isoGeometric Residual Minimization Method (iGRM)

Maciej Paszyński¹ M. Łoś¹ I. Muga² Q. Deng ³ V. M. Calo³

¹ Department of Computer Science AGH University of Science and Technology, Kraków, Poland home.agh.edu.pl/paszynsk

 $^{2}\ {\rm The}\ {\rm University}\ {\rm of}\ {\rm Basque}\ {\rm Country},\ {\rm Bilbao},\ {\rm Spain}$

³ Curtin University, Perth, Western Australia

National Science Centre, Poland grant HARMONIA 2017/26/M/ST1/00281

Outline

- Unstable problems
- Factorization of Kronecker product matrices
- Residual minimization method
- Factorization of residual minimization problem matrix
- Iterative solver
- isoGeometric Residual Minimization method (iGRM)
- Numerical results: Manufactured solution problem, Eriksson-Johnson model problem
- Conclusions

Eriksson-Johnson problem

Given $\Omega = (0, 1)^2$, $\beta = (1, 0)^T$, we seek the solution of the advection-diffusion problem

$$\frac{\partial u}{\partial x} - \epsilon \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0 \tag{1}$$

with Dirichlet boundary conditions

$$u = 0 \text{ for } x \in (0,1), y \in \{0,1\}$$
 $u = sin(\Pi y) \text{ for } x = 0$

The problem is driven by the inflow Dirichlet boundary condition. It develops a boundary layer of width ϵ at the outflow x = 1.

Eriksson-Johnson problem

Figure: Galerkin FEM solution to Erikkson-Johnson problem, $Pe = 10^6$

Higher continuity of isogeometric analysis

Quadratic basis functions for an open, non-uniform knot vector:

 $\Xi = \{0,0,0,1,2,3,4,4,5,5,5\}$

Figure: Isogeometric analysis provided smooth approximations with lower number of degrees of freedom

Figure: Recursive definition of B-splines

Higher continuity of isogeometric analysis

Figure: Tensor product structure of the 3D mesh

Isogeometric basis functions:

- 1D B-splines basis along x axis $B_{1,p}^{x}(x), \ldots, B_{N_{x},p}^{x}(x)$
- 1D B-splines basis along y axis $B_{1,p}^{y'}(y), \ldots, B_{N_v,p}^{y''}(y)$
- 1D B-splines basis along z axis $B_{1,p}^{z}(z), \ldots, B_{N_{z},p}^{z}(z)$
- In 2D we take tensor product basis $\{B_{i,p}^x(x)B_{j,p}^y(y)\}_{i=1,\dots,N_x;j=1,\dots,N_y}$
- In 3D we take tensor product basis $\{B_{i,p}^x(x)B_{j,p}^y(y)B_{k,p}^z(z)\}_{i=1,\dots,N_x:j=1,\dots,N_y;1,\dots,N_z}$

Mass and stiffness matrices over 2D domain $\Omega = \Omega_x \times \Omega_y$

$$\mathcal{M} = (B_{ij}, B_{kl})_{L^2} = \int_{\Omega} B_{ij} B_{kl} \, \mathrm{d}\Omega =$$
$$\int_{\Omega} B_i^{\mathsf{x}}(x) B_j^{\mathsf{y}}(y) B_k^{\mathsf{x}}(x) B_l^{\mathsf{y}}(y) \, \mathrm{d}\Omega = \int_{\Omega} (B_i B_k)(x) \, (B_j B_l)(y) \, \mathrm{d}\Omega$$
$$= \left(\int_{\Omega_x} B_i B_k \, \mathrm{d}x\right) \left(\int_{\Omega_y} B_j B_l \, \mathrm{d}y\right) = \mathcal{M}^{\mathsf{x}} \otimes \mathcal{M}^{\mathsf{y}}$$
$$\mathcal{S} = (\nabla B_{ij}, \nabla B_{kl})_{L^2} = \int_{\Omega} \nabla B_{ij} \cdot \nabla B_{kl} \, \mathrm{d}\Omega =$$

$$\int_{\Omega} \frac{\partial (B_{i}^{x}(x)B_{j}^{y}(y))}{\partial x} \frac{\partial (B_{k}^{x}(x)B_{l}^{y}(y))}{\partial x} + \frac{\partial (B_{i}^{x}(x)B_{j}^{y}(y))}{\partial y} \frac{\partial (B_{k}^{x}(x)B_{l}^{y}(y))}{\partial y} d\Omega$$
$$= \int_{\Omega} \frac{\partial B_{i}^{x}(x)}{\partial x} B_{j}^{y}(y) \frac{\partial B_{k}^{x}(x)}{\partial x} B_{l}^{y}(y) + B_{i}^{x}(x) \frac{\partial B_{j}^{y}(y)}{\partial y} B_{k}^{x}(x) \frac{\partial B_{l}^{y}(y)}{\partial y} d\Omega$$
$$= \int_{\Omega_{x}} \frac{\partial B_{i}}{\partial x} \frac{\partial B_{k}}{\partial x} dx \int_{\Omega_{y}} B_{j} B_{l} dy + \int_{\Omega_{x}} B_{i} B_{k} dx \int_{\Omega_{y}} \frac{\partial B_{j}}{\partial y} \frac{\partial B_{l}}{\partial y} dy$$
$$= \mathcal{S}^{x} \otimes \mathcal{M}^{y} + \mathcal{M}^{x} \otimes \mathcal{S}^{y}$$

Idea exploit Kronecker product structure of

 $\mathbf{M}\mathbf{x} = \mathbf{b}$

with $\mathbf{M} = \mathbf{A} \otimes \mathbf{B}$, where \mathbf{A} is $n \times n$, \mathbf{B} is $m \times m$

Definition of Kronecker (tensor) product:

$$\mathbf{M} = \mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \mathbf{A} B_{11} & \mathbf{A} B_{12} & \cdots & \mathbf{A} B_{1m} \\ \mathbf{A} B_{21} & \mathbf{A} B_{22} & \cdots & \mathbf{A} B_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A} B_{m1} & \mathbf{A} B_{m2} & \cdots & \mathbf{A} B_{mm} \end{bmatrix}$$

RHS and solution are partitioned into m blocks of size n each

$$\mathbf{x}_i = (x_{i1}, \dots, x_{in})^\mathsf{T}$$

 $\mathbf{b}_i = (b_{i1}, \dots, b_{in})^\mathsf{T}$

We can rewrite the system as a block matrix equation:

$$\begin{cases} \mathbf{A}B_{11}\mathbf{x}_1 + \mathbf{A}B_{12}\mathbf{x}_2 + \dots + \mathbf{A}B_{1m}\mathbf{x}_m = \mathbf{b}_1 \\ \mathbf{A}B_{21}\mathbf{x}_1 + \mathbf{A}B_{22}\mathbf{x}_2 + \dots + \mathbf{A}B_{2m}\mathbf{x}_m = \mathbf{b}_2 \\ \vdots & \vdots & \vdots \\ \mathbf{A}B_{m1}\mathbf{x}_1 + \mathbf{A}B_{m2}\mathbf{x}_2 + \dots + \mathbf{A}B_{mm}\mathbf{x}_m = \mathbf{b}_m \end{cases}$$

Derivation of Spatial Direction Splitting

Factor out **A**:

$$\begin{cases} \mathbf{A}(B_{11}\mathbf{x}_1 + B_{12}\mathbf{x}_2 + \dots + B_{1m}\mathbf{x}_m) = \mathbf{b}_1 \\ \mathbf{A}(B_{21}\mathbf{x}_1 + B_{22}\mathbf{x}_2 + \dots + B_{2m}\mathbf{x}_m) = \mathbf{b}_2 \\ \vdots & \vdots & \vdots \\ \mathbf{A}(B_{m1}\mathbf{x}_1 + B_{m2}\mathbf{x}_2 + \dots + B_{mm}\mathbf{x}_m) = \mathbf{b}_m \end{cases}$$

Wy multiply by \mathbf{A}^{-1} and define $\mathbf{y}^i = \mathbf{A}^{-1}\mathbf{b}^i$ (we have one 1D problem here $\mathbf{A} \mathbf{y}^i = \mathbf{b}^i$ with multiple RHS)

$$\begin{cases} B_{11}\mathbf{x}_1 + B_{12}\mathbf{x}_2 + \dots + B_{1m}\mathbf{x}_m = \mathbf{y}_1 \\ B_{21}\mathbf{x}_1 + B_{22}\mathbf{x}_2 + \dots + B_{2m}\mathbf{x}_m = \mathbf{y}_2 \\ \vdots & \vdots & \vdots \\ B_{m1}\mathbf{x}_1 + B_{m2}\mathbf{x}_2 + \dots + B_{mm}\mathbf{x}_m = \mathbf{y}_m \end{cases}$$

Consider each component of \mathbf{x}_i and $\mathbf{y}_i \Rightarrow$ family of linear systems

$$\begin{cases} B_{11}x^{1i} + B_{12}x^{2i} + \dots + B_{1m}x^{mi} = y_{1i} \\ B_{21}x^{1i} + B_{22}x^{2i} + \dots + B_{2m}x^{mi} = y_{2i} \\ \vdots & \vdots & \vdots \\ B_{m1}x^{1i} + B_{m2}x^{2i} + \dots + B_{mm}x^{mi} = y_{mi} \end{cases}$$

for each $i = 1, \ldots, n$

 \Rightarrow linear systems with matrix ${\bf B}$ (We have another 1D problem here with multiple RHS ${\bf B}~{\bf x}^i={\bf y}^i$)

Residual minimization method

$$b(u,v) = l(v) \quad \forall v \in V \tag{2}$$

For our weak problem (2) we define the operator $B : U \to V'$ such as $\langle Bu, v \rangle_{V' \times V} = b(u, v)$.

$$B: U \to V' \tag{3}$$

such that

$$\langle Bu, v \rangle_{V' \times V} = b(u, v)$$
 (4)

so we can reformulate the problem as

$$Bu - l = 0 \tag{5}$$

We wish to minimize the residual

$$u_{h} = argmin_{w_{h} \in U_{h}} \frac{1}{2} \|Bw_{h} - I\|_{V'}^{2}$$
(6)

13/45

Residual minimization method

We introduce the Riesz operator being the isometric isomorphism

$$R_V \colon V \ni v \to (v, .) \in V' \tag{7}$$

We can project the problem back to V

$$u_{h} = \operatorname{argmin}_{w_{h} \in U_{h}} \frac{1}{2} \| R_{V}^{-1} (Bw_{h} - I) \|_{V}^{2}$$
(8)

The minimum is attained at u_h when the Gâteaux derivative is equal to 0 in all directions:

$$\langle R_V^{-1}(Bu_h-I), R_V^{-1}(Bw_h) \rangle_V = 0 \quad \forall w_h \in U_h$$
(9)

We define the residual $r = R_V^{-1}(Bu_h - I)$ and we get

$$\langle r, R_V^{-1}(B w_h) \rangle = 0 \quad \forall w_h \in U_h$$
 (10)

which is equivalent to

$$\langle Bw_h, r \rangle = 0 \qquad \forall w_h \in U_h.$$
 (11)

From the definition of the residual we have

$$(r, v)_V = \langle Bu_h - l, v \rangle \quad \forall v \in V.$$
 (12)

Residual minimization method with semi-infinite problem

Find $(r, u_h)_{V \times U_h}$ such as

$$\langle (r, v) \rangle_{V} - \langle Bu_{h} - I, v \rangle = 0 \quad \forall v \in V$$

 $\langle Bw_{h}, r \rangle = 0 \quad \forall w_{h} \in U_{h}$ (13)

We discretize the test space $V_m \in V$ to get the discrete problem: Find $(r_m, u_h)_{V_m \times U_h}$ such as

$$(r_m, v_m)_{V_m} - \langle Bu_h - I, v_m \rangle = 0 \quad \forall v_m \in V_m \\ \langle Bw_h, r_m \rangle = 0 \quad \forall w_h \in U_h$$
 (14)

where $(*,*)_{V_m}$ is an inner product in V_m , $\langle Bu_h, v_m \rangle = b(u_h, v_m)$, $\langle Bw_h, r_m \rangle = b(w_h, r_m)$.

Remark

We define the discrete test space V_m in such a way that it is as close as possible to the abstract V space, to ensure stability, in a sense that the discrete inf-sup condition is satisfied. In our method it is possible to gain stability enriching the test space V_m without changing the trial space U_h .

Discretization of the residual minimization method

We approximate the solution with tensor product of one dimensional B-splines basis functions of order p

$$u_{h} = \sum_{i,j} u_{i,j} B_{i;p}^{x}(x) B_{j;p}^{y}(y).$$
(15)

We test with tensor product of one dimensional B-splines basis functions, where we enrich the order in the direction of the x axis from p to r ($r \ge p$, and we enrich the space only in the direction of the alternating splitting)

$$v_m \leftarrow B^x_{i;r}(x)B^y_{j;p}(y). \tag{16}$$

We approximate the residual with tensor product of one dimensional B-splines basis functions of order p

$$r_m = \sum_{s,t} r_{s,t} B^x_{s;r}(x) B^y_{t;p}(y),$$
(17)

and we test again with tensor product of 1D B-spline basis functions of order r and p, in the corresponding directions

$$w_h \leftarrow B_{k;p}^{x}(x)B_{l;p}^{y}(y).$$
 (18) 16/45

Decomposition into Kronecker product structure

$$A = A_{y} \otimes A_{x}; B = B_{x} \otimes B_{y}; B^{T} = B_{y}^{T} \otimes B_{x}^{T}; A_{y} = B_{y}$$
(19)
$$\begin{pmatrix} A & B \\ B^{T} & 0 \end{pmatrix} = \begin{pmatrix} A_{y} & 0 \\ 0 & A_{y}^{T} \end{pmatrix} \begin{pmatrix} A_{x} & B_{x} \\ B_{x}^{T} & 0 \end{pmatrix} = \begin{pmatrix} A_{x}A_{y} & B_{x}A_{y} \\ B_{x}^{T}A_{y}^{T} & 0 \end{pmatrix}$$
(20)
Both matrices $\begin{pmatrix} A_{y} & 0 \\ 0 & A_{y}^{T} \end{pmatrix}$ and $\begin{pmatrix} A_{x} & B_{x} \\ B_{x}^{T} & 0 \end{pmatrix}$ can be factorized in a linear $\mathcal{O}(N)$ computational cost.

Figure: Factorization of second block.

Towards iterative solver

$$\begin{bmatrix} A & B \\ B^{T} & 0 \end{bmatrix} \begin{bmatrix} r \\ u \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}$$
(21)
$$A = M + \eta K$$
$$M = M_{x} \otimes M_{y},$$
$$K = K_{x} \otimes M_{y} + M_{x} \otimes K_{y}.$$
$$A = M + \eta K$$
$$= (M_{x} + \eta K_{x}) \otimes (M_{y} + \eta K_{y}) - \eta^{2} K_{x} \otimes K_{y} = \tilde{A} - \tilde{K}$$
$$\begin{bmatrix} \tilde{A} & B \\ B^{T} & 0 \end{bmatrix} \begin{bmatrix} r \\ u \end{bmatrix} = \begin{bmatrix} F + \tilde{K}r \\ 0 * u \end{bmatrix}$$
(22)

so we iterate

$$\begin{bmatrix} r^{k+1} \\ u^{k+1} \end{bmatrix} = \begin{bmatrix} \tilde{A} & B \\ B^T & 0 \end{bmatrix}^{-1} \begin{bmatrix} F + \tilde{K}r^k \\ 0 * u^k \end{bmatrix}$$
(23)

Towards iterative solver

Firstly, consider the residual error

$$r^{k} = F - Aw^{k} - Bu^{k} = F + \tilde{K}w^{k} - \tilde{A}w^{k} - Bu^{k},$$

$$s^{k} = -B^{T}w^{k}.$$
(24)

To minimize these residual-type error, we build a dual problem, which resembles the features of preconditioner.

$$\begin{bmatrix} \tilde{A} & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} d^k \\ c^k \end{bmatrix} = \begin{bmatrix} r^k \\ s^k \end{bmatrix},$$
 (25)

Using (24), solving these equations gives

$$d^{k} = \tilde{A}^{-1}(F + \tilde{K}w^{k} - Bu^{k}) - w^{k} - \tilde{A}^{-1}Bc^{k}$$

$$:= \tilde{d}^{k} - w^{k} - \tilde{A}^{-1}Bc^{k},$$

$$B^{T}\tilde{A}^{-1}Bc^{k} = -B^{T}\tilde{d}^{k} + B^{T}w^{k} + s^{k} = -B^{T}\tilde{d}^{k},$$

(26)

where the first equation is a primal update and the second equation is to be solved by a Conjugate-Gradient (CG) type method.

Inner loop

Initialize
$$\{q^{(0)} = p^{(0)} = \tilde{c}^k; u^{(0)} = u^k\}$$

for $j = 1$ until convergence
 $\theta^{(j)} = Bp^{(j)};$
 $\delta^{(j)} = \tilde{A}^{-1}\theta^{(j)};$
 $\alpha^{(j)} = \frac{(p^{(j)}, q^{(j)})}{(\theta^{(j)}, \delta^{(j)})};$
 $u^{(j+1)} = u^{(j)} + \alpha^{(j)}p^{(j)};$
 $q^{(j+1)} = q^{(j)} - \alpha^{(j)}B^T\delta^{(j)};$
 $\beta^{(j+1)} = \frac{(q^{(j+1)}, q^{(j+1)})}{(q^{(j)}, q^{(j)})};$
 $p^{(j+1)} = q^{(j+1)} + \beta^{(j+1)}p^{(j)};$

Algorithm 1: Inner CG

To determine the convergence, for the inner loop, we iterate until $\alpha^{(j+1)} \leq tolerance$. We denote this j as j_c . The outer iteration calculates

$$c^{k} = u^{(j_{c})} - u^{(0)};$$

$$u^{k+1} = u^{(j_{c})};$$

$$w^{k+1} = \tilde{d}^{k} + \tilde{A}^{-1}Bc^{k}.$$
(27)

The outer iteration stops at $c^{k+1} \leq tolerance$.

Towards iterative solver

Initialize
$$\{u^{(0)} = 0; w^{(0)} = 0\}$$

for $k = 1, ..., N$ until convergence

Inner loop

$$c^{k} = u^{(N_{k})} - u^{(0)};$$

$$u^{k+1} = u^{(N_{k})};$$

$$w^{k+1} = \tilde{d}^{k} + \tilde{A}^{-1}Bc^{k};$$

$$k = k + 1;$$

$$\tilde{d}^{k+1} = \tilde{A}^{-1}(F + \tilde{K}w^{k+1} - Bu^{k+1});$$

$$\tilde{c}^{k+1} = -B^{T}\tilde{d}^{k+1}.$$

Algorithm 2: Inner-Outer CG

isogeometric Residual Minimization Method

isoGeometric Residual Minimization Method (iGRM)

- Residual minimization (unconditional stability in space)
- Discretization with B-spline basis functions (higher continuity smooth solutions)
- Kronecker product structure of the inner product matrix (linear cost O(N) preconditioner for iterative solver)
- Symmetric positive definite system (convergence of the conjugated gradient method)

A manufactured solution problem: strong form

We focus on a model problem with a manufactured solution. For a unitary square domain $\Omega = (0, 1)^2$, the advection vector $\beta = (1, 1)^T$, and $Pe = 100, \epsilon = 1/Pe$ we seek the solution of the advection-diffusion equation

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} - \epsilon \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = f$$
(28)

with Dirichlet boundary conditions u = g on the whole of $\Gamma = \partial \Omega$. We utilize a manufactured solution

$$u(x,y) = (x + \frac{e^{Pe * x} - 1}{1 - e^{Pe}})(y + \frac{e^{Pe * y} - 1}{1 - e^{Pe}})$$

enforced by the right-hand side, and we use homogeneous Dirichlet boundary conditions on $\partial \Omega$.

A manufactured solution problem: weak form

$$b(u,v) = l(v) \quad \forall v \in V \tag{29}$$

$$b(u,v) = \left(\frac{\partial u}{\partial x}, v\right)_{\Omega} + \left(\frac{\partial u}{\partial y}, v\right)_{\Omega} + \epsilon \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right)_{\Omega} + \epsilon \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)_{\Omega}$$
$$- \left(\epsilon \frac{\partial u}{\partial x} n_{x}, v\right)_{\Gamma} - \left(\epsilon \frac{\partial u}{\partial y} n_{y}, v\right)_{\Gamma}$$
$$- \left(u, \epsilon \nabla v \cdot n\right)_{\Gamma} - \left(u, \beta \cdot nv\right)_{\Gamma} - \left(u, 3p^{2} \epsilon / hv\right)_{\Gamma}$$

 $n = (n_x, n_y) \text{ is versor normal to } \Gamma, \text{ and } h \text{ is element diameter,}$ $l(v) = (f, v)_{\Omega} - (g, \epsilon \nabla v \cdot n)_{\Gamma} - (g, \beta \cdot nv)_{\Gamma} - (g, 3p^2 \epsilon / hv)_{\Gamma}$ (30)

red terms correspond to weak imposition of the Dirichlet b.c. on Γ with g = 0, f is the manufactured solution, blue terms are the integration by parts, gray terms the penalty terms. We seek the solution in space $U = V = H^1(\Omega)$. The inner product in V is

$$(u,v)_{V} = (u,v)_{L_{2}} + \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right)_{L_{2}} + \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)_{L_{2}} \qquad (31)_{25/45}$$

A manufactured solution results

n	trial(2,1)	trial(3,2)	trial(4,3)	trial(5,4)
	test(2,0)	test(2,0)	test(2,0)	test(2,0)
#DOF	389	410	433	458
L2	192	151	78	28
H1	101	74	44	32
8 × 8				
#DOF	1413	1450	1489	1530
L2	80	16	3.29	1.48
H1	59	29	18	10
16 imes 16		~		
#DOF	5381	5450	5521	5594
L2	32	1.33	0.27	0.056
H1	31	9.77	3.16	0.82
32 × 32				
#DOF	20997	21130	21265	21402
L2	7.66	0.07	0.01	0.003
H1	9.86	1.67	0.26	0.068
64 × 64				

26 / 45

Eriksson-Johnson problem strong form

Given $\Omega = (0, 1)^2$, $\beta = (1, 0)^T$, we seek the solution of the advection-diffusion problem

$$\frac{\partial u}{\partial x} - \epsilon \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$
 (32)

with Dirichlet boundary conditions

$$u = 0 \text{ for } x \in (0, 1), y \in \{0, 1\}$$
 $u = sin(\Pi y) \text{ for } x = 0$

The problem is driven by the inflow Dirichlet boundary condition. It develops a boundary layer of width ϵ at the outflow x = 1.

Eriksson-Johnson problem weak form

We introduce first the weak formulation for the Eriksson-Johnson problem

$$b(u, v) = l(v) \quad \forall v \in V$$

$$b(u, v) = \left(\frac{\partial u}{\partial x}, v\right) + \epsilon \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right) + \epsilon \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)$$

$$- \left(\epsilon \frac{\partial u}{\partial x} n_x, v\right)_{\Gamma} - \left(\epsilon \frac{\partial u}{\partial y} n_y, v\right)_{\Gamma}$$

$$- (u, \epsilon \nabla v \cdot n)_{\Gamma} - (u, \beta \cdot nv)_{\Gamma} - (u, 3p^2 \epsilon / hv)_{\Gamma}$$

$$(33)$$

where the blue, red, and gray terms correspond to the weak imposition of the Dirichlet b.c. on the boundary Γ , and $n = (n_x, n_y)$ is the versor normal to the boundary,

$$I(\mathbf{v}) = -(g, \epsilon \nabla \mathbf{v} \cdot \mathbf{n})_{\Gamma^{-}} - (g, \beta \cdot \mathbf{n} \mathbf{v})_{\Gamma^{-}} - (g, 3p^{2}\epsilon/hv)_{\Gamma^{-}}$$
(34)

where the red and gray terms correspond to the weak introduction of the Dirichlet b.c. on the boundary Γ .

We plug the weak form and the inner product into the iGRM setup and we use the preconditioned CG solver. $$^{28/45}$$

Residual minimization method for Eriksson-Johnson problem

Find
$$(r_m, u_h)_{V_m \times U_h}$$
 such as
 $(r_m, v_m)_{V_m} - \left(\frac{\partial u_h}{\partial x}, v_m\right) - \epsilon \left(\frac{\partial u_h}{\partial x}, \frac{\partial v_m}{\partial x} + \frac{\partial u_h}{\partial y}, \frac{\partial v_m}{\partial y}\right) = (f, v_m)$
 $\forall v_m \in V_m$
 $\left(\frac{\partial w_h}{\partial x}, r_m\right) + \epsilon \left(\frac{\partial w_h}{\partial x}, \frac{\partial r_m}{\partial x} + \frac{\partial w_h}{\partial y}, \frac{\partial r_m}{\partial y}\right) = 0$
 $\forall w_h \in U_h$

where $(r_m, v_m)_{V_m} = (r_m, v_m) + (\frac{\partial r_m}{\partial x}, \frac{\partial v_m}{\partial x}) + (\frac{\partial r_m}{\partial y}, \frac{\partial v_m}{\partial y})$ is the H^1 norm induced inner product.

Remark

We will use trial space U_h as quadratic B-splines with C^1 continuity and test space V_h as cubic B-splines with C^2 continuity

Figure: **Left panel:** Solution to the Erikkson-Johnsson problem with Galerkin method with $\epsilon = 10^{-2}$, with trial = test = quadratic B-splines on a uniform mesh of 20 × 20 elements. **Right panel:** Cross-section at y = 0.5.

Figure: Solution to the Erikkson-Johnsson problem with residual minimization method with $\epsilon = 10^{-2}$, with trial = quadratic B-splines, test = cubic B-splines on a uniform mesh of 20 × 20 elements.

Figure: Cross-section at y = 0.5 of the solution to the Erikkson-Johnsson problem with residual minimization method with $\epsilon = 10^{-2}$, with trial = quadratic B-splines, test = cubic B-splines on a uniform mesh of 20×20 elements.

Figure: Zoom of the cross-section at y = 0.5 of the solution at (0.99,1.0) of the Erikkson-Johnsson problem with residual minimization method with $\epsilon = 10^{-2}$, with trial = quadratic B-splines, test = cubic B-splines on a uniform mesh of 20 × 20 elements.

Eriksson-Johnson problem weak form, SUPG method

 $b(u, v) + (R(u), \tau\beta \cdot \nabla v) = I(v) \quad \forall v \in V$ (35) where $R(u) = \frac{\partial u}{\partial x} + \epsilon \Delta u$, and $\left(\frac{\beta_x}{h_x} + \frac{\beta_y}{h_y}\right) + 3\epsilon \frac{1}{h_x^2 + h_y^2}$, and in our case diffusion term $\epsilon = 10^{-6}$, and convection term $\beta = (1, 0)$, and h_x and h_y are dimensions of an element.

$$b_{SUPG}(u,v) = l(v) \quad \forall v \in V$$
(36)

$$b_{SUPG}(u, v) = \left(\frac{\partial u}{\partial x}, v\right) + \epsilon \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right) + \epsilon \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right) \\ - \left(\epsilon \frac{\partial u}{\partial x} n_x, v\right)_{\Gamma} - \left(\epsilon \frac{\partial u}{\partial y} n_y, v\right)_{\Gamma} \\ - \left(u, \epsilon \nabla v \cdot n\right)_{\Gamma} - \left(u, \beta \cdot nv\right)_{\Gamma} - \left(u, 3p^2 \epsilon / hv\right)_{\Gamma} \\ + \left(\frac{\partial u}{\partial x} + \epsilon \Delta u, \left(\frac{1}{h_x} + 3\epsilon \frac{1}{h_x^2 + h_y^2}\right)^2 \frac{\partial v}{\partial x}\right)$$

34 / 45

Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM and SUPG methods for Pe=1,000,000 on 2x2 mesh, using (2,1) for trial and (3,0) for testing.

Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM and SUPG methods for Pe=10000 on 4x4 mesh, using (2,1) for trial and (3,0) for testing.

Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM and SUPG methods for Pe=1,000,000 on 8x8 mesh, using (2,1) for trial and (3,0) for testing.

Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM and SUPG methods for Pe=1,000,000 on 16×16 mesh, using (2,1) for trial and (3,0) for testing.

Figure: Comparison of solutions of the Erikkson-Johnsson by using iGRM and SUPG methods for Pe=1,000,000 on 32x32 mesh, using (2,1) for trial and (3,0) for testing.

Erikkson-Johnson iterations

Figure: **Left panel:** Number of iterations of outer loop for. **Right panel:** Number of iterations of inner loop (CG).

Figure: Number of iterations of outer loop, with inner loop treated by MUMPS solver.

Circular wind problem

$$\beta_{x}\frac{\partial u}{\partial x} + \beta_{y}\frac{\partial u}{\partial y} - \epsilon \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right) = 0$$

over the rectangular domain $\Omega = (0, 1) \times (-1, 1)$, with zero right-hand side f = 0, Pe = 1,000,000, the advection vector $\beta(x, y) = (\beta_x(x, y), \beta_y(x, y)) = \psi(\frac{-y}{(x^2+y^2)^{\frac{1}{2}}}, \frac{x}{(x^2+y^2)^{\frac{1}{2}}})$ modeling the circular wind, where ψ is the wind force coefficient. $\Gamma_1 = \{(x, y) : x = 0, 0.5 \le y \le 1.0\},$ $\Gamma_2 = \{(x, y) : x = 0, 0.0 \le y \le 0.5\},$ $\Gamma_3 = \{(x, y) : x = 0, -0.5 \le y \le 0.0\},$ $\Gamma_4 = \{(x, y) : x = 0, -1.0 \le y \le -0.5\},$

We utilize the Dirichlet boundary conditions u = g on $\Gamma = \partial \Omega$ where

$$g = \frac{1}{2} \left(\tanh\left(\left(|y| - 0.35\right) \frac{b}{\epsilon} \right) + 1 \right), \text{ for } x \in \Gamma_2 \cup \Gamma_3$$
$$g = \frac{1}{2} \left(0.65 - \tanh\left(\left(|y| \right) \frac{b}{\epsilon} \right) + 1 \right), \text{ for } x \in \Gamma_1 \cup \Gamma_4$$
$$g = 0, \text{ for } x \in \Gamma \setminus \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$$

41 / 45

Circular wind problem

The weak formulation

$$b(u,v) = l(v) \quad \forall v \in V$$

$$b(u, v) = b(u, v) = \left(\beta_x \frac{\partial u}{\partial x}, v\right)_{\Omega} + \left(\beta_y \frac{\partial u}{\partial y}, v\right)_{\Omega} + \epsilon \left(\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}\right)_{\Omega} + \epsilon \left(\frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}\right)_{\Omega} - \left(\epsilon \frac{\partial u}{\partial x} n_x, v\right)_{\Gamma} - \left(\epsilon \frac{\partial u}{\partial y} n_y, v\right)_{\Gamma} - \left(u, \epsilon \nabla v \cdot n\right)_{\Gamma} - \left(u, \beta \cdot nv\right)_{\Gamma} - \left(u, 3p^2 \epsilon / hv\right)_{\Gamma}$$

where $n = (n_x, n_y)$ is the versor normal to Γ ,

$$I(\mathbf{v}) = -(g, \epsilon \nabla \mathbf{v} \cdot \mathbf{n})_{\Gamma} - (g, \beta \cdot \mathbf{n} \mathbf{v})_{\Gamma} - (g, 3p^{2} \epsilon / hv)_{\Gamma}$$

 $n = (n_x, n_y)$ is the versor normal to the boundary, and the right-hand side forcing is equal to 0.

Circular wind problem

Figure: Solution to the circular wind problem on the mesh of 128×128 elements with trial(2,1),test(2,0), for Pecklet number Pe = 1,000,000, wind force b = 1. Horizontal cross-section at x = 0.

Conclusions

- We use B-spline basis functions on tensor product patches of elements and we do not break the test spaces
- We employ the residual minimization method with fixed trial space, and we enrich the test space to improve the stability
- To preserve the Kronecker product structure of the residual minimization system, we enrich the test space in the alternating direction manner (e.g. (3,2) for x direction, and (2,3) for y direction) to preserve the Kronecker product structure of the matrix, and linear cost $\mathcal{O}(N)$ factorization
- For a linear cost O(N) Kronecker product precondtioner we can enrich the test space in arbitrary way, since we only need a Kronecker product structure of the Gramm matrix

Future work

 \bullet Stokes, Oseen, Navier-Stokes and Maxwell equations This work is supported by National Science Centre, Poland grant HARMONIA 2017/26/M/ST1/00281.

M. Los, Q.Deng, I. Muga, V.M.Calo, M. Paszynski, Isogeometric Residual Minimization Method (iGRM) with Direction Splitting Preconditoner for Stationary Advection-Diffusion Problems, submitted to *Computer Methods in Applied Mechanics and Engineering* (2019) **IF: 4.441**

Code based on: M. Los, M. Wozniak, M. Paszynski, A. Lenharth, K. Pingali, IGA-ADS : Isogeometric Analysis FEM using ADS solver, *Computer* & *Physics Communications*, 217 (2017), pp. 99-116 **IF: 3.748**