dirichlet
boundary conditions on ∂Ω.
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A manufactured solution problem: weak form

b(u, v) = l(v) ∀v ∈ V (29)

b(u, v) =
(
∂u
∂x , v

)
Ω

+
(
∂u
∂y , v

)
Ω

+ ε

(
∂u
∂x ,

∂v
∂x

)
Ω

+ ε

(
∂u
∂y ,

∂v
∂y

)
Ω

−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

n = (nx , ny ) is versor normal to Γ, and h is element diameter,

l(v) = (f , v)Ω− (g , ε∇v · n)Γ − (g , β · nv)Γ−
(
g , 3p2ε/hv

)
Γ

(30)

red terms correspond to weak imposition of the Dirichlet b.c. on Γ
with g = 0, f is the manufactured solution, blue terms are the
integration by parts, gray terms the penalty terms. We seek the
solution in space U = V = H1 (Ω). The inner product in V is

(u, v)V = (u, v)L2
+
(
∂u
∂x ,

∂v
∂x

)
L2

+
(
∂u
∂y ,

∂v
∂y

)
L2

(31)
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A manufactured solution results
n trial(2,1) trial(3,2) trial(4,3) trial(5,4)

test(2,0) test(2,0) test(2,0) test(2,0)
#DOF 389 410 433 458
L2 192 151 78 28
H1 101 74 44 32

8× 8
#DOF 1413 1450 1489 1530
L2 80 16 3.29 1.48
H1 59 29 18 10

16× 16
#DOF 5381 5450 5521 5594
L2 32 1.33 0.27 0.056
H1 31 9.77 3.16 0.82

32× 32
#DOF 20997 21130 21265 21402
L2 7.66 0.07 0.01 0.003
H1 9.86 1.67 0.26 0.068
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Eriksson-Johnson problem strong form
Given Ω = (0, 1)2, β = (1, 0)T , we seek the solution of the
advection-diffusion problem

∂u
∂x − ε

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0 (32)

with Dirichlet boundary conditions

u = 0 for x ∈ (0, 1), y ∈ {0, 1} u = sin(Πy) for x = 0

The problem is driven by the inflow Dirichlet boundary condition.
It develops a boundary layer of width ε at the outflow x = 1.
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Eriksson-Johnson problem weak form
We introduce first the weak formulation for the Eriksson-Johnson
problem

b(u, v) = l(v) ∀v ∈ V (33)

b(u, v) =
(
∂u
∂x , v

)
+ ε

(
∂u
∂x ,

∂v
∂x

)
+ ε

(
∂u
∂y ,

∂v
∂y

)
−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

where the blue, red, and gray terms correspond to the weak
imposition of the Dirichlet b.c. on the boundary Γ, and n = (nx , ny )
is the versor normal to the boundary,

l(v) = − (g , ε∇v · n)Γ− − (g , β · nv)Γ−−
(
g , 3p2ε/hv

)
Γ−

(34)

where the red and gray terms correspond to the weak introduction
of the Dirichlet b.c. on the boundary Γ.
We plug the weak form and the inner product into the iGRM setup
and we use the preconditioned CG solver. 28 / 45



Residual minimization method for Eriksson-Johnson
problem

Find (rm, uh)Vm×Uh such as

(rm, vm)Vm −
(
∂uh
∂x , vm

)
− ε

(
∂uh
∂x ,

∂vm
∂x + ∂uh

∂y ,
∂vm
∂y

)
= (f , vm)

∀vm ∈ Vm(
∂wh
∂x , rm

)
+ ε

(
∂wh
∂x ,

∂rm
∂x + ∂wh

∂y ,
∂rm
∂y

)
= 0

∀wh ∈ Uh

where (rm, vm)Vm = (rm, vm) + (∂rm
∂x ,

∂vm
∂x ) + (∂rm

∂y ,
∂vm
∂y )

is the H1 norm induced inner product.

Remark
We will use trial space Uh as quadratic B-splines with C1 continuity
and test space Vh as cubic B-splines with C2 continuity
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Numerical results for the Eriksson-Johnson problem

Figure: Left panel: Solution to the Erikkson-Johnsson problem with
Galerkin method with ε = 10−2, with trial = test = quadratic B-splines on
a uniform mesh of 20× 20 elements. Right panel: Cross-section at
y = 0.5.
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Numerical results for the Eriksson-Johnson problem

Figure: Solution to the Erikkson-Johnsson problem with residual
minimization method with ε = 10−2, with trial = quadratic B-splines,
test = cubic B-splines on a uniform mesh of 20× 20 elements.
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Numerical results for the Eriksson-Johnson problem

Figure: Cross-section at y = 0.5 of the solution to the Erikkson-Johnsson
problem with residual minimization method with ε = 10−2, with trial =
quadratic B-splines, test = cubic B-splines
on a uniform mesh of 20× 20 elements.
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Numerical results for the Eriksson-Johnson problem

Figure: Zoom of the cross-section at y = 0.5 of the solution at (0.99,1.0)
of the Erikkson-Johnsson problem with residual minimization method with
ε = 10−2, with trial = quadratic B-splines, test = cubic B-splines on a
uniform mesh of 20× 20 elements.
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Eriksson-Johnson problem weak form, SUPG method

b(u, v) + (R(u), τβ · ∇v) = l(v) ∀v ∈ V (35)
where R(u) = ∂u

∂x + ε∆u, and
(
βx
hx

+ βy
hy

)
+ 3ε 1

h2
x +h2

y
,

and in our case diffusion term ε = 10−6, and convection term
β = (1, 0), and hx and hy are dimensions of an element.

bSUPG(u, v) = l(v) ∀v ∈ V (36)

bSUPG(u, v) =
(
∂u
∂x , v

)
+ ε

(
∂u
∂x ,

∂v
∂x

)
+ ε

(
∂u
∂y ,

∂v
∂y

)
−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ −
(
u, 3p2ε/hv

)
Γ

+

∂u
∂x + ε∆u,

(
1
hx

+ 3ε 1
h2

x + h2
y

)2
∂v
∂x


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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 2x2 mesh,
using (2,1) for trial and (3,0) for testing.
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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=10000 on 4x4 mesh,
using (2,1) for trial and (3,0) for testing.
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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 8x8 mesh,
using (2,1) for trial and (3,0) for testing.

37 / 45



Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 16x16 mesh,
using (2,1) for trial and (3,0) for testing.
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Numerical results for the Eriksson-Johnson problem
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Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM
and SUPG methods for Pe=1,000,000 on 32x32 mesh,
using (2,1) for trial and (3,0) for testing.
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Erikkson-Johnson iterations
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Figure: Left panel: Number of iterations of outer loop for. Right panel:
Number of iterations of inner loop (CG).
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Figure: Number of iterations of outer loop, with inner loop treated by
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Circular wind problem

βx
∂u
∂x + βy

∂u
∂y − ε

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0

over the rectangular domain Ω = (0, 1)× (−1, 1), with zero
right-hand side f = 0, Pe = 1, 000, 000, the advection vector
β(x , y) = (βx (x , y), βy (x , y)) = ψ( −y

(x2+y2)
1
2
, x

(x2+y2)
1
2

) modeling
the circular wind, where ψ is the wind force coefficient.
Γ1 = {(x , y) : x = 0, 0.5 ≤ y ≤ 1.0},
Γ2 = {(x , y) : x = 0, 0.0 ≤ y ≤ 0.5},
Γ3 = {(x , y) : x = 0,−0.5 ≤ y ≤ 0.0},
Γ4 = {(x , y) : x = 0,−1.0 ≤ y ≤ −0.5},
We utilize the Dirichlet boundary conditions u = g on Γ = ∂Ω where

g = 1
2

(
tanh

(
(|y | − 0.35) b

ε

)
+ 1
)
, for x ∈ Γ2 ∪ Γ3

g = 1
2

(
0.65− tanh

(
(|y |) b

ε

)
+ 1
)
, for x ∈ Γ1 ∪ Γ4

g = 0, for x ∈ Γ \ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 41 / 45



Circular wind problem
The weak formulation

b(u, v) = l(v) ∀v ∈ V

b(u, v) =(
βx
∂u
∂x , v

)
Ω

+
(
βy
∂u
∂y , v

)
Ω

+ ε

(
∂u
∂x ,

∂v
∂x

)
Ω

+ ε

(
∂u
∂y ,

∂v
∂y

)
Ω

−
(
ε
∂u
∂x nx , v

)
Γ
−
(
ε
∂u
∂y ny , v

)
Γ

− (u, ε∇v · n)Γ − (u, β · nv)Γ−
(
u, 3p2ε/hv

)
Γ

where n = (nx , ny ) is the versor normal to Γ,

l(v) = − (g , ε∇v · n)Γ − (g , β · nv)Γ−
(
g , 3p2ε/hv

)
Γ

n = (nx , ny ) is the versor normal to the boundary, and the
right-hand side forcing is equal to 0.
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Circular wind problem

Figure: Solution to the circular wind problem on the mesh of 128× 128
elements with trial(2,1),test(2,0), for Pecklet number Pe = 1, 000, 000,
wind force b = 1. Horizontal cross-section at x = 0.
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Conclusions and open questions
Conclusions

We use B-spline basis functions on tensor product patches of
elements and we do not break the test spaces
We employ the residual minimization method with fixed trial
space, and we enrich the test space to improve the stability
To preserve the Kronecker product structure of the residual
minimization system, we enrich the test space in the
alternating direction manner (e.g. (3,2) for x direction, and
(2, 3) for y direction) to preserve the Kronecker product
structure of the matrix, and linear cost O(N) factorization
For a linear cost O(N) Kronecker product precondtioner we
can enrich the test space in arbitrary way, since we only need a
Kronecker product structure of the Gramm matrix

Future work
Stokes, Oseen, Navier-Stokes and Maxwell equations
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